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Abstract

In this paper we present a grouped factor model that is designed to ex-

plore grouped structures in factor models. We develop an econometric theory

consisting of a consistent classification rule to assign variables to their respec-

tive groups and a class of consistent model selection criteria to determine the

number of groups as well as the number of factors in each group. As a result,

we propose a procedure to estimate grouped factor models, in which the un-

known number of groups, the unknown relationship between variables to their

groups as well as the unknown number of factors in each group are statisti-

cally determined based on observed data. The procedure can help to estimate

common factor that are pervasive across all groups and group-specific factors

that are pervasive only in the respective groups. Simulations show that our

proposed estimation procedure has satisfactory finite sample properties.
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1 Introduction

Factor models are widely used to summarize common features in large data sets,

such that the behavior of a large number of observed variables can be explained by

a small number of unobserved variables called factors. This class of models have

been successfully applied, for example, in finance to model asset returns known as

arbitrage pricing theory (see Ross 1985 for more details), in applied macroeconomics

to construct coincident indices to describe business cycles and to forecast macroeco-

nomic variables (see Stock and Watson (2002b) for more details), and in marketing

to identify the salient attributes consumers use to evaluate products. Often the large

number of variables can be grouped into different categories. For example asset re-

turns consist of asset returns in different industries; macrovariables include usually

price variables, real activity measures, interest rates, labour statistics ect; consumers

can be classified into different profession groups, income classes, and age groups ect.

Group-specific information is useful in understanding the data, in particular, for ex-

plaining the group-specific behavior of the data. So, for example, industrial indices

are used to measure industry specific risks that can in turn explain the asset returns

of the respective industries (see Fama Frence 1975 for more details). Regarding

forecasting Boivin and Ng (2006) find grouped data can produce better forecasts.

While a factor model is capable of summarizing main characteristics among a

large number of variables, it ignores potentially existing group-specific common fea-

tures, which may be useful in studying the data-generating mechanism. Although

there is a vast literature on factor models1 little is written about factor models

with grouped structures. Boivin and Ng (2006) find that in the forecasting of US

macrovariables, group-specific factors produce better results. Ludvigson and Ng

(2009) analyze the relation between bond excess returns and macro economic vari-

ables. They use 8 group-specific factors extracted from 131 variables to explain the

bond risk premia. In the context of estimation of group-specific factors and common

1see Johnson and Wichern (1992), Stock and Watson (2002a), Connor and Korajzyk (1986),
Bai (2003) and Bai and Ng (2002) for more details.
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factors the first class of methods deal with situation in which the group-specific fac-

tor spaces and the common factor space are the same. Krzanowski (1979) proposes

to determine the common factor space by minimizing its angles to the group-specific

factor spaces. Flury (1984) and Flury (1987) consider the case in which the group-

specific covariance matrices can be orthogonalized by a same matrix. This method

is then extended by Schott (1999) to take into account of the situation in which

the group-specific factor spaces are only subspaces of the common factor space re-

spectively. He suggests to estimate the common factor space by applying princi-

pal components method to the sum of the eigenprojection of each group. Goyal,

Perignon, and Villa (2008) apply this method to study the asset returns in NYSE

and NASDAQ and find that these two markets share one common factor and each

market has one group-specific factor respectively. Heaton and Solo (2009) study a

grouped factor model, where the groups are based on non-vanishing cross-sectional

correlation among the residuals within a group and they provide an instrumental

variable approach to estimate the model.

Common to these papers, not only the number of groups in the factor models

is assumed a priori but also the grouping of variables is given a priori rather than

estimated from observed data. Our paper contributes to the literature on factor

models in that it presents a theory on grouping the variables, determination of

the number of groups and estimation of the group-specific factors, such that the

grouped structures are determined statistically from data. The paper is structured

as follows. Section 2 presents the grouped factor model and discusses its relation to a

conventional factor model. Section 3 is on the estimation of grouped factor models,

where we present a method of generalized principal component analysis (GPCA)

and establish the consistency of the classification of variables based on GPCA. We

develop then a class of consistent model selection criteria to determine the number

of groups as well the number of factors in each group. Section 4 documents some

simulation results on the performance of the estimation procedure for grouped factor

models. The last section concludes.
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2 The Model

Let X be a T ×N matrix collecting the observations of a set of N variables observed

over T periods. We assume that this set of variables consists of n groups of variables:

X
(T×N)

= ( X1
T×N1

, X2
T×N2

, ...., Xn
T×Nn

), with N =
n∑

i

Ni. (2.1)

Further we assume that the variables in each group are generated from a factor

model. For the jth variable of ith group at time t we have

Xi,jt
(1×1)

= λ′
i,j

(1×ki)

Fi,t
(ki×1)

+ ei,jt
(1×1)

, for j = 1, 2, ...Ni, t = 1, 2, ..., T, i = 1, 2, ..., n, (2.2)

where Fi,t is a ki dimensional common factor of the ith group at time t and λi,j is

the ki dimensional factor loading for the jth variable in the ith group. ei,jt is the

idiosyncratic component of Xi,jt and λ′
i,jFi,t is the common component of Xi,jt.

Let Xi,j collect the time series observations of Xi,jt over T periods. We have

Xi,j
(T×1)

= Fi
(T×ki)

λi,j
(ki×1)

+ ei,j
(T×1)

, for j = 1, 2, ...Ni, i = 1, 2, ..., n, (2.3)

whereXi,j = (Xi,j1, Xi,j1, ..., Xi,jT )
′, Fi = (Fi,1, Fi,2, ..., Fi,T )

′, and ei,j = (ei,j1, ei,j1, ..., ei,jT )
′.

Let Xi collect observations of all variables in the ith group. We have

Xi = FiΛi + Ei, for i = 1, 2, ..., n, (2.4)

where

• Xi = (Xi,1, Xi,2, ..., Xi,Ni
): T ×Ni observations of Ni variables in the ith group

over T periods.

• Fi: T × ki unobservable ki common factors of the ith group over T periods.

• Λi = (λi,1, λi,2, ..., λi,Ni
): ki×Ni unobservable factors loadings of the ith group.

• Ei = (ei,1, ei,2, ..., ei,Ni
): T × Ni unobservable idiosyncratic component of the
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ith group over T periods.

• ∑n
i=1Ni = N and Ni/N → αi > α for all i, where α is a positive constant.

We call the model in (2.4) a grouped factor model (GFM). We consider the situation

where the number of groups n, the membership relation between variables and

groups, and the number of factors in each group are not a priori given. Our objective

is to determine the number of groups, the membership relation between variables

and groups, and the group-specific factors.

Since our objective is to investigate the grouped structure in a factor model not

to develop a new asymptotical result for a factor model, we are going to borrow

well-established assumptions on a factor model from the literature. The model

setup in Bai and Ng (2002) serves well for this purpose. It is general enough for

applications using economic time series. Further the technique there fits well to

investigate grouped structure in a factor model as we will see later. Therefore we

adopt the model assumptions on a factor model in Bai and Ng (2002) in our paper.

2.1 Assumptions

Assumption 2.1

(a) We assume that group-specific factors Fi,t are generated from a k dimensional

overallfactor Gt with k ≤
∑n

i=1 ki in the following way:

Fi,t = C ′
iGt, for i = 1, 2, ..., n. (2.5)

where Ci is a k × ki constant matrix.

(b) rank(Ci) = ki.

(c) rank(C1, C2, ..., Cn) = k.

Assumption 2.1 (a) is made to allow for dependence of group-specific factors of one

group on those of the other groups. If k <
∑n

i=1 ki, group-specific factors will be
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linear dependent across groups. For instance, with n = 3, k1 = 2 and k2 = 2,

k3 = 1 and k = 3 we are considering a 3 dimensional factor space consisting of

two factor planes and one factor line. These three sets of group-specific factors are

not independent from each other and each of them can be represented as a linear

combination of the 3 dimensional overall factor Gt. If k =
∑n

i=1 ki, the overall

factor Gt is just the collection of all group-specific factors after some rotations.

Assumption 2.1 (b) is made to ensure group-specific factors are not liner dependent

within a group. (c) is to make sure that every component of the overall factor Gt is

used in generating the group-specific factors. Under Assumption 2.1, the set of N

variables X adopt a factor structure with G as the factor:

X =

(

X1 X2 . . . Xn

)

=

(

F1Λ1 F2Λ2 . . . FnΛn

)

+

(

E1 E2 . . . En

)

=

(

GC1Λ1 GC2Λ2 . . . GCnΛn

)

+

(

E1 E2 . . . En

)

= G

(

C1Λ1 C2Λ2 . . . CnΛn

)

+

(

E1 E2 . . . En

)

Defining Λ = (C1Λ1, C2Λ2, ..., CnΛn) and E = (E1, E2, ..., En), we have:

X
(T×N)

= G
(T×K)

Λ
(K×N)

+ E
(T×N)

(2.6)

The equation above says that X can be accommodated in an ungrouped factor

model with k factors.

Assumption 2.2

E||Gt||4 < ∞ and 1
T

∑T
t=1 GtG

′
t

P−→ Σ as T → ∞ for some positive definite matrix

Σ.

Assumption 2.2 is standard in a factor model. Under Assumption 2.1 and As-

sumption 2.2 it is easy to see that the group-specific factor Fi also satisfies the
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requirements of Assumption 2.2, i.e.

(1) E||Fi,t||4 = E||CiGt||4 < ∞

(2) 1
T

∑T
t=1 Fi,tF

′
i,t =

1
T

∑T
t=1 CiGtG

′
tC

′
i

P−→ CiΣC
′
i as T → ∞. Since rank(Ci) = ki,

CiΣC
′
i is a positive definite matrix.

Assumption 2.3

λi,j < λ < ∞ and ||ΛiΛ
′
i/Ni−Di|| → 0 as Ni → ∞ for some ki×ki positive definite

matrix Di, for i = 1, 2, ..., n.

Assumption 2.3 is to make sure that each component of a group-specific factor makes

a nontrivial contribution to the variance of the variables in the group.

Proposition 2.4

Under Assumption 2.3 and Assumption 2.1 (b) and (c), the factor loading matrix

Λ in the ungrouped model (2.6) satisfies the requirement in Assumption 2.3, i.e.

λj < λ < ∞ and ||ΛΛ′/N − D|| → 0 as N → ∞ for some k × k positive definite

matrix D.

Assumption 2.5

(a) There is no constant kj × ki matrix C such that Ci = CjC, for any i 6= j,

i = 1, 2, ..., n and j = 1, 2, ..., n.

(b) Any pair of loading vectors of different groups λi,m and λj,l for m = 1, 2, ...Ni,

l = 1, 2, ..., Nj, i = 1, 2, ..., n, j = 1, 2, ..., n and i 6= j satisfy the restriction:

Ciλi,m 6= Cjλj,l.

Assumption 2.5 is about identification of groups. Assumption 2.5 (a) says no group-

specific factors are linear combinations of those of another group. In the case with

two factor planes and one factor line, this assumption excludes the situation in which

the line lies on any one of the two planes and the situation where one plane lies on

the other. This assumption is to make sure that groups are identified. Assumption

2.5 (b) says that data points located in the intersection of two groups are events
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of probability zero. Ciλi,m 6= Cjλj,l implies Ciλi,m − Cjλj,l 6= 0. Hence we have

P (G(Ciλi,m − Cjλj,l) = 0) = P (Fiλi,m − Fjλj,l = 0) = 0. This event can be

reformulated as P (Fiλi,m = Fjλj,l) = 0. Now Fiλi,m and Fjλj,l represent two points

(without errors) in different factor spaces. Assumption 2.5 (b) excludes the situation

in which a data point lies in the intersection of the factor spaces of two groups2.

In order to apply grouped factor models to economic time series, both serial

correlation and cross-sectional correlation among idiosyncratic errors are to be con-

sidered. We assume that the idiosyncratic errors in the ungrouped model (2.6)

satisfy the assumptions made as given in Bai and Ng (2002). Let Xit denote the

observation of the ith variable at time t in X . eit be the idiosyncratic component of

Xit.

Assumption 2.6 (Time and Cross-Section Dependence and Heteroskedasticity)

There exists a positive constant M ≤ ∞, such that for all N and T ,

1. E(eit) = 0, E|eit|8 ≤ M ;

2. E(
∑N

i= e′iseit/N) = (N−1
∑N

i=1 eiseit = γN(s, t)), |γN(s, s)| ≤ M for all s, and

T−1
∑T

t=1 |γN(s, t)| ≤ M ;

3. E(eitejt) = τij,t with τij,t ≤ |τij| for some τij and for all t, N−1
∑N

i=1

∑N
j=1 |τij | <

M

4. E(eitejs) = τij,ts and (NT )−1
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ M,

5. for every (t, s), E|N1/2
∑N

i=1[eiseit −E(eiseit)]|4 ≤ M .

Further we adopt also the assumption on weak dependence between factors and

errors given in Bai and Ng (2002).

Assumption 2.7 (Weak Dependence between Factors and Errors)

E

(

1

N

N∑

j=1

∣
∣
∣
∣

∣
∣
∣
∣

1√
T
G0

t
′
ejt

∣
∣
∣
∣

∣
∣
∣
∣

2
)

≤ M.

Note that the group-specific idiosyncratic errors in the grouped factor model are

the same as the idiosyncratic errors in the ungrouped factor model. Therefore, the

2This is a technical assumption to simplify the presentation of a correct classification of variables.
See remarks of Proposition 3.5 for more details.
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group-specific factors and the group-specific errors also satisfy the weak dependence

Assumption 2.7.

It is to note that under Assumption 2.1 through Assumption 2.7, the ungrouped

factor model (2.6) satisfies the assumptions on factor models given in Bai and Ng

(2002), and each group in (2.4) also satisfies the assumptions on factor models given

in Bai and Ng (2002).

The benefit of studying the grouped factor model (2.4) instead of the ungrouped

factor model (2.6) is to obtain group-specific factors, which may be useful for group-

specific analysis. If we understand a factor model as a means of condensing informa-

tion from a large number of variables to a small number of factors, then the grouped

factor model (2.4) investigates the structure in the factor space, i.e. which parts of

variables are influenced by which factors.

While an ungrouped factor model (2.6) with k = 3 says the factor space is a 3

dimensional space spanned by the factor G, a grouped factor model (2.4) with n = 3,

k1 = 2 k2 = 2, k3 = 1 and k = 3 says this 3 dimensional factor space consists of

two factor planes and a factor line. Through the grouped factor model we say data

points are located around the two planes and the line inside a 3 dimensional factor

space instead of just saying that the points are located around a 3 dimensional factor

space. In this sense, the grouped factor model provides more detailed information

on data structure than the ungrouped factor model.

3 Estimation of GFM

Suppose that we know the number of groups n ∈ N as well as the correct grouping

sn ∈ S, where N is the set of natural number and Sn is the set of all possible grouping

of variables given n. Then the estimation problem can be solved group by group

using principal component method that corresponds to the minimization of the the

squares residuals in each group. If the number of groups and the grouping of the

variables are unknown, we may try to solve this problem by minimizing over n and
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sn as follows.

min
n∈N

min
sn∈Sn,

min
Λi,Fi

n∑

i=1

||Xsn
i − FiΛi||2, (3.7)

where Xsn
i is the data matrix collecting variables grouped into group i according to

the grouping of sn. The objective function (3.7) expresses clearly the main feature of

the estimation problem of a grouped factor model: we estimate the unknown number

of groups, the unknown grouping of variables, the unknown number of factors in each

groups and the unknown factors the respective groups. This problem can be seen as

a problem of high dimensional clustering in which the cluster centers are subspaces

of different dimensions instead of centriods. Intuitively, we could apply the standard

method to estimate the factors and the corresponding loadings for each group, if we

knew the membership relation between variables and groups. On the other hand,

if we knew the factors in each group we could use the factor models to classify the

variables to each group using some minimum-distance criteria. So, we are in the

dilemma of chicken or the egg. A pragmatic approach to solve this kind of problems

is to iterate between classification and estimation. Well known procedures are k −

means algorithms and expectation maximization algorithm. In high dimensional

clustering, it is well known that these procedures depends sensitively on starting

values3. A thorough search over all groupings is NP-hard even in the case of two

groups4. In this paper we adopt the idea of generalized principal component analysis5

to estimate the grouped factor model.

3.1 An Alternative Representation of GFM

From a geometric point of view we can interpret factor models as follows. Each

variable can be seen as a point in a T -dimensional space. We have N such points.

While an ungrouped factor model (2.6) says the N sample points are locates close

3See Zhang and Xia (2009) and Yedla, Pathakota, and Srinivasa (2010) for more details.
4The k − means procedure is NP-hard. See http://en.wikipedia.org/K-means clustering for

more details.
5see Vidaly, Ma, and Sastry (2003) for more details.
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to a k dimensional factor space spanned by G, a grouped factor model (2.4) says

the k dimensional factor space consists of n different subspaces spanned by Fi with

dimension ki for i = 1, 2, ..., n, respectively, and the N sample points are located

close to these n subspaces. The magnitude of the idiosyncratic components Ei

measure how close the points in Xi are located to their subspace.

Denote the complementary vectors to factor Fi by Bi, i.e. B
′
iFi = 0 and B′

iBi =

IT−ki. Denoting FiΛi by X̃i, we can represent a GFM in the following alternative

way:

Xi = X̃i + Ei, with B′
iX̃i = 0 for i = 1, 2, ..., n. (3.8)

While in GFM (2.4) each subspace is represented by the basis Fi spanning the

subspace, in equation (3.8) the subspace is represented by its normal vectors Bi.

For a point x̃j lying in one of the n subspaces we have:

n∏

i=1

||B′
ix̃

j|| = 0 for j = 1, 2, ...N, (3.9)

where || || is the Euclidian norm in vector spaces. Equations (3.8) and (3.9) are

an alternative representation of the grouped factor model (2.4). To estimate the

number of groups and the number of factors in each group is equivalent to estimate

the number of subspaces and their dimensions. The estimation of a grouped factor

model involves two tasks: classification of the data into n groups and estimation

of the subspace of each group. The difficulty of the problem lies in solving the

classification and estimation problem simultaneously.

3.2 Method of Generalized Principal Component Analy-

sis(GPCA)

Principal component analysis can be seen as a problem of estimating a linear sub-

space of unknown dimension k from N sample points. Generalized principal com-
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ponent analysis refers to a problem of estimating an unknown number n of linear

subspaces with unknown dimensions ki (i =1,2,...n) from N sample points.

As discussed in the last subsection, a variable x lying in one of the subspaces

must satisfy the following equation:

n∏

i=1

||(B′
ix)|| = 0. (3.10)

The factors of the product on the left hand side of equation (3.10) can be reformu-

lated as a collection of m =
∏n

i=1(T − ki) equations of homogeneous polynomials of

degree n:

n∏

i=1

||(B′
ix)|| =

n∏

i=1

||((bi1,bi2, ...bi(T−ki))
′x)|| = 0

⇐⇒ pn(x) = (pn1(x), pn2(x), ..., pnm(x)) = 0. (3.11)

In other words the subspaces can be equivalently presented as the null space of the

m homogeneous polynomials of degree n. We demonstrate this fact in the following

example.

Example 3.1

For the case T = 3, n = 2, k1 = 1 and k2 = 2 we are considering a line and a

plane as two subspaces in a 3-dimensional space (See Fig.1). We have here m =

∏n
i=1(T − ki) = 2. In this case B1 is a 3 × 2 matrix and B2 is a 3 × 1 vector:

B1 = (b11,b12) and B2 = (b21).

2∏

i=1

||(B′
ix)|| = 0 ⇐⇒ p2(x) = ((b′

11x)(b
′
21x), (b

′
12x)(b

′
21x)) = 0. (3.12)

More concretely, for a line S1 = {x|x1 = 0, x2 = 0} and a plane S2 = {x|x3 = 0},
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Figure 1: GPCA for n = 2, k1 = 1, k2 = 2, N = 200, T = 3

we have

B1 =









1 0

0 1

0 0









and B2 =









0

0

1









. (3.13)

The polynomials representing the two subspaces are:

p2(x) = ((b′
11x)(b

′
21x), (b

′
12x)(b

′
21x)) = (x1x3, x2x3) = 0. (3.14)

A useful property of the polynomial representation of the subspaces is that the

normal vectors of the subspaces can be obtained by differentiating the polynomials

and evaluating the derivatives at one point in the respective subspaces.

For Example 3.1 the differential of p2(x) is given by:

∂p2(x)

∂x
= (b11(b

′
21x) + b21(b

′
11x),b12(b

′
21x) + b21(b

′
12x)) . (3.15)

13



Evaluating the differential at a point x ∈ S1 with (b11,b12)
′x = 0, we obtain:

∂p2(x)

∂x
|x∈S1

= (b11(b
′
21x),b12(b

′
21x)) . (3.16)

Normalizing the derivative above we obtain:

∂p2(x)
∂x

|x∈S1

||∂p2(x)
∂x

|x∈S1
||
= (b11,b12) = B1. (3.17)

Similarly, we have

∂p2(x)
∂x

|x∈S2

||∂p2(x)
∂x

|x∈S2
||
= (b21,b21) = B2. (3.18)

The calculation above shows that the subspaces can be represented as the null

space of pn(x), and the normal vectors of the subspaces can be obtained from the

derivative of pn(x) with respect to x evaluated at one point in the respective sub-

spaces. This fact holds for a general subspace arrangement, as stated later in Propo-

sition 3.2.

Differentiating pn(x) to obtain the normal vectors of the subspaces provides

one way to solve for the subspaces from the data. The question is now how can we

obtain the polynomial pn(x), when the normal vectors of the subspaces are unknown?

Recall that pn(x) consists ofm homogeneous polynomials of degree n in the elements

of x and each such homogeneous polynomial of degree n is a linear combination of

the monomials of the form xn1

1 xn2

2 ...xnT

T with 0 ≤ nj ≤ n for j = 1, ..., T and

n1 + n2 + ... + nT = n. Hence, we need only to find m linear combinations of the

monomials that assume the value of zero at xs that are points in the n subspaces.

To this end, we look again at Example 3.1, where the polynomial representing the

subspaces can be formulated as follows.
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pn(x) = ((b′
11x)(b

′
21x), (b

′
12x)(b

′
21x))

= ((b111x1 + b112x2 + b113x3)(b211x1 + b212x2 + b213x3),

(b121x1 + b122x2 + b123x3)(b211x1 + b212x2 + b213x3))

= (c11x
2
1 + c12x1x2 + c13x1x3 + c14x

2
2 + c15x2x3 + c16x

2
3,

c21x
2
1 + c22x1x2 + c23x1x3 + c24x

2
2 + c25x2x3 + c26x

2
3)

= (c′1ν2(x), c
′
2ν2(x)) = 0,

where ν2(x) = (x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3)

′ is the Veronese map of degree 2, and

the coefficients c1 is related to the normal vectors of the subspaces in the following

way: c1 = (c11, c12, c13, c14, c15, c16)
′, with c11 = b111b211, c12 = b111b212 + b112b211,

c13 = b111b213 + b113b211, c14 = b112b212, c15 = b112b213 + b113b212, c16 = b113b213; and c2

is defined accordingly.

Generally, the Veronese map of degree n is defined as νn(x) : R
T → R

Mn with

Mn =






n + T − 1

T − 1




 . νn : (x1, ..., xT )

′ → (...,xI , ...)′, where xI = xn1

1 xn2

2 ...xnT

T

with 0 ≤ nj ≤ n for j = 1, ..., T , and n1 + n2 + ... + nT = n.

In Example 3.1 we see that a collection of n subspaces can be described as the

set of points satisfying a set of homogeneous polynomials of the form (see equation

3.14):

p(x) = c′νn(x) = 0. (3.19)

Since each point in one of the n subspaces will satisfy equation (3.19), for N points

in the subspaces (in general position) we will have a linear equation system:
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Ln(X)c =












νn(x
1)′

νn(x
2)′

...

νn(x
N )′












c = 0 (3.20)

Ln(X) is an N×Mn matrix. Ln(X)c = 0 implies that coefficient c can be calculated

from the eigenvectors of the null space of Ln(X). Once we have c, we have a

representation of the subspaces νn(x)
′c = 0. This suggests that we can obtain

the normal vectors to the subspaces by differentiating νn(x)
′c with respect to x

and evaluating the derivative at points in the respective subspaces. This fact is

summarized in Theorem 5 in Vidaly (2003).

Proposition 3.2 (Polynomial differentiation Theorem 5 in Vidaly (2003)) For the

GPCA problem, if the given sample set X is such that dim(null(Ln)) = dim(In) and

one generic point yi is given for each subspace Si, then we have

Si⊥ = span

{
∂c′nνn(x)

∂x
|x=yi, ∀cn ∈ null(Ln)

}

Here Si⊥ represents normal vectors of the subspace Si, Ln is the data matrix as

given in (3.20) and In is the ideal of the algebra set pn(x) = 0 that represents the n

subspaces.

Following Proposition 3.2, the determination of the subspaces boils down to

evaluating the derivatives of νn(x)
′c at one point in each subspace. For data gener-

ated without noises, we only need to find out one point in each subspace in order

to calculated the normal vectors of the respective subspaces and the classification

problem can be solved perfectly. This method is called polynomial differentiation

algorithm(PDA) (see Vidal, Ma, and Piazzi (2004) for more details). In the follow-

ing we demonstrate how PDA works in Example 3.1.

Example 3.1 (continue) We consider a set of 8 sample points from the two sub-
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spaces. The coordinates of the 8 points are collected in a data matrix X. Each

column in X is one sample point.

X =









1 0 1 2 0 0 0 0

0 1 1 2 0 0 0 0

0 0 0 0 1 2 3 4









(3.21)

Obviously, the first four points are located in the subspace of the plane S2, the next

four points are located in the subspace of the line S1. The Veronese mapping matrix

with ν2(x) = (x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3)

′ is:

Ln(X) =

























1 0 0 0 0 0

0 0 0 1 0 0

1 1 0 1 0 0

4 4 0 4 0 0

0 0 0 0 0 1

0 0 0 0 0 4

0 0 0 0 0 9

0 0 0 0 0 16

























(3.22)

From Ln(X) we can solve for its null space by singular value decomposition. We

obtain two eigenvectors of Null(Ln(X)):

c =



















0 0

0 0

1 0

0 0

0 −1

0 0



















. (3.23)
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As stated in Proposition 3.2, the two polynomials pn(x) that represent the subspaces

can be obtained in the form of νn(x)
′c = 0 with coefficients equal to the eigenvectors

in the null space of Ln(X). In this example we have

νn(x)
′c = (x2

1, x1x2, x1x3, x
2
2, x2x3, x

2
3)



















0 0

0 0

1 0

0 0

0 −1

0 0



















= (x1x3,−x2x3) = 0.

Comparing with equation (3.14), we know pn(x) = νn(x)
′c = 0 represents the two

subspaces the line S1 = {x|x1 = 0, x2 = 0} and the plane S2 = {x|x3 = 0}.

Since we have data for νn(x), we can calculate vn(x)
′c and ∂νn(x)′c

∂x
. According to

Proposition 3.2, the normal vectors of the subspaces can be calculated by evaluating

∂νn(x)
′c

∂x
=









∂νn(x)′c
∂x1

∂νn(x)′c
∂x2

∂νn(x)′c
∂x3









at one point in the respective subspace. For the three components of the derivative

above we have:

∂νn(x)
′c

∂x1

=
∂νn(x)

∂x1

′

c = (2x1, x2, x3, 0, 0, 0)c = (x3, 0)

∂νn(x)
′c

∂x2
=

∂νn(x)

∂x2

′

c = (0, x1, 0, 2x2, x3, 0)c = (0,−x3)

∂νn(x)
′c

∂x3

=
∂νn(x)

∂x3

′

c = (0, 0, x1, 0, x2, 2x3)c = (x1,−x2).

Evaluating the three components of the partial derivative at the 8 sample points is

to replace (x1, x2, x3) in the three formulas above by the corresponding coordinates

of the 8 sample points, i.e. the numbers in the data matrix X in (3.21). We obtain
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then the following three matrices:

∂νn(x)
′c

∂x1
|X =

























0 0

0 0

0 0

0 0

1 0

2 0

3 0

4 0

























,
∂νn(x)

′c

∂x2
|X =

























0 0

0 0

0 0

0 0

0 −1

0 −2

0 −3

0 −4

























,
∂νn(x)

′c

∂x3
|X =

























1 0

0 −1

1 −1

2 −2

0 0

0 0

0 0

0 0

























(3.24)

The three components of the partial derivative ∂νn(x)′c
∂x

evaluated at each sample point

are given in the corresponding rows in the three matrices above. Collecting the partial

derivatives evaluated at x1 to x8, we have:

∂νn(x)
′c

∂x
|
x
1 =









0 0

0 0

1 0









,
∂νn(x)

′c

∂x
|
x
2 =









0 0

0 0

0 −1









, (3.25)

∂νn(x)
′c

∂x
|
x
3 =









0 0

0 0

1 −1









,
∂νn(x)

′c

∂x
|
x
4 =









0 0

0 0

2 −2









, (3.26)

∂νn(x)
′c

∂x
|
x
5 =









1 0

0 −1

0 0









,
∂νn(x)

′c

∂x
|
x
6 =









2 0

0 −2

0 0









, (3.27)
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∂νn(x)
′c

∂x
|
x
7 =









3 0

0 −3

0 0









and
∂νn(x)

′c

∂x
|
x
8 =









4 0

0 −4

0 0









. (3.28)

Notice that the rank of ∂νn(x)′c
∂x

|
x
k corresponds to the codimension of the respective

subspace6 and the normal vectors of the respective subspace can be calculated as

the principal component of ∂νn(x)′c
∂x

|
x
k . For the points x1,x2,x3,x4, the principal

component is (0 0 1)’. Therefore these four points belong to the subspace S2 defined

by the normal vector

B2 =









0

0

1









. (3.29)

The normalized derivative for points x5,x6,x7,x8 is









1 0

0 −1

0 0









(3.30)

Hence these four points belong to the subspace S1 characterized by the normal vectors:

B1 =









1 0

0 −1

0 0









. (3.31)

This example confirms that we need only to evaluate the derivative at one point

in each subspace to obtain the normal vectors. Sofar we know how to solve the

classification problem when there is no noise in the data, i.e. Ei = 0 in equation

(3.8). If Ei 6= 0 several problems arise: (1) Ln(X) will be of full rank and thus

6This property of the derivative ∂νn(x)
′
c

∂x
can be used to determine the dimension of the subspace.

Unfortunately, this rank condition holds only when the data are noiseless. However, it is still
possible to use this relation to determine the dimension of the subspace by thresholding the singular
values. See Vidal et al. (2004) for more details.
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equation system (3.20) has only zero solution. (2) It may happen that no point lies

really in any subspace, such that we can not obtain an accurate inference on the

normal vectors. In the following subsection we present a procedure of PDA with a

voting scheme in order to overcome these problems.

3.3 Method of Generalized Principal Component Analysis

with Noisy Data

3.3.1 PDA with Voting Scheme

Yang, Rao, Wagner, Ma, and Fossum (2005) propose the PDA with a voting scheme

solve the problem with noisy data. Their motivation is the following: For a given

number of subspaces n and their codimensions {di}ni=1, the theoretical rank of the

data matrix Ln(X) called the Hilbert function constraint can be calculated. Then

a set of polynomials pn(x) with coefficients equal to the eigenvectors in the null

space of Ln(X) are formed. Through evaluating Dpn(x) at each data point, a set

of vectors normal to the subspace in which the point lies are obtained. The original

PDA method relies on one good sample per subspace to classify the data. In the

presence of noises, no single sample is reliable. However, through averaging the

normal vectors of all samples in one subspace, it will smooth out the random noises.

The following is an algorithm given in Yang et al. (2005):
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Algorithm 1 Generalized Principal Component Analysis

Given a set of samples {xk}Nk=1, (xk ∈ R
K) fit an n linear subspaces model with

codimensions d1, ..., dn:

1: Set angleTolerance, let C be the number of distinct codimensions,

and obtain D by the Hilbert function constraint.

2: Let V {1}, ..., V {C} be integer arrays as voting counters and U{1}, ..., U{C}

be matrix arrays for basis candidates.

3: Construct LN = [νn(x
1), ..., νn(x

N )].

4: Form the set of polynomials pn(x) and compute Dpn(x).

5: for all sample xk do

6: for all 1 ≤ i ≤ C do

7: Assume xk is from a subspace with the codimension d equal to that of the

class i. Find the first d principal components B ∈ R
K×d in the matrix Dpn(x)|xk .

8: Compare B with all candidates in U{i}.

9: if ∃j, subspaceangle[B,U{i}(j)] < angleTolerance then

10: V {i}(j) = V {i}(j) + 1.

11: Average the principal directions with the new basis B.

12: else

13: Add a new entry in V {i} and U{i}.

14: end if

15: end for

16: end for

17: for all 1 ≤ i ≤ C do

18: m = the number of subspaces in class i.

19: Choose the first m highest votes in V{i} with their corresponding bases in U{i}.

20: Assign corresponding samples into the subspaces, and cancel their votes

in the other classes.

21: end for

22: Segment the remaining samples based on these bases.
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Yang et al. (2005) document good performance of this procedure in data segmentation.

We demonstrate how the PDA with a voting scheme works for Example 3.1 in

the Appendix.

3.4 Classification of Variables

After obtaining a solution {B̂1, B̂2, ...B̂n} for the subspaces, a variable xj is classified

to that subspace to which xj has the smallest distance among all subspaces. Given

the set of estimated normal vectors {B̂1, B̂2, ...B̂n}, we can calculate the distance

between the j-th variable xj and the ith subspace B̂i as follows:

||êji || = ||B̂′
ix

j||.

The rule for classification is the following:

||êji || = min{||êj1||, ||êj2||, ..., ||êjn||} → xj ⇒ Si, (3.32)

where xj ⇒ Si means that xj is classified to the subspace Si. Equation (3.32) says,

if the distance between a point xj and the subspace i, i.e. ||êji ||, is the smallest

among all subspaces, xj will be classified to the subspace Si.

We use xjk to denote that the j-th variable is generated by the factors of the

k-th group and ejk is the corresponding noise. If

||êjii || = min{||êj1||, ||êj2||, ..., ||êjn||} (3.33)

holds, then xji ⇒ Si follows. This classification is correct. Assumption 2.5 (a)

and (b) implies that if there is no noise, with an exception of probability zero all

data points from one group do not lie in the subspaces of other groups, so that

their distances to the subspaces of other groups are always strictly positive. This

ensures that the classification according to distance will lead to a unique correct

classification. The existence of noises will result in some errors in the classification.
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We show how to solve this problem in the next subsection.

3.5 Projected Model

In principle, we could obtain an estimate for each subspace by PDA as described

in subsection 3.3.1. However, the usual case of a dynamic factor model is that the

number of observations T is large and the number of factors k is very small. Bi

is of dimension T × (T − ki) and the Veronese mapping matrix is of dimension

N ×






n + T − 1

T − 1




, such that the dimension of data involved in the PDA algo-

rithm is very large. Consequently, the algorithm may not be practically executable

due to extreme heavy computational burden. But, as far as classification of vari-

ables is concerned, a large T -dimensional problem (T >> k) can be casted into a

K-dimensional problem with T >> K ≥ k to reduced the dimension of the problem.

The reason is that projecting the T dimensional points onto a K dimensional sub-

space that is not orthogonal to the factor space, the classification is preserved7 (See

Fig.2). Hence, we can first transform the T -dimensional classification problem into

a K-dimensional classification problem with K ≥ k. After solving the classification

problem, we can estimate the factors for each group using the original data.

Let Q be the T ×K matrix containing the K eigenvectors corresponding to K

largest eigenvalues ofXX ′.
√
TQ′ is a principal component estimate of factor matrix

space spanned by G. A rescaled/rotated estimate can be calculated as follows:

ĜK =
1

NT
(XX ′)

√
TQ, (3.34)

where (XX ′) is cross-product of the data matrix. We project the original models

(2.6) and (2.4) and by premultiply ĜK

T
to both sides of the models and obtain:

1

T
ĜK ′

X =
1

T
ĜK ′

GΛ +
1

T
ĜK ′

E (3.35)

7See Vidaly et al. (2003) for more details.
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Figure 2: GPCA for n = 2, k = 1 and T = 3.

and

1

T
ĜK ′

Xi =
1

T
ĜK ′

FiΛi +
1

T
ĜK ′

Ei for i = 1, 2, ..., n. (3.36)

Equation (3.36) defines again a grouped factor model withK observations. Denoting

1
T
ĜK ′

X , 1
T
ĜK ′

Go, 1
T
ĜK ′

E, 1
T
ĜK ′

Xi,
1
T
ĜK ′

Fi and
1
T
ĜK ′

Ei by X̄T , ḠT and ĒT , X̄T
i ,

F̄ T
i and ĒT

i respectively, we have

X̄T = ḠTΛ+ ĒT (3.37)

and

X̄T
i = F̄ T

i Λi + ĒT
i for i = 1, 2, ..., n (3.38)

or equivalently

X̄T
i = ˜̄XT

i + ĒT
i with B̄T

i
′ ˜̄XT

i = 0 for i = 1, 2, ..., n (3.39)
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The projected models (3.37) and (3.38) has the following property.

Proposition 3.3

Under Assumption 2.1 to Assumption 2.7, it holds:

• (a) X̄T
i

P−→ X̄i and X̄T P−→ X̄ as N → ∞, T → ∞

• (b) F̄ T
i

P−→ F̄i and ḠT P−→ Ḡ as N → ∞, T → ∞

• (c) ĒT
i

P−→ 0 and ĒT P−→ 0 as N → ∞, T → ∞

• (d) P (F̄i = F̄jC) = 0, where C is some constant matrix.

• (e) P (F̄iλi,m = F̄jλj,l) = 0 for any pair of factor loadings λi,m and λj,l for

m = 1, 2, ...Ni, l = 1, 2, ..., Nj, i = 1, 2, ..., n, j = 1, 2, ..., n and i 6= j.

Proof (see Appendix).

Proposition 3.3 (a) through (c) say that the projected model will converge to a

grouped factor model without noises, i.e. all data points lie directly in the respective

factor spaces. (d) and (e) say that the groups in the projected model are identified

and the projection will not change the membership relation between variables and

groups.

The benefits of a projection from a T dimensional problem onto a K dimensional

problem are twofold: (1) it reduces the dimension of the numerical calculation in

PDA and thus makes the problem practically solvable. The dimension of Bi reduces

from {T × (T − ki)} to {K × (K − ki)}. For a case of T = 200, ki = 4, K = 6, and

n = 5, the number of variables in Bi reduces from 195000 to 60. (2) The projection

reduces the distance between data points and their subspaces, and thus enables a

more precise classification. Eventually it will lead to a correct classification, as the

idiosyncratic errors converge zero for T → ∞, N → ∞.

Since the classification rule defined in (3.32) depends on the estimated residuals,

the results of the classification is stochastic. Therefore, we need to characterize the

stochastic property of a classification rule.
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Definition 3.4

A classification rule is called consistent if

P (||êjii || = min{||êj1||, ||êj2||, ..., ||êjn||}) → 1 as T → ∞, N → ∞. (3.40)

Proposition 3.5

The classification rule (3.32) based on the PDA with a voting scheme applied to the

projected model (3.38) is consistent.

Proof: According to Proposition 3.3 we have ĒT
i

P−→ 0, as T → ∞, N → ∞.

It follows X̄T
i

P−→ X̄i, as T → ∞, N → ∞. For a variable j in X̄T
i we have

x̄T,ji P−→ x̄ji, as T → ∞, N → ∞. As { ˆ̄B1,
ˆ̄B2, ...

ˆ̄Bn} is a continuous function of

{X̄T
i }ni=1 at {X̄i}ni=1, it follows according to Slusky theorem:

{ ˆ̄B1,
ˆ̄B2, ...

ˆ̄Bn} P−→ {B̄1, B̄2, ...B̄n}, as T → ∞, N → ∞

where { ˆ̄B1,
ˆ̄B2, ...

ˆ̄Bn} is the estimate of subspaces using PDA based on the data

{X̄T
i }ni=1 and {B̄1, B̄2, ...B̄n} is the subspaces calculated with PDA based on the

data {X̄i}ni=1. Therefore, we have

||ˆ̄ejii || = || ˆ̄B′
ix̄

T,ji|| P−→ ||B̄′
ix̄

ji|| = 0 as T → ∞, N → ∞,

where ˆ̄ejii is the distance between the data point x̄T,ji and the estimated ith subspace

ˆ̄Bi in the projected model (3.38) and x̄ji is the limit of x̄T,ji as T → ∞, N → ∞.

The probability limit in the equation above follows from Slusky theorem and the

last equality is due to the definition of x̄ji. Next we show that the probability that

x̄ji has a strick positive distance to other factor spaces converges to one.

1 = P (||ˆ̄ejik || ≥ 0) = P ({||ˆ̄ejik || > 0} ∪ {||ˆ̄ejik || = 0}) = P (||ˆ̄ejik || > 0) + P (||ˆ̄ejik || = 0)
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From Proposition 3.3 (e) we have

P (||ˆ̄ejik || = 0) → P (||ējik || = 0) = P (F̄kλk,l = F̄iλi,m) → 0, as T → ∞, N → ∞.

The last probability convergence follows from Proposition 3.3 (e) and the probability

equality is due to the fact that ||ējik || = 0 implies the point x̄ji lies in the intersection

of the factor spaces of group i and group k, and hence there exist λk,l and λi,m such

that x̄ji = F̄kλk,l = F̄iλi,m.

It follows then

P (||ˆ̄ejik || > 0) → 1 as T → ∞, N → ∞.

Because ||ˆ̄ejii ||
P−→ 0 and P (||ˆ̄ejik || > 0)

P−→ 1 for k 6= i, as T → ∞, N → ∞, we

have

P (x̄T,ji ⇒ S̄i) = P (||ˆ̄ejii || = min{||ˆ̄ej1||, ||ˆ̄ej2||, ..., ||ˆ̄ejn||}) → 1, as T → ∞, N → ∞.

(3.41)

✷

Remarks: Assumption 2.5 (b) leads to the results that P (||ˆ̄ejik || = 0) → 0

and hence the proof of the consistent classification above. This assumption is

not essential for conducting a correct inference of the group-specific factors. If

P (||ˆ̄ejik || = 0) > 0, a significant proportion of data will lie in the intersection of two

factor spaces. Because these data lie in the intersection of the two factor spaces, no

matter to which one of the two groups they are classified, it will lead to a correct

inference of group-specific factors. Allowing P (||ˆ̄ejik || = 0) > 0 will however compli-

cate the definition of correct classification. In order to avoid this complication and

simplify the presentation, we make the assumption Assumption 2.5 (b).

Since the group membership relation remains preserved after a projection from

a T dimensional space onto a K dimensional space. The classification of variables
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obtained in the projected model (3.38) is a consistent classification of the variables

in the original model.

P (xji ⇒ Si) = P (x̄T,ji ⇒ S̄i)
P−→ 1, as T → ∞, N → ∞. (3.42)

3.6 Determination of the number of groups and the number

of factors in each group

As shown in the previous subsection, an estimate of the subspaces by the PDA

can be obtained when the number of subspaces and their dimensions are given, i.e.

when we know the number of groups and the number of factor in each group, we can

estimate the group-pervasive factors. However, in practical applications the number

of the subspaces and their dimensions are often unknown. It raises naturally a

question how we can decide the number of the subspaces and their dimensions. We

consider again the following grouped factor model:

Xi = FiΛi + Ei i = 1, 2, ...n. (3.43)

Given the number of subspaces and their respective dimensions (n, {ki}ni=1), we can

classify the variables into n groups, using the classification methods discussed in the

previous subsection. For group i (i = 1, 2, ...n), we denote the T observations of the

Ni variables which are classified into this group by Xs
i . Given the classified variables

(Xs
1 , X

s
2 , ..., X

s
n), we can estimate the group-pervasive factors group by group using

principal component method: F̂i =
√
TQ, where Q contains the ki eigenvectors

corresponding to the largest ki eigenvalues of the matrix Xs
iX

s
i
′. The factor loading

estimate is given accordingly

Λ̂i = F̂ ′
iX

s
i /T.

Denote the mean squared residuals by of the ith group by:

Vi(ki, F̂i, Ni) =
1

NiT

∑Ni

j=1

∑T
t=1(X

s
i,jt−λ̂i,jF̂i,t)

2. The asymptotic principal component
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estimate of factors F̂i is the solution of the following minimization problem:

Vi(ki, F̂i, Ni) = min
Λi,Fi

1

NiT

Ni∑

j=1

T∑

t=1

(Xs
i,jt − λi,jFi,t)

2, (3.44)

where Λi = (λi,1, λi,2, ..., λi,Ni
) and Fi = (Fi,1, Fi,2, ..., Fi,T )

′. If a correct classification

were known, the information criterion developed in Bai and Ng (2002) could be used

to determine the number of factors ki group by group. However, for a grouped factor

model as a whole, the situation is more complex. In fact we are dealing with an

unknown number of different factor models simultaneously. In other words we have

to determine the number of groups as well as the the number of factors for each

group at same time. We denote these key parameters of a grouped factor model by

(n, {ki}ni=1), where n is the number of groups in the model and ki (i = 1, 2, ..., n) is

the number of group-pervasive factors of the ith group. A model selection criterion

C(n, {ki}ni=1, {Xs
i }) that is a scalar function of data, model parameters and the

classification of the variables measures the goodness of fit of the model to the data.

Definition 3.6

A model selection criterion C(n, {ki}ni=1, {Xs
i }) is called consistent if it satisfies the

following condition:

P{C(no, {ko
i }ni=1, {Xs

i }) < C(n′, {k′
i}n

′

i=1, {Xu
i })} → 1 for T,N → ∞. (3.45)

Here no is the number of groups in the true model and {ko
i }ni=1 are the numbers of

group-pervasive factors of respective groups in the true model. (n′, {k′
i}n

′

i=1) represents

an alternative model.

Because we are considering the asymptotical property of a model selection crite-

rion for the number of groups and number of factor in each group, the proportion of

a group in a candidate model should not be vanishing. Hence we assume that for all

candidate models, there exists a constant lower bound for the ratio of the number

of variables in a group to the total number of variables in a model. We denote this
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lower bound by α. The model selection criterion is formulated as follows.

Proposition 3.7

Under Assumption 2.1 to Assumption 2.7 of a grouped factor model (2.4),

PC(n, {ki}ni=1, {Xs
i }) =

n∑

i=1

Ni

N
Vi(ki, F̂

ki, Ni)+σ̂2

(
n∑

i=1

Ni

N
(ki + h(Ni/N))

)

g(N, T )

(3.46)

is a consistent model selection criterion if the following conditions are satisfied:

1. limN→∞
Ni

N
→ αi > α, where Ni

N
is the share of variables in the ith group. It

is to note that α is the lower bound for all candidate models.

2. g(N, T ) → +0, C2
N,Tg(N, T ) → ∞ as N, T → ∞,

where CNT = min{
√
N,

√
T}.

3. (a) 0 < h(α) < 1 for any 0 ≤ α ≤ 1

(b) h(αi) ≥ h(αj) for any 0 ≤ αi ≤ αj ≤ 1.

(c)
∑

l αlh(αl) >
∑

j αjh(αj) for and {αj} - {αl}.

We use the notation {αj} - {αl} to present that {αj} is a finer partition of

the variables than {αl}, with
∑

l αl =
∑

j αj = 1.

Proof (See Appendix).

The model selection criterion can be reformulated in the following more compact

form:

PC(n, {ki}, {Xs
i }) = V̄ ({ki}, {α̂i}) + σ̂2(k̄ + h̄)g(N, T )

where σ̂2 is a consistent estimate of (NT )−1
∑n

i=1

∑Ni

j=1

∑T
t=1E(ei,jt)

2, k̄ is the

weighted mean of number of factors over all groups and h̄ is the weighted mean

of the penalty function h(α̂i) over all groups.

Remarks In this formulation it is clear that k̄ is the penalty due to the average

number of factors and h̄ is the penalty due to dispersion of groups. Compared to

the PC criterion in Bai and Ng (2002), obviously this model selection criterion is
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a variant of weighted PC criteria developed in Bai and Ng (2002) over all groups

with an additional penalty on the dispersion of groups in a model. Condition 1 is to

make sure that the proportion of a group will not vanish asymptotically, Condition

2 is to get the right rate of convergence for the penalty term, and Condition 3 is to

make sure that the average number of factors is the dominating parameter of the

model and the dispersion of groups is a dominated parameter. While comparing

two models, we compare first the dominating parameter, only when the dominating

parameter are equal we compare the dispersion of the groups in the two models.

A concrete choice of g(N, T ) can be:

• g(N, T ) = N+T
NT

log
(

NT
N+T

)
,

and a concrete choice of h(Ni/N) is:

• h(α̂i) =
α̂iN+T

α̂iNT
log

(

α̂iNT

α̂iN+T

)

αN+T

αNT
log( αNT

αN+T )
= g(α̂iN,T )

g(αN,T )
,

where α̂i =
Nj

N
. This h function is used in our simulation study.
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3.7 Estimation Procedure for a Grouped Factor Model

• Step 1: Estimate K by the PC criterion of Bai and Ng (2002).

• Step 2: Project the T ×N data matrix X onto a K ×N matrix:

X̄T =
1

T
ĜK ′

X,

where ĜK is defined in (3.34).

• Step 3: According to a chosen model (n, {ki}ni=1), solve for the corresponding

the subspaces (B̄1, B̄2, ..., B̄n) of the projected model (3.39) by polynomial dif-

ferentiation algorithm with voting scheme and classify the variables according

to rule (3.32).

• Step 4: Use the model selection criterion to evaluate alternative choices of

models to obtain an optimal model and the corresponding classification of

variables {Xs
i }ni=1.

• Step 5: Estimate a factor model for each group of data in {Xs
i }ni=1 by the

standard principal component method to obtain estimates for the respective

group-pervasive factors F̂i =
√
TQi and factor loadings Λ̂i = F̂ ′

iX
s
i /T, where

Qi contains the ki eigenvectors corresponding to the ki largest eigenvalues of

the matrix Xs
iX

s
i
′.

Proposition 3.8

Under Assumption 2.1 to Assumption 2.7 and the three conditions given in Propo-

sition 3.7, the procedure described above will provide a consistent estimate of the

factor space for each group.

Proof

As T → ∞ and N → ∞ , according to Proposition 3.5 the classification of

the variables are correct. Given a correct classification, for each group of variables

the assumptions on a factor model in Bai and Ng (2002) are satisfied. Therefore,
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Theorem 1 in Bai and Ng (2002) can be applied to each group of data, i.e. the

principal component method provides a consistent estimate of the factor space for

each group.

4 Simulation Studies and an Application Exam-

ple

4.1 Simulation Studies

In this section we document results of our simulation study. The simulation study is

conducted in order to assess the performance of the proposed estimation procedure

in finite sample cases. In particular we want to assess the ability of the model

selection criterion in identifying the true model, i.e. the number of groups and the

number of group-pervasive factors in each group. We use a vector consisting of the

number of factors in each group ki i = 1, 2, ..., n and the number of the factor in the

ungrouped model K to represent a GFM. For example [321|5] represents a GFM

with three groups, the ungrouped factor space is 5 dimensional and the number of

factors in each group is 3, 2 and 1 respectively. To take into account that different

group-pervasive factors may be correlated and hence may have common factors, our

data generating process is designed in the way that there exists one common factor

in all groups except the groups with only one factor. According to this setting, in

the model [321|5] there exists one common factor in the first and the second groups

and hence the pervasive factor space is 5-dimensional.

The data in the simulation study are generated from the following model:

Xi,jt =

ki∑

l=1

Fi,ltλi,lj +
√
θiei,jt j = 1, 2, ...Ni, i = 1, 2, ...n,

where the factor Fi,t = (Fi,1t, Fi,2t, ..., Fi,kit)
′ for the ith group is a ki × 1 matrix

of N(0, 1) variables; the factor loadings for the group λi,j = (λi,1j, λi,2j, ..., λi,kij)
′

is a ki × 1 matrix of N(0, 1) variables: and ei,jt ∼ N(0, 1). In this setting the
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common component of Xi,jt has variance ki. The base case under consideration is

that the common component has the same variance as the idiosyncratic component,

i.e. θi = ki. We consider the cases in which the number of groups in a GFM varies

from 2 to 4; the number of variables in each group varies from 30 to 60; and the

number of observations varies from 80 to 500. These are plausible data sets for

monthly and quarterly macroeconomic variables and financial variables in practical

applications.

In each simulation run we compare the value of the model selection criterion of

the true model and those of alterative candidate models. The candidate models are

chosen in a way that they include both more restrictive models and more general

models in order to investigate the sharpness of the model selection criterion in iden-

tifying the true model from similar model candidates. For a true model [2 2|3], [3

1] and [2 2 2] are more general models. Because in our simulation design the true

model [2 2|3] has one common factor, the total number of factors in the data set

is three. We are considering here two factor planes in a three dimensional ambient

space. Therefore, the model [3 1] is a more general model because it contains a

three-dimensional subspace and a one-dimensional subspace, and [2 2 2] is also a

more general model because it contains three two-dimensional subspaces. But, [2 1]

is a more restrictive model because it contains only one two-dimensional subspace

and one one-dimensional subspace in a three dimensional ambient factor space.

The outcomes of the simulation study are summarized in Table 1 to Table 4.

The first and the second columns in these tables give the numbers of observations

and the numbers of variables in the respective simulation settings. The numbers in a

pair of brackets in the second column are the numbers of variables in the respective

groups. The third column gives the true data-generating grouped factor models and

the candidate models under consideration. The integers in a pair of square brackets

give the numbers of factors in the respective groups of a grouped factor model. For

a data-generating model we give also the dimension of the ambient space which

is the number behind the bar in the square bracket. For candidate models we do
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not give the dimensions of the ambient spaces, because they will be determined in

the estimation procedure. Since the estimation procedure consists of two steps: (1)

projection of the data onto a K dimensional ambient space and (2) select the correct

model from the candidates, we report the performance with respect to choosing the

correct projection dimensions and the performance with respect to choosing the

correct models from the competing candidates after the projection.

It is to note that determining the projection dimension can be seen as a prob-

lem of comparing ungrouped models models with grouped models. UGRP reports

the performance of the model selection criterion in this respect. A number in the

column of UGRP is the proportion that the correct projection dimension, i.e. the

dimension of the pervasive factor space, is chosen by the PC criterion of Bai and Ng

(2002) in the pooled data and at least one grouped factor model is chosen over the

correct ungrouped factor model in the respective 1000 simulation runs. Since our

data generating models are all grouped factor models, for good performance of the

selection criterion we expect the numbers to be close to one. The numbers in the

column of UGRP show that the model selection criterion works well in determining

the right dimension of the projection space. For all configurations in the simulation

T = 80 and Ni = 30 are enough for a correct determination of the projection dimen-

sion, i.e. the proportions of finding the right projection dimension are very high: all

numbers in this column are one. This result is consistent with the simulation result

given in Bai and Ng (2002).

The column under the header CCLM reports the proportion of correctly identi-

fied models among the candidates in 1000 simulation replications under the condition

that the projection dimension is chosen correctly. Most of the numbers in the column

of CCLM are very close to one, indicating that for the considered configurations

the estimation procedure performs well in identifying the correct model from the

competing candidates, in many cases already for T ≥ 80 and Ni ≥ 30. Since the

consistence of the model selection criterion holds under T → ∞ and N → ∞, it is

not surprising that in some configurations for T = 80 and Ni = 30 the proportions
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of finding the correct models are still low (see the first and the third panels in Table

2, the third panel in Table 3, and the second and the third panels in Table 4.) How-

ever, we observe that for a given configuration the proportion of correctly identified

models approaches to one with increasing T and Ni, for T = 150 and Ni = 60 the

results are already satisfactory.

The column under the header MCLV gives the average proportion of misclassi-

fied variables in respective 1000 simulation runs. If the classification works well, the

numbers in this column should be close to zero. Indeed the numbers in the column

of MCLV are all under 10 percent, indicating that the classification of variables

works very well. It is to note that as far as the subspaces are intersected, there is

always some proportion of misclassification of variables, though this proportion is

low.

SFF08 reports the average goodness of fit of the estimated factors for the true

factors in 1000 simulation runs. SFF0 is normalized to be between zero and one.

A number close to one implies a good fitting of the estimated factors to the true

factors. Because most of the variables are correctly classifies into their groups, the

goodness of fit of the estimated factors to the true factors is comparable to the

goodness of fit in ungrouped factor models. Indeed in most cases the numbers in

the column of SFF0 are over 90%.

8SFF0 = tr(F 0′

F̂ (F̂ ′
F̂ )−1

F̂
′
F

0)
tr(F 0′

F 0)
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Table 1: Estimation of grouped factor models

T N Model and Candidates CCLM SFF0 MCLV UGRP

[11|2]
80 (30 30) [111] [1 1] 1.00 0.96 0.03 1.00
150 (30 30) [111] [1 1] 1.00 0.97 0.02 1.00
300 (30 30) [111] [1 1] 1.00 0.96 0.02 1.00
500 (30 30) [111] [1 1] 1.00 0.97 0.02 1.00
80 (60 60) [111] [1 1] 1.00 0.98 0.02 1.00
150 (60 60) [111] [1 1] 1.00 0.98 0.02 1.00
300 (60 60) [111] [1 1] 1.00 0.98 0.02 1.00
500 (60 60) [111] [1 1] 1.00 0.98 0.01 1.00

[21|3]
80 (30 30 ) [2 2 ] [2 1] [1 1] [1 1 1] [2 2 1] 0.99 0.95 0.05 1.00
150 (30 30 ) [2 2 ] [2 1] [1 1] [1 1 1] [2 2 1] 0.99 0.95 0.05 1.00
300 (30 30 ) [2 2 ] [2 1] [1 1] [1 1 1] [2 2 1] 0.99 0.95 0.02 1.00
500 (30 30 ) [2 2 ] [2 1] [1 1] [1 1 1] [2 2 1] 1.00 0.95 0.02 1.00
80 (60 60 ) [2 2 ] [2 1] [1 1] [1 1 1] [2 2 1] 1.00 0.97 0.05 1.00
150 (60 60 ) [2 2 ] [2 1] [1 1] [1 1 1] [2 2 1] 1.00 0.98 0.05 1.00
300 (60 60 ) [2 2 ] [2 1] [1 1] [1 1 1] [2 2 1] 1.00 0.98 0.02 1.00
500 (60 60 ) [2 2 ] [2 1] [1 1] [1 1 1] [2 2 1] 1.00 0.98 0.02 1.00

[22|3]
80 (30 30 ) [2 2] [2 1] [1 1] [1 1 1] [2 2 2] 0.99 0.93 0.03 1.00
150 (30 30 ) [2 2] [2 1] [1 1] [1 1 1] [2 2 2] 1.00 0.93 0.03 1.00
300 (30 30 ) [2 2] [2 1] [1 1] [1 1 1] [2 2 2] 1.00 0.93 0.02 1.00
500 (30 30 ) [2 2] [2 1] [1 1] [1 1 1] [2 2 2] 1.00 0.93 0.02 1.00
80 (60 60 ) [2 2] [2 1] [1 1] [1 1 1] [2 2 2] 1.00 0.97 0.02 1.00
150 (60 60 ) [2 2] [2 1] [1 1] [1 1 1] [2 2 2] 1.00 0.97 0.02 1.00
300 (60 60 ) [2 2] [2 1] [1 1] [1 1 1] [2 2 2] 1.00 0.97 0.02 1.00
500 (60 60 ) [2 2] [2 1] [1 1] [1 1 1] [2 2 2] 1.00 0.97 0.01 1.00

[32|4]
80 (30 30) [3 2] [3 1] [2 1] [3 3] [3 2 1] 0.98 0.91 0.08 1.00
150 (30 30) [3 2] [3 1] [2 1] [3 3] [3 2 1] 1.00 0.92 0.06 1.00
300 (30 30) [3 2] [3 1] [2 1] [3 3] [3 2 1] 1.00 0.92 0.04 1.00
500 (30 30) [3 2] [3 1] [2 1] [3 3] [3 2 1] 1.00 0.91 0.03 1.00
80 (60 60) [3 2] [3 1] [2 1] [3 3] [3 2 1] 1.00 0.96 0.07 1.00
150 (60 60) [3 2] [3 1] [2 1] [3 3] [3 2 1] 1.00 0.96 0.05 1.00
300 (60 60) [3 2] [3 1] [2 1] [3 3] [3 2 1] 1.00 0.96 0.04 1.00
500 (60 60) [3 2] [3 1] [2 1] [3 3] [3 2 1] 1.00 0.96 0.03 1.00

Notes: Table 1 reports the results of estimation a GFM in 1000 Monte Carlo simulations.

The first column gives number of observations. The second column gives the numbers

of variables in the respective data-generating grouped factor model. The third columns

gives the data-generating grouped factor models and the candidate models, over which

the model selection procedure was applied. CCLM gives the proportion of the correctly

identified true models over 1000 runs. SFF0 is the average goodness of fit of the

estimated group-pervasive factors to the true group-pervasive factors over all groups.

MCLV gives the average proportion of misclassified variables in all variables over 1000

runs. UGRP gives the proportion of correctly identified projection spaces in 1000 runs.
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Table 2: Estimation of grouped factor models

T N Model and Candidates CCLM SFF0 MCLV UGRP

[33|5]
80 (30 30) [1 1 1] [2 2] [3 2 1] [3 3 1] [3 3 2] [3 3 3] [3 3] 0.77 0.89 0.02 1.00
150 (30 30) [1 1 1] [2 2] [3 2 1] [3 3 1] [3 3 2] [3 3 3] [3 3] 0.97 0.90 0.01 1.00
300 (30 30) [1 1 1] [2 2] [3 2 1] [3 3 1] [3 3 2] [3 3 3] [3 3] 0.98 0.90 0.01 1.00
500 (30 30) [1 1 1] [2 2] [3 2 1] [3 3 1] [3 3 2] [3 3 3] [3 3] 1.00 0.90 0.00 1.00
80 (60 60) [1 1 1] [2 2] [3 2 1] [3 3 1] [3 3 2] [3 3 3] [3 3] 0.99 0.95 0.01 1.00
150 (60 60) [1 1 1] [2 2] [3 2 1] [3 3 1] [3 3 2] [3 3 3] [3 3] 1.00 0.95 0.01 1.00
300 (60 60) [1 1 1] [2 2] [3 2 1] [3 3 1] [3 3 2] [3 3 3] [3 3] 1.00 0.95 0.01 1.00
500 (60 60) [1 1 1] [2 2] [3 2 1] [3 3 1] [3 3 2] [3 3 3] [3 3] 1.00 0.95 0.00 1.00

[31|4]
80 (30 30 ) [3 1] [2 1] [2 2] [3 2] [3 2 1] [3 1 1] 0.95 0.93 0.07 1.00
150 (30 30 ) [3 1] [2 1] [2 2] [3 2] [3 2 1] [3 1 1] 0.99 0.93 0.06 1.00
300 (30 30 ) [3 1] [2 1] [2 2] [3 2] [3 2 1] [3 1 1] 1.00 0.93 0.04 1.00
500 (30 30 ) [3 1] [2 1] [2 2] [3 2] [3 2 1] [3 1 1] 1.00 0.93 0.03 1.00
80 (60 60 ) [3 1] [2 1] [2 2] [3 2] [3 2 1] [3 1 1] 1.00 0.97 0.07 1.00
150 (60 60 ) [3 1] [2 1] [2 2] [3 2] [3 2 1] [3 1 1] 1.00 0.97 0.05 1.00
300 (60 60 ) [3 1] [2 1] [2 2] [3 2] [3 2 1] [3 1 1] 1.00 0.97 0.04 1.00
500 (60 60 ) [3 1] [2 1] [2 2] [3 2] [3 2 1] [3 1 1] 1.00 0.97 0.03 1.00

[311|5]
80 (30 30 30) [3 2] [3 1 1 1] [3 1] [3 2 1] [3 2 2] [3 1 1] 0.68 0.94 0.09 1.00
150 (30 30 30) [3 2] [3 1 1 1] [3 1] [3 2 1] [3 2 2] [3 1 1] 0.84 0.94 0.06 1.00
300 (30 30 30) [3 2] [3 1 1 1] [3 1] [3 2 1] [3 2 2] [3 1 1] 0.95 0.94 0.04 1.00
500 (60 60 60) [3 2] [3 1 1 1] [3 1] [3 2 1] [3 2 2] [3 1 1] 0.99 0.94 0.03 1.00
80 (60 60 60) [3 2] [3 1 1 1] [3 1] [3 2 1] [3 2 2] [3 1 1] 0.99 0.97 0.09 1.00
150 (60 60 60) [3 2] [3 1 1 1] [3 1] [3 2 1] [3 2 2] [3 1 1] 1.00 0.97 0.06 1.00
300 (60 60 60) [3 2] [3 1 1 1] [3 1] [3 2 1] [3 2 2] [3 1 1] 1.00 0.97 0.04 1.00
500 [3 2] [3 1 1 1] [3 1] [3 2 1] [3 2 2] [3 1 1] 1.00 0.97 0.04 1.00

[111|3]
80 (30 30 30) [1 1 1] [2 1 ] [1 1 ] [2 2 ] [2 2 1 ] 1.00 0.96 0.03 1.00
150 (30 30 30) [1 1 1] [2 1 ] [1 1 ] [2 2 ] [2 2 1 ] 1.00 0.97 0.03 1.00
300 (30 30 30) [1 1 1] [2 1 ] [1 1 ] [2 2 ] [2 2 1 ] 1.00 0.97 0.02 1.00
500 (30 30 30) [1 1 1] [2 1 ] [1 1 ] [2 2 ] [2 2 1 ] 1.00 0.97 0.02 1.00
80 (60 60 60) [1 1 1] [2 1 ] [1 1 ] [2 2 ] [2 2 1 ] 1.00 0.98 0.02 1.00
150 (60 60 60) [1 1 1] [2 1 ] [1 1 ] [2 2 ] [2 2 1 ] 1.00 0.98 0.03 1.00
300 (60 60 60) [1 1 1] [2 1 ] [1 1 ] [2 2 ] [2 2 1 ] 1.00 0.98 0.03 1.00
500 (60 60 60) [1 1 1] [2 1 ] [1 1 ] [2 2 ] [2 2 1 ] 1.00 0.98 0.01 1.00

Notes: Table 2 reports the results of estimation a GFM in 1000 Monte Carlo simulations.

The first column gives number of observations. The second column gives the numbers

of variables in the respective data-generating grouped factor model. The third columns

gives the data-generating grouped factor models and the candidate models, over which

the model selection procedure was applied. CCLM gives the proportion of the correctly

identified true models over 1000 runs. SFF0 is the average goodness of fit of the estimated

group-pervasive factors to the true group-pervasive factors over all groups. MCLV gives

the average proportion of misclassified variables in all variables over 1000 runs. UGRP

gives the proportion of correctly identified projection spaces in 1000 runs.
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Table 3: Estimation of grouped factor models

T N Model and Candidates CCLM SFF0 MCLV UGRP

[211|4]
80 (30 30 30) [2 1 1] [ 2 1] [2 2] [3 1] [2 2 1] [2 2 2] [3 1 1] 0.91 0.93 0.04 1.00
150 (30 30 30) [2 1 1] [ 2 1] [2 2] [3 1] [2 2 1] [2 2 2] [3 1 1] 0.99 0.93 0.03 1.00
300 (30 30 30) [2 1 1] [ 2 1] [2 2] [3 1] [2 2 1] [2 2 2] [3 1 1] 1.00 0.93 0.03 1.00
500 (60 60 60) [2 1 1] [ 2 1] [2 2] [3 1] [2 2 1] [2 2 2] [3 1 1] 1.00 0.93 0.02 1.00
80 (60 60 60) [2 1 1] [ 2 1] [2 2] [3 1] [2 2 1] [2 2 2] [3 1 1] 1.00 0.97 0.03 1.00
150 (60 60 60) [2 1 1] [ 2 1] [2 2] [3 1] [2 2 1] [2 2 2] [3 1 1] 1.00 0.97 0.02 1.00
300 (60 60 60) [2 1 1] [ 2 1] [2 2] [3 1] [2 2 1] [2 2 2] [3 1 1] 1.00 0.97 0.02 1.00
500 (60 60 60) [2 1 1] [ 2 1] [2 2] [3 1] [2 2 1] [2 2 2] [3 1 1] 1.00 0.97 0.02 1.00

[222|4]
80 (30 30 30) [2 2 2] [3 2] [3 2 1] [3 2 2 ] [3 1 1] [2 2 2 2] 0.91 0.93 0.04 1.00
150 (30 30 30) [2 2 2] [3 2] [3 2 1] [3 2 2 ] [3 1 1] [2 2 2 2] 0.99 0.93 0.03 1.00
300 (30 30 30) [2 2 2] [3 2] [3 2 1] [3 2 2 ] [3 1 1] [2 2 2 2] 1.00 0.93 0.03 1.00
500 (30 30 30) [2 2 2] [3 2] [3 2 1] [3 2 2 ] [3 1 1] [2 2 2 2] 1.00 0.93 0.02 1.00
80 (60 60 60) [2 2 2] [3 2] [3 2 1] [3 2 2 ] [3 1 1] [2 2 2 2] 1.00 0.97 0.03 1.00
150 (60 60 60) [2 2 2] [3 2] [3 2 1] [3 2 2 ] [3 1 1] [2 2 2 2] 1.00 0.97 0.02 1.00
300 (60 60 60) [2 2 2] [3 2] [3 2 1] [3 2 2 ] [3 1 1] [2 2 2 2] 1.00 0.97 0.02 1.00
500 (60 60 60) [2 2 2] [3 2] [3 2 1] [3 2 2 ] [3 1 1] [2 2 2 2] 1.00 0.97 0.02 1.00

[322|5]
80 (30 30 30) [3 2 2] [4 3] [4 2] [3 3 2 ] [3 3 1 ] [3 1 1] [4 2 2] 0.61 0.88 0.10 1.00
150 (30 30 30) [3 2 2] [4 3] [4 2] [3 3 2 ] [3 3 1 ] [3 1 1] [4 2 2] 0.94 0.92 0.07 1.00
300 (30 30 30) [3 2 2] [4 3] [4 2] [3 3 2 ] [3 3 1 ] [3 1 1] [4 2 2] 0.96 0.92 0.05 1.00
500 (30 30 30) [3 2 2] [4 3] [4 2] [3 3 2 ] [3 3 1 ] [3 1 1] [4 2 2] 0.99 0.92 0.04 1.00
80 (60 60 60) [3 2 2] [4 3] [4 2] [3 3 2 ] [3 3 1 ] [3 1 1] [4 2 2] 0.93 0.96 0.08 1.00
150 (60 60 60) [3 2 2] [4 3] [4 2] [3 3 2 ] [3 3 1 ] [3 1 1] [4 2 2] 0.99 0.96 0.06 1.00
300 (60 60 60) [3 2 2] [4 3] [4 2] [3 3 2 ] [3 3 1 ] [3 1 1] [4 2 2] 1.00 0.96 0.04 1.00
500 (60 60 60) [3 2 2] [4 3] [4 2] [3 3 2 ] [3 3 1 ] [3 1 1] [4 2 2] 1.00 0.96 0.04 1.00

[2222|5]
80 (30 30 30 30) [2 2 2 2] [3 3] [4 2] [3 2 2 2] [2 2 2 1 ] [2 2 2 2 1 ] 0.80 0.92 0.04 1.00
150 (30 30 30 30) [2 2 2 2] [3 3] [4 2] [3 2 2 2] [2 2 2 1 ] [2 2 2 2 1 ] 0.96 0.93 0.04 1.00
300 (30 30 30 30) [2 2 2 2] [3 3] [4 2] [3 2 2 2] [2 2 2 1 ] [2 2 2 2 1 ] 1.00 0.93 0.03 1.00
500 (30 30 30 30) [2 2 2 2] [3 3] [4 2] [3 2 2 2] [2 2 2 1 ] [2 2 2 2 1 ] 1.00 0.93 0.03 1.00
80 (60 60 60 60) [2 2 2 2] [3 3] [4 2] [3 2 2 2] [2 2 2 1 ] [2 2 2 2 1 ] 0.93 0.96 0.03 1.00
150 (60 60 60 60) [2 2 2 2] [3 3] [4 2] [3 2 2 2] [2 2 2 1 ] [2 2 2 2 1 ] 1.00 0.97 0.03 1.00
300 (60 60 60 60) [2 2 2 2] [3 3] [4 2] [3 2 2 2] [2 2 2 1 ] [2 2 2 2 1 ] 1.00 0.97 0.02 1.00
500 (60 60 60 60) [2 2 2 2] [3 3] [4 2] [3 2 2 2] [2 2 2 1 ] [2 2 2 2 1 ] 1.00 0.97 0.02 1.00

Notes: Table 3 reports the results of estimation a GFM in 1000 Monte Carlo simulations.

The first column gives number of observations. The second column gives the numbers

of variables in the respective data-generating grouped factor model. The third columns

gives the data-generating grouped factor models and the candidate models, over which

the model selection procedure was applied. CCLM gives the proportion of the correctly

identified true models over 1000 runs. SFF0 is the average goodness of fit of the

estimated group-pervasive factors to the true group-pervasive factors over all groups.

MCLV gives the average proportion of misclassified variables in all variables over 1000

runs. UGRP gives the proportion of correctly identified projection spaces in 1000 runs.
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Table 4: Estimation of grouped factor models

T N Model and Candidates CCLM SFF0 MCLV UGRP

[2211|5]
80 (30 30 30 30) [2 2 1 1] [3 1 1] [3 2] [2 2 1] [2 1 1 1] 0.86 0.94 0.06 1.00
150 (30 30 30 30) [2 2 1 1] [3 1 1] [3 2] [2 2 1] [2 1 1 1] 0.96 0.95 0.04 1.00
300 (30 30 30 30) [2 2 1 1] [3 1 1] [3 2] [2 2 1] [2 1 1 1] 0.99 0.95 0.03 1.00
500 (30 30 30 30) [2 2 1 1] [3 1 1] [3 2] [2 2 1] [2 1 1 1] 0.99 0.95 0.02 1.00
80 (60 60 60 60) [2 2 1 1] [3 1 1] [3 2] [2 2 1] [2 1 1 1] 0.97 0.97 0.04 1.00
150 (60 60 60 60) [2 2 1 1] [3 1 1] [3 2] [2 2 1] [2 1 1 1] 1.00 0.97 0.03 1.00
300 (60 60 60 60) [2 2 1 1] [3 1 1] [3 2] [2 2 1] [2 1 1 1] 1.00 0.97 0.03 1.00
500 (60 60 60 60) [2 2 1 1] [3 1 1] [3 2] [2 2 1] [2 1 1 1] 1.00 0.97 0.02 1.00

[3211|6]
80 (30 30 30 30) [3 2 1 1] [ 4 2 2] [ 4 1 1] [4 3 1 1 ] [2 2 1 1] 0.61 0.93 0.09 1.00
150 (30 30 30 30) [3 2 1 1] [ 4 2 2] [ 4 1 1] [4 3 1 1 ] [2 2 1 1] 0.83 0.94 0.06 1.00
300 (30 30 30 30) [3 2 1 1] [ 4 2 2] [ 4 1 1] [4 3 1 1 ] [2 2 1 1] 0.92 0.94 0.05 1.00
500 (30 30 30 30) [3 2 1 1] [ 4 2 2] [ 4 1 1] [4 3 1 1 ] [2 2 1 1] 0.99 0.94 0.04 1.00
80 (60 60 60 60) [3 2 1 1] [ 4 2 2] [ 4 1 1] [4 3 1 1 ] [2 2 1 1] 0.96 0.97 0.08 1.00
150 (60 60 60 60) [3 2 1 1] [ 4 2 2] [ 4 1 1] [4 3 1 1 ] [2 2 1 1] 0.97 0.97 0.06 1.00
300 (60 60 60 60) [3 2 1 1] [ 4 2 2] [ 4 1 1] [4 3 1 1 ] [2 2 1 1] 1.00 0.97 0.04 1.00
500 (60 60 60 60) [3 2 1 1] [ 4 2 2] [ 4 1 1] [4 3 1 1 ] [2 2 1 1] 1.00 0.97 0.03 1.00

[3221|6]
80 (30 30 30 30) [3 2 2 1] [ 4 3] [4 2 1] [ 4 1 1] [3 2 2 2 ] [3 3 1 ] 0.67 0.92 0.09 1.00
150 (30 30 30 30) [3 2 2 1] [ 4 3] [4 2 1] [ 4 1 1] [3 2 2 2 ] [3 3 1 ] 0.79 0.93 0.06 1.00
300 (30 30 30 30) [3 2 2 1] [ 4 3] [4 2 1] [ 4 1 1] [3 2 2 2 ] [3 3 1 ] 0.91 0.93 0.05 1.00
500 (30 30 30 30) [3 2 2 1] [ 4 3] [4 2 1] [ 4 1 1] [3 2 2 2 ] [3 3 1 ] 0.96 0.93 0.04 1.00
80 (60 60 60 60) [3 2 2 1] [ 4 3] [4 2 1] [ 4 1 1] [3 2 2 2 ] [3 3 1 ] 0.87 0.96 0.08 1.00
150 (60 60 60 60) [3 2 2 1] [ 4 3] [4 2 1] [ 4 1 1] [3 2 2 2 ] [3 3 1 ] 0.96 0.97 0.06 1.00
300 (60 60 60 60) [3 2 2 1] [ 4 3] [4 2 1] [ 4 1 1] [3 2 2 2 ] [3 3 1 ] 0.99 0.97 0.05 1.00
500 (60 60 60 60) [3 2 2 1] [ 4 3] [4 2 1] [ 4 1 1] [3 2 2 2 ] [3 3 1 ] 1.00 0.97 0.03 1.00

Notes: Table 4 reports the results of estimation a GFM in 1000 Monte Carlo simulations.

The first column gives number of observations. The second column gives the numbers

of variables in the respective data-generating grouped factor model. The third columns

gives the data-generating grouped factor models and the candidate models, over which

the model selection procedure was applied. CCLM gives the proportion of the correctly

identified true models over 1000 runs. SFF0 is the average goodness of fit of the estimated

group-pervasive factors to the true group-pervasive factors over all groups. MCLV gives

the average proportion of misclassified variables in all variables over 1000 runs. UGRP

gives the proportion of correctly identified projection spaces in 1000 runs.
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4.2 An Empirical Application

In this subsection we apply the GFM to stock returns in the Australian Stock Ex-

change. The data used in this exercise are stock returns of companies included in

ASX200. ASX200 is one of the most important share index in Australia Stock Ex-

change. It accounts for roughly 85% of the market capitalization of all stocks listed

in Australia Stock Exchange. The data set consists of monthly returns of shares

included in ASX200 from 2004 to 2009. All together there are 168 variables and

each of them contains 77 observations9. A full name list of the shares is given in

the appendix. We transform the data so that each series has mean zero. Using the

PC criterion of Bai and Ng (2002) we identify that there are three factors in the

whole data set. After choosing K = 3 we investigate 18 potential candidate mod-

els. These 18 candidate models include all possible subspace configurations up to 4

groups within a three dimensional spaces. We decide not to include subspace con-

figurations with more that 4 groups because in those cases it is highly probable that

some group will contain less than 30 variables such that the model selection criterion

would become unreliable. The estimation results for the considered configurations

are summarizes in Table 5.

Table 5: Estimation of Grouped Dynamic Factor Models for ASX200

No. Model PC No. Model PC

1 [1] 0.00571 19 [1 1 1] 0.00518
2 [2] 0.00527 20 [2 1 1] 0.00537
3 [3] 0.00524 21 [2 2 1] 0.00508
4 [4] 0.00526 22 [2 2 2] 0.00508
5 [5] 0.00530 23 [1 1 1 1] 0.00527
6 [6] 0.00536 24 [2 1 1 1] 0.00524
7 [1 1] 0.00526 25 [2 2 1 1] 0.00508
8 [2 1] 0.00511 26 [2 2 2 1] 0.00522
9 [2 2] 0.00508 27 [2 2 2 2] 0.00508

Notes: We use numbers in a pair of squared brackets to represent a model. [2 2] represents

a model with two groups and each with two factors. The column PC reports the values

the model selection criterion for the corresponding models.

In Table 5 we see that 5 model candidates [2 2] [2 2 1] [2 2 2] [2 2 1 1] and [2 2 2

9Due to missing data in the investigation periods we include only 168 shares in the study.
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2] have the same lowest criterion values. However, three models: [2 2 1] [2 2 1 1] and

[2 2 2 2] all contain groups with less that 20 variables, such that the criterion values

in these cases are not very reliable. Hence we will not consider these three model

as proper models for the data. The two models [2 2] and [2 2 2] are competing.

Since [2 2] has a simpler structure than [2 2 2], we take [2 2] is the most suitable

grouped factor model for the data. This implies that we understand that the 168

shares consist of 2 groups each of which are driven by two factors (See Fig. 3).

Figure 3: ASX200 shares in two groups in the projected model

The grouping of the 168 variables are given in Table 8. It is to note the GFM

classifies almost all companies in resource sectors including mining, energy, and

exploration into the second groups. Among the 54 companies in the second group

there are only five companies (See (*) in Table 8, 9, 10.) that are not in the ming

and energy sectors. The first group contains 114 companies among which only four

companies (See (*) in Table 8, 9, 10.) are in the mining and energy sectors. This

grouped structure allows us to identify the factor that lies in the intersection of

the two group-factor-spaces as the common factor. Further we can identify two

orthogonal factors that are both orthogonal to the common factors but lie in the

two subspaces respectively as group-specific factors. Through this identification we

can say, the returns in the resource group are driven by a resource-specific factor
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and the common factor, while the returns in the non-resource group are driven by

the common factor and a nonresource-specific factor.

5 Concluding Remarks

In this paper we present grouped factor models to investigate the structure in the

factor space of a factor model. We propose a procedure to estimate the grouped

factor models. The main feature of the procedure is that it can identify grouped

structures, classify variables into groups and estimate group-pervasive factors based

on the observed data. More concretely, if data are generated from a factor model

without any grouped structure, the procedure will return a conventional ungrouped

factor model with correctly identified number of factors. If data are generated from

a grouped factor model, the procedure will output the number of groups and the

number of factors in each group, a classification of the variables into the groups

and group-pervasive factors. In this sense, our model generalizes the framework of

the conventional factor models, such that it can be used to assess grouped struc-

ture in the data and estimate the group-pervasive factors, which may be useful for

understanding the behavior of the data.

We set up the grouped factor models as approximate factor models which allow

certain serial and cross-sectional correlation in the idiosyncratic errors. Therefore

they are suitable for applications to economic data. Simulation study shows that our

procedure has good finite sample properties. In an application example we shows

that grouped structures exist indeed in empirical data: the stock returns from 2004

to 2009 in the Australian stock exchange consists of two groups: one resource-group

and one nonresource group. Based on the grouped structure we can identify one of

the three factors as the common factor, one as the resource-specific factor and one

as the nonresource-specific factor.
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6 Appendix

6.1 Example of PDA with a Voting Schema for noisy data

Example 3.1 (continue) We consider here a set of 8 sample points with noises.

The coordinates of the 8 points are collected in a data matrix X. Each row in X ′ is

one sample point.

X ′ =

























1.0725 0.0607 0.0943

0.0603 1.0801 0.0460

1.0245 1.0977 0.0694

2.0909 2.0205 0.0854

0.0493 0.0667 1.0687

0.0653 0.0385 2.0011

0.0575 0.0383 3.0351

0.0857 0.0213 4.0375

























(6.47)

Obviously, the first four points are located closely to the subspace of the plane S2,

the next four points are located closely to the subspace of line S1. The data matrix

of the Veronese mapping ν2(x) = (x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3)

′ is:

Ln(X) =

























1.1588 0.0042 0.0399 0.0000 0.0001 0.0014

0.0025 0.0522 0.0035 1.0816 0.0716 0.0047

1.0142 1.1073 0.0196 1.2090 0.0214 0.0004

4.0604 4.1306 0.1878 4.2020 0.1911 0.0087

0.0056 0.0017 0.0790 0.0005 0.0235 1.1091

0.0012 0.0022 0.0702 0.0043 0.1346 4.2418

0.0097 0.0083 0.3004 0.0072 0.2581 9.3041

0.0092 0.0076 0.3866 0.0063 0.3210 16.2398

























(6.48)
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Since we have noisy data, Ln(X) is of full rank. However, we know that if we

had noiseless data the rank of Null(Ln(X)) would be two, which is given by the

Hilbert function constraint10. We choose the two eigenvectors corresponding to the

two smallest singular values as the basis of the nullspace of Ln(X).

c =



















0.0412 0.0782

−0.0286 −0.0477

−0.4290 −0.8970

0.0446 −0.0123

−0.9007 0.4320

0.0161 0.0157



















. (6.49)

After obtaining c, we can calculate ∂νn(x)′c
∂x

at each sample point. For the three

components of the partial derivative, we have:

∂νn(x)
′c

∂x1
=

∂νn(x)

∂x1

′

c = (2x1, x2, x3, 0, 0, 0)c

∂νn(x)
′c

∂x2

=
∂νn(x)

∂x2

′

c = (0, x1, 0, 2x2, x3, 0)c

∂νn(x)
′c

∂x3
=

∂νn(x)

∂x3

′

c = (0, 0, x1, 0, x2, 2x3)c

Evaluating the three components of the partial derivative at the eight sample points

is to replace (x1, x2, x3) in the three formulas above by the corresponding numbers in

the data matrix X. We obtain the following three matrices:

10See Yang et al. (2005) for more details.
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∂νn(x)
′c

∂x1
|X =

























0.0461 0.0802

−0.0457 −0.0833

0.0232 0.0456

0.0777 0.1540

−0.4563 −0.9541

−0.8542 −1.7866

−1.2985 −2.7153

−1.7257 −3.6092

























,
∂νn(x)

′c

∂x2
|X =

























−0.1102 −0.0119

0.0532 −0.0096

0.0061 −0.0459

0.0434 −0.1125

−0.9580 0.4577

−1.8007 0.8605

−2.7318 1.3075

−3.6370 1.7397

























,

(6.50)

∂νn(x)
′c

∂x3
|X =

























−0.5117 −0.9328

−0.9972 0.4140

−1.4259 −0.4425

−2.7140 −0.9999

−0.0468 0.0182

0.0018 0.0209

0.0387 0.0603

0.0742 0.0592

























. (6.51)

The three components of the partial derivative ∂νn(x)′c
∂x

evaluated at each sample point

are given in the corresponding row respectively in the three matrices above. So, the

partial derivative evaluated at x1 is:

∂νn(x)
′c

∂x
|
x
1 =









0.0461 0.0802

−0.1102 −0.0096

−0.5117 −0.9328









. (6.52)

The partial derivatives evaluated at all sample points are then normalized to be or-

thogonal and have a unit length. This is done by calculating the principal components

of the derivatives using singular value decomposition. For the derivative evaluated
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at x1 given in (6.52) we have the following principal components:

∂νn(x)′c
∂x

|
x
1

||∂νn(x)′c
∂x

|
x
1 ||

=









−0.02 −0.09

0.99 0.06

−0.06 0.99









. (6.53)

We give votes to candidates of normal vectors of the subspaces in the following way

(see also Algorithm 1). If a normalized derivative at a point xk is similar to a

candidate of the normal vectors, this candidate will have one more vote, otherwise

the normalized derivative becomes itself a new candidate. The voting procedure is

demonstrated in Table 6 and Table 7 in a simplified form.

We consider first the choice of normal vectors for the subspace of dimension

one. Table 6 reports the voting results for different candidates of the normal vec-

tors. The second column collects the normalized partial derivatives evaluated at the

corresponding sample points which are given in the first column of Table 6. We start

with the row of x1. In the third column, * represents that the normalized derivative

at the same row is chosen as a candidate. The header U{2}{1} says this is the first

candidate for the subspaces with codimension 2. The numbers in this column mea-

sure the angels between the candidate and the corresponding partial derivatives at

respective rows. A number close to zero means the corresponding angle is small, and

a number close to π/2 means the angle is large. In the third column no number is

close to zero. Therefore the vote for U{2}{1} is only one. This is given in the fourth

column under the header V . Now we look at the second row, i.e. the second sample

point x2. Since the normalized derivative at x2 has a direction that is not close to

the direction of the first candidate U{2}{1}, it becomes itself the second candidate

under the header U{2}{2}. This is symbolized by * in the fifth column and the row

of x2. The numbers in the fifth column are not close to zero. This implies that the

derivative of Dpn(x) evaluated at other sample points do not have the similar direc-

tion as U{2}{2}. Hence the vote for the second candidate is also only one, which

is given in the sixth column under the header V . Similarly, DPn(x)|X3
becomes a
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new candidate that is given in the seventh column under the header U{2}{3}. From

the numbers in the seventh column we can see that only DPn(x)|x4 has a similar

direction as U{2}{3}. Therefore, U{2}{3} has two votes and DPn(x)|x4 does not

become a new candidate. DPn(x)|x5 does not have similar directions as the exiting

candidates, it becomes the fourth candidate for the normal vectors, which is given

in the ninth column under the header U{2}{4}. The numbers in the ninth column

show that the derivative DPn(x) at x
6, x7 and x8 have directions very close to that

of U{2}{4}. Therefore it has four votes, which are given in the tenth column. Now

the fourth candidate has the most votes. The average of DPn(x) at x5, x6, x7 and

x8 is the estimate of the normal vectors for the subspace of dimension one and these

four sample points are classified to this subspace.
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Table 6: Voting and Choice of Candidates for the Normal Vectors for the Subspace
with k1 = 1

Sample Dpn(x)
||Dpn(x)||

U{2}{1} V U{2}{2} V U{2}{3} V U{2}{4} V

x1




−0.02 −0.09

0.99 0.06

−0.06 0.99



 * 1 0.9789 0.37 0.99

x2




0.99 0.01

−0.12 −0.05

−0.02 0.99



 0.97 * 1 0.48 0.99

x3




0.63 −0.02

−0.78 −0.01

0.02 0.99



 0.37 0.48 * 2 0.99

x4




0.70 −0.04

−0.72 −0.00

0.03 0.99



 0.46 0.39 0.01 0.99

x5




−0.99 −0.06

0.06 −0.99

0.00 −0.05



 0.99 0.99 0.99 * 4

x6




−0.99 −0.01

0.01 −0.99

0.01 −0.00



 0.99 0.99 0.99 0.002

x7




0.99 −0.02

0.02 0.99

−0.02 −0.00



 0.98 0.99 0.99 0.003

x8




0.99 0.00

−0.00 0.99

−0.02 −0.01



 0.98 0.99 0.99 0.004

Notes: The first column gives the sample points from x1 to x8. The second column

collects the normalized derivatives Dpn(x) evaluated at corresponding sample points.

Third and the fourth column collect the results of evaluation of the first candidate of the

normal vectors for the subspace. The number under headers U{i}{j} are the measures

of the angles between the candidate and the respective derivatives at the corresponding

rows. The integers under the headers V are the numbers of votes for the corresponding

candidate at the same row.

After determining the subspace with ki = 1, we turn to determination of the

subspace with ki = 2. The presence of noises makes Dpn(x) usually a full rank

matrix. However, for noiseless cases the rank of Dpn(x) evaluated at points located

in the subspace with ki = 2 is one. Hence, we evaluate only the first principal

component of Dpn(x). The results are collected in the second column of Table 7.

Table 7 reports the voting results for the candidates of the normal vector for the

subspace of dimension two. The second column collects the first principal component
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of normalized derivatives evaluated at the corresponding sample points. In the third

column, * represents that the normalized derivative at the same row is chosen as a

candidate. The header U{1}{1} says that this is the first candidate for the subspace

with codimension one. The numbers in this column measure the angels between the

candidate and the derivatives at the respective rows. A number close to zero means

the corresponding angle is small, and a number close to π/2 means the angle is large.

In the third column three numbers are close to zero. Therefore, U{1}{1} has 4 votes.

This is given in the fourth column under the header V . Since the points X5, X6,

X7 and X8 are already classified to the other subspace. U{1}{1} is the candidate

with most votes. Averaging the first principal components for the derivatives at x1,

x2, x3 and x4 gives an estimate for the normal vector of the subspace. These four

points are assigned to this subspace accordingly.

From the voting procedure in Table 6 and Table 7, the estimates of the two sub-

spaces are:

B̂1 =









0.9993 −0.0131

−0.0132 −0.9992

−0.0135 −0.0095









and B̂2 =









−0.0361

0.0039

0.998









. (6.54)

Compared with equations (3.29) and (3.31), these two estimates of the normal vec-

tors are very close to the true normal vectors.

6.2 Proofs

Proof of Proposition 2.4

Because Λi and Ci are bounded and Λ = (C1Λ1, C2Λ2, ..., CnΛn), Λ is bounded.

ΛΛ′

N
(k×k)

=
n∑

i=1

Ni

N
Ci

(k×ki)

ΛiΛ
′
i

Ni
(ki×ki)

Ci
(ki×k)

′ (6.55)

Let b be a k × 1 nonzero vector. To show that ΛΛ′

N
converges to a positive definite

51



Table 7: Voting and Choices of Candidates of the Normal Vectors for the Subspace
with ki = 2

Sample Dp(x)
||Dp(x)||

U{1}{1} V

x1




−0.09

0.06

0.99



 * 4

x2




0.01

−0.05

0.99



 0.0209

x3




−0.02

−0.01

0.99



 0.0069

x4




−0.04

−0.00

0.99



 0.0055

x5




−0.06

−0.99

−0.05



 0.9897

x6




−0.01

−0.99

−0.00



 0.9961

x7




−0.02

0.99

−0.00



 0.9965

x8




0.00

0.99

−0.01



 0.9976

Notes: The second column collect the first principal component of derivative Dpn(x)

evaluated at corresponding sample points. The numbers under the header U{1}{1} are

measures of the angles between the candidate and the corresponding derivatives at the

respective rows. The integer 4 under the header V is the number of votes for the candidate

normal vector at the same row.

matrix we need to show b′ΛΛ′

N
b > 0 when N is large enough.

b′

(1×k)

ΛΛ′

N
b

(k×1)

(k×k)

=
n∑

i=1

Ni

N
b′Ci
(1×ki)

ΛiΛ
′
i

Ni
(ki×ki)

C ′
ib

(ki×1)

(6.56)

Because
ΛiΛ′

i

Ni
converges to a positive definite matrix, the summands on the right

hand side of the equation above are all nonnegative. In order to show the sum is

strictly positive we need to show at least one summand is strictly positive.

If C ′
ib = 0 for all i = 1, 2, ..., n, it would imply that all column vectors in

(C1, C2, ..., Cn) are orthogonal to b. This contradicts to the assumption that
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rank(C1, C2, ..., Cn) = k. Therefore, for some i ∈ {1, 2, ..., n} we have C ′
ib 6= 0.

Because
Λ′

iΛi

Ni
converges to a positive definite matrix, we have b′Ci

Λ′

iΛi

Ni
C ′

ib > 0 for

C ′
ib 6= 0 and N large enough. Further we have Ni

N
→ αi > 0. Therefore, the

summand Ni

N
b′Ci

Λ′

iΛi

Ni
C ′

ib is strictly positive. It follows the sum in equation (6.56)

is strictly positive.

✷

Proof of Proposition 3.3

Since both the ungrouped factor model (2.6) and each group in the grouped factor

model (2.4) satisfy the assumptions on a factor model in Bai and Ng (2002). We will

extensively applied the results in Bai and Ng (2002) in our proofs. In the following

P−→ denotes the probability limit as T,N → ∞.

To prove (c) we need only to show 1
T
ĜK ′

E
P−→ 0. Since ĜK

t corresponds to the

factor estimator F̂t in Theorem 1 in Bai and Ng (2002), we can directly apply the

result of Theorem 1 (in Bai and Ng (2002) p.213) in our proof.

ĜK ′

E

T
=

1

T

T∑

t=1

(ĜK
t Et) =

1

T

T∑

t=1

(ĜK
t −HK ′

Go
t +HK ′

Go
t )Et

=
1

T

T∑

t=1

(ĜK
t −HK ′

Go
t )Et +

1

T

T∑

t=1

HK ′
Go

tEt

Go
t and HK are the true factor and the rotation matrix as defined in Theorem 1

in Bai and Ng (2002). We need to show the two terms in the last equation above

converge to zero in probability. For the (i, j) element of the first term, we have by

Cauchy-Schwarz inequality:

(

1

T

T∑

t=1

(ĜK
it −HK ′

iG
o
t )ejt

)2

≤ 1

T

T∑

t=1

(ĜK
it −HK ′

iG
o
t )

2 1

T

T∑

t=1

e2jt

According to Theorem 1 in Bai and Ng (2002), we have 1
T

∑T
t=1 ||ĜK

t −HK ′
Go

t ||2
P−→

0. It follows then

1

T

T∑

t=1

(ĜK
it −HK ′

iG
o
t )

2 P−→ 0.
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From Assumption 2.6, we have:

1

T

T∑

t=1

e2it < M1,

where M1 is a positive constant.

Using Slutsky theorem, it follows then

(

1

T

T∑

t=1

(ĜK
it −HK ′

iG
o
t )ejt

)2

≤
(

1

T

T∑

t=1

(ĜK
it −HK ′

iG
o
t )

2 1

T

T∑

t=1

e2jt

)

P−→ 0

In the matrix form we have:

plim
T,N→∞

1

T

T∑

t=1

(ĜK
t −HK ′

Go
t )Et = 0.

To show plim
T,N→∞

1
T

∑T
t=1H

K ′
Go

tEt = 0, we need only to show plim
T,N→∞

1
T

∑T
t=1 G

o
tEt = 0.

According to Assumption 2.7, we have

E




1

N

N∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1√
T

T∑

t=1

Go
teit

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2


 =
1

N

N∑

i=1

E

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1√
T

T∑

t=1

Go
teit

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤ M

It follows then

E|| 1
T

T∑

t=1

Go
teit||2

P−→ 0,

otherwise the inequality above will not hold. This implies plim
T,N→∞

1
T

∑T
t=1 G

o
teit = 0.

In matrix form we have

plim
T,N→∞

1

T

T∑

t=1

Go
tEt = 0.

This proves (c) in Proposition 3.3.
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To prove (b) we have

F̄ T
i =

1

T
ĜK ′

Fi =

(
1

T
ĜK ′

Go

)

Ci =

(

1

T

T∑

t=1

(ĜK
t −HK ′

Go
t +HK ′

Go
t )G

o′

t

)

Ci

=

(

1

T

T∑

t=1

(ĜK
t −HK ′

Go
t )G

o′

t

)

Ci +

(

1

T

T∑

t=1

(HK ′
Go

t )G
o′

t

)

Ci

=

(

1

T

T∑

t=1

(ĜK
t −HK ′

Go
t )G

o′

t

)

Ci +HK ′

(

1

T

T∑

t=1

Go
tG

o′

t

)

Ci

P−→ 0 +HK ′
ΣCi 6= 0.

The limit in the last row above is because of

(

1

T

T∑

t=1

(ĜK
it −HK ′

iG
o
t )G

o
jt

)2

≤ 1

T

T∑

t=1

∣
∣
∣

∣
∣
∣Ĝit −HK ′

iG
o
t

∣
∣
∣

∣
∣
∣

2 1

T

T∑

t=1

∣
∣
∣
∣G0

jt

∣
∣
∣
∣2 P−→ 0,

and

1

T

T∑

t=1

Go
tG

o′

t
P−→ Σ.

From the existence of the limit of (b) and (c) follows the existence of the limit of

(a).

From Assumption 2.5 (a), we have Ci − CjC 6= 0. Since ĜK is a principal

component estimate of the overall factor. From ĜK′

Go

T

P−→ Ḡ will not converge to

zero. It follows

P
(
Ḡ(Ci − CjC) = 0

)
= 0.

Reformulate the equation above we have

P
(
Ḡ(Ci − CjC) = 0

)
= P

(
ḠCi = ḠCjC

)
= P

(
F̄i = F̄jC

)
= 0.

This proves (d).

From Assumption 2.5 (b) we have Ciλi,m 6= Cjλj,l. It follows

P (F̄iλi,m = F̄jλj,l) = P
(
Ḡ(Ciλi,m − Cjλj,l) = 0

)
= 0.
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✷

Now we consider the proof of Proposition 3.7. We have the model selection

criterion as follows:

PC(n, {ki}, {Xs
i }) =

n∑

i=1

Ni

N
Vi(ki, F̂

ki, Ni) +

n∑

i=1

Ni

N
(ki + h(αi)) g(N, T )

In order to prove this Proposition we compare first the value of the model se-

lection criterion of a true model under a priori true classification with that of an

alternative model with a classification determined by PDA procedure. Then we show

that the model selection criterion of the true model under the true classification is

asymptotically equivalent to the model selection criterion of the true model under

the classification determined by PDA procedure.

Since we are considering the asymptotical property of the selection criterion, we

assume that in both the a priori correctly classified model and the alternative model

each group contains infinitely many variables. The a priori correctly classified model

and the alternative model make two different partitions of the variables in n and n′

groups respectively. The intersection of these two partitions constitutes a finer new

partition of the variables. In each group of the intersection partition, all variables

belong to only one group in the true model and they belong to also only one group

in the alternative model. We index the groups in the intersection partition by i.

Let ko
i be the number of the factors of the true model for the variables in group i

of the intersection partition and k′
i the estimated number of factors based on the

alternative model for the same variables. We can differ three cases:

• Case 1: The alternative model underestimates the number of factors in some

of its groups. This leads to k′
i < ko

i for some groups in the intersection parti-

tion.

• Case 2: The alternative model never underestimates the number of factors in

its groups, and k′
i = ko

i for all groups in the intersection partition.

• Case 3: The alternative model never underestimates the number of factors in
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its groups and :k′
i ≥ ko

i for all i and k′
i > ko

i for some groups in the intersection

partition.

Let N I
i be the number of variables in the ith group of the intersection partition. We

define several mean squared residuals for the ith group of the intersection partition

calculated according to different choices of factors as follows. (Note that the mean

squared residuals here are defined in the same way as in Bai and Ng (2002) on page

214.)

• V (k′
i, F̂

k′i, N I
i ): the mean squared residuals calculated from the estimated al-

ternative model.

• V (ko
i , F̂

koi , N I
i ): the mean squared residuals calculated from the true model

with the a priori true classification .

• V (ko
i , F

koi , N I
i ): the mean squared residuals calculated using ko

i population

factors.

• V (ko
l , F

ko
l , N I

i ): the mean squared residuals calculated using population factors

in the lth group of the alternative model.

• V (ko
i , F̂

koi
NI

i

, N I
i ): the mean squared residuals calculated with the estimated

factors using only data in the intersection group N I
i , where the used number

of factors is ko
i .

• V (k′
i, F̂

k′
l

NI
i

, N I
i ): the mean squared residuals calculated with the estimated fac-

tors using only data in the intersection group N I
i , where the used number of

factors is k′
i.

Lemma 6.1 Let {Nj}nj=1, {Nl}n
′

l=1 and {N I
i }n

I

i=1 denote the a priori true classifica-

tion, an alternative classification and the intersection partition, respectively.

n∑

j=1

Nj

N
V (ko

j , F̂
koi , Nj) =

nI
∑

i=0

N I
i

N
V (ko

i , F̂
koi , N I

i )
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n∑

j=1

Nj

N
V (ko

j , F
koi , Nj) =

nI
∑

i=0

N I
i

N
V (ko

i , F
koi , N I

i )

n′

∑

l=1

Nl

N
V (k′

l, F̂
k′
l, Nj) =

nI
∑

i=0

N I
i

N
V (k′

i, F̂
k′i, N I

i )

n′

∑

l=1

Nl

N
V (ko

l , F
ko
l , Nj) =

nI
∑

i=0

N I
i

N
V (ko

i , F
koi , N I

i )

Proof: The above equalities say that the total mean equals the weighted group

means. Let {zk}Nk=1 be a series with N elements. Suppose that the series is divided

into n groups and each group has Nj elements respectively. According to this group-

ing the element can have two indices: {zij} with i = 1, 2, ...Nj and j = 1, 2, ..., n.

Now we want to calculate the mean of the series.

z̄ =
1

N

n∑

j=1

Nj∑

i=1

zij =
n∑

j=1

Nj

N

1

Nj

Nj∑

i=1

zij =
n∑

j=1

Nj

N
z̄j

suppose that we have now a different grouping of the series with nI groups. We

have similarly:

z̄ =
1

N

nI
∑

i=1

Ni∑

k=1

zki =

nI
∑

i=1

Ni

N

1

Ni

Ni∑

k=1

zki =

nI
∑

i=1

Ni

N
z̄i

It follows
n∑

j=1

Nj

N
z̄j =

nI
∑

i=1

Ni

N
z̄i.

Replacing z̄j and z̄l in the equation above by V (ko
j , F̂

koi , Nj) and V (ko
i , F̂

koi , N I
i ), we

prove the first equality of Lemma 6.1. The other three equalities can be proved in

the same way.

Lemma 6.2

V (ko
i , F̂

koi , N I
i )− V (ko

i , F
koi , N I

i ) = Op(C
−2
N,T )

Proof

The variables in the ith group of the intersection group belong to only one group

of the true model, we denote this group by j. Let ko
j be the number of true factors
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in group j. We have ko
j = ko

i . Following equation (10) in Lemma 4 of Bai and Ng

(2002) we have

V (ko
i , F̂

koi , Nj)− V (ko
i , F

koi , Nj) = Op(C
−2
N,T ), (6.57)

where Nj is the number of variables in jth group of the true model. The difference

on the left hand side of the equation above can be written as follows:

V (ko
i , F̂

koi , Nj)− V (ko
i , F

koi , Nj)

=
1

NjT




N I

i

N I
i

NI
i∑

i=1

T∑

t=1

(Xit − λiF̂
koi
t )2 +

Nj −N I
i

Nj −N I
i

Nj∑

i=NI
i +1

T∑

t=1

(Xit − λiF̂
koi
t )2





− 1

NjT




N I

i

N I
i

NI
i∑

i=1

T∑

t=1

(Xit − λiF
koi
t )2 +

Nj −N I
i

Nj −N I
i

Nj∑

i=NI
i +1

T∑

t=1

(Xit − λiF
koi
t )2





=
N I

i

Nj




1

N I
i T

NI
i∑

i=1

T∑

t=1

(Xit − λiF̂
koi
t )2 − 1

N I
i T

NI
i∑

i=1

T∑

t=1

(Xit − λiF
koi
t )2





Nj −N I
i

Nj




1

(Nj −N I
i )T

Nj∑

i=NI
i +1

T∑

t=1

(Xit − λiF̂
koi
t )2 − 1

(Nj −N I
i )T

Nj∑

i=NI
i +1

T∑

t=1

(Xit − λiF
koi
t )2





=
N I

i

Nj

(

V (ko
i , F̂

koi , N I
i )− V (ko

i , F
koi , N I

i )
)

︸ ︷︷ ︸

A

+
Nj −N I

i

Nj

(

V (ko
i , F̂

koi , Nj −N I
i )− V (ko

i , F
koi , Nj −N I

i )
)

︸ ︷︷ ︸

B

≤ 0.

The last inequality is because the the estimated factors minimizes the mean squared

errors in the group Nj . If we use only data of the variables of the group N I
i to

estimate factors we have:

N I
i

Nj
(V (ko

i , F̂
koi
NiI

, N I
i )− V (ko

i , F
koi , N I

i ))

︸ ︷︷ ︸

A

≤ A
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and

Nj −N I
i

Nj

(V (ko
i , F̂

koi
Nj−NiI

, Nj −N I
i )− V (ko

i , F
koi , Nj −N I

i ))

︸ ︷︷ ︸

B

≤ B.

These two inequalities are because the estimated factors based on the data in the

intersection group N I
i is the solution of minimization of the mean squared residuals

of the group. Applying relation (6.57) to the data in the intersection partition N I
i

and Nj−N I
i respectively, under the conditions

NI
i

Nj
→ η > 0 and

Nj−NI
i

Nj
→ 1−η > 0,

we have

A = Op(C
−2
NT ) and B = Op(C

−2
NT ).

Because A+B ≤ A+B ≤ 0 and A+B = Op(C
−2
N,T ) we have A+B = Op(C

−2
N,T ).

This proves

V (ko
i , F̂

koi , N I
i )− V (ko

i , F
koi , N I

i ) = Op(C
−2
N,T ).

✷

Lemma 6.3 For k′
l ≥ ko

l ,

V (k′
i, F̂

k′i, N I
i )− V (ko

i , F̂
koi , N I

i ) = Op(C
−2
N,T ). (6.58)

Proof

Since the variables in the ith group of the intersection partition belong to only

one group of the true model and they belong to also only one group of the alternative

model, we denote these two groups by j and l respectively. Let ko
j be the number

of true factors in group j of the true model and let ko
l be the number of true factors

in group l of the alternative model. Since all variables in the ith group of the

intersection partition belong to group l of the alternative model, we have k′
i = k′

l.

Then, it follows under the condition of Lemma 6.3: k′
i = k′

l ≥ ko
l ≥ ko

i .

We reformulate the difference in the left hand side of equation (6.58) into four
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differences:

V (k′
i, F̂

k′i, N I
i )− V (ko

i , F̂
koi , N I

i ) (6.59)

= V (k′
i, F̂

k′i, N I
i )− V (ko

l , F
ko
l , N I

i )

+V (ko
l , F

ko
l , N I

i )− V (ko
l , F̂

ko
l

NI
i

, N I
i )

+V (ko
l , F̂

ko
l

NI
i

, N I
i )− V (ko

i , F
koi , N I

i )

+V (ko
i , F

koi , N I
i )− V (ko

i , F̂
koi , N I

i )

Now we look at the four difference in turn. For the first difference we have:

V (k′i, F̂
k′i , Nl)− V (kol , F

ko
l , Nl)

= V (k′l, F̂
k′
l , Nl)− V (kol , F

ko
l , Nl)

=
1

NlT




N I

i

N I
i

NI
i∑

i=1

T∑

t=1

(Xit − λi,k′
l
F̂

k′
l

t )2 +
Nl −N I

i

Nl −N I
i

Nl∑

i=NI
i +1

T∑

t=1

(Xit − λi,k′
l
F̂

k′
l

t )2





− 1

NlT




N I

i

N I
i

NI
i∑

i=1

T∑

t=1

(Xit − λi,ko
l
F

ko
l

t )2 +
Nl −N I

i

Nl −N I
i

Nl∑

i=NI
i +1

T∑

t=1

(Xit − λi,ko
l
F

ko
l

t )2





=
Ni

Nl




1

N I
i T

NI
i∑

i=1

T∑

t=1

(Xit − λi,k′
l
F̂

k′
l

t )2 − 1

N I
i T

NI
i∑

i=1

T∑

t=1

(Xit − λi,ko
l
F

ko
l

t )2





+
Nl −N I

i

Nl




1

(Nl −N I
i )T

Nl∑

i=NI
i +1

T∑

t=1

(Xit − λi,k′
l
F̂

k′
l

t )2 − 1

(Nl −N I
i )T

Nl∑

i=NI
i +1

T∑

t=1

(Xit − λi,ko
l
F

ko
l

t )2





=
Ni

Nl

(

V (k′l, F̂
k′
l , N I

i )− V (kol , F
ko
l , N I

i )
)

+
Nl −N I

i

Nl

(

V (k′l, F̂
k′
l , Nl −N I

i )− V (kol , F
ko
l , Nl −N I

i )
)

≤ 0.

Applying the same argument as in the proof of Lemma 6.2, we have:

V (k′
i, F̂

k′
l, N I

i )− V (ko
l , F

ko
l , N I

i ) = V (k′
l, F̂

k′
l, N I

i )− V (ko
l , F

ko
l , N I

i ) = Op(C
−2
NT ).
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For the second difference, using equation (10) in Bai (2003) on page 217, we have

V (ko
l , F

ko
l , N I

i )− V (ko
l , F̂

ko
l

NI
i

, N I
i ) = Op(C

−2
NT ).

For the third difference we have ko
l ≥ ko

i where ko
i is the true number of factors

in the ith group of the intersection partition. Using equation (10) in Bai (2003) on

page 217, we have

V (ko
l , F̂

ko
l

NI
i

, N I
i )− V (ko

i , F
koi , N I

i ) = Op(C
−2
NT ).

The fourth different is not slower than Op(C
−2
N,T ) by Lemma 6.2. Hence We have

proved:

V (k′
i, F̂

k′i, N I
i )− V (ko

i , F̂
koi , N I

i ) = Op(C
−2
N,T ).

✷

Lemma 6.4 For k′
i < ko

i ,

V (k′
i, F̂

k′i, N I
i )− V (ko

i , F̂
koi , N I

i )

has a positive limit.

Proof

V (k′
i, F̂

k′i, N I
i )− V (ko

i , F̂
koi , N I

i )

≥ V (k′
i, F̂

k′i
NI

i

, N I
i )− V (ko

i , F̂
koi , N I

i )

= V (k′
i, F̂

k′i
NI

i

, N I
i )− V (k′

i, F
koiHk′i, N I

i )

+V (k′
i, F

koiHk′i, N I
i )− V (ko

i , F
koi , N I

i )

+V (ko
i , F

koi , N I
i )− V (ko

i , F̂
koi , N I

i )

The first inequality is due to the fact that V (k′
i, F̂

k′i
NI

i

, N I
i ) is the solution of the

minimization problem (3.44) using the data in group i. Following Lemma 2 and
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Lemma 3 in Bai and Ng (2002), the first term in the right hand side of the equation

is Op(C
−1
N,T ), the second term has a positive limit, and the third term is not slower

than Op(C
−2
N,T ) by Lemma 6.2. Hence, V (k′

i, F̂
k′i, N I

i )−V (ko
i , F̂

koi , N I
i ) has a positive

limit.

✷

Proof of Proposition 3.7.

Now we prove Proposition 3.7 in the three possible cases listed before.

Case 1 The alternative model underestimates the number of factors in some of

its groups. This leads to k′
i < ko

i for some groups in the intersection partition.

According to Lemma 6.1 the difference of mean squared residuals between the

alternative model and the true model with correct classification can be calculated

as follows:

n′

∑

l=1

N ′
l

N
V (k′

l, F̂
k′
l, N ′

l )−
n∑

j=1

Nj

N
V (ko

j , F̂
koj , Nj)

=
∑

k′i≥koi

N I
i

N
(V (k′

i, F̂
k′i, N I

i )− V (ko
i , F̂

koi , N I
i )) +

∑

k′i<koi

N I
i

N
(V (k′

i, F̂
k′i, N I

i )− V (ko
i , F̂

koi , N I
i ))

= Op(C
−2
N,T ) +

∑

k′i<koi

N I
i

N
[V (k′

i, F̂
k′i, N I

i )− V (ko
i , F̂

koi , N I
i )]

The first limit in the last row above is by Lemma 6.3. Each summand in the second

term has a positive limit by Lemma 6.4. Hence, the left hand side of the equation

above also has a positive limit. The difference of the penalties can be calculated as

follows:

(k̄′ − k̄o + h̄({α̂′
i})− h̄({α̂i}))g(N, T ).

Since k̄′ − k̄o + h̄({α̂′
i})− h̄({α̂i}) is bounded by condition 3(a), we have

(k̄′ − k̄o + h̄({α̂′
i})− h̄({α̂i}))g(N, T ) → 0 as N, T → ∞.

63



Therefore,

P{PC(n′, {k′
l}, {Xs

l }) > PCo(n, {ko
j}, {Xj})

= P

{
n′

∑

l=1

N ′
l

N
V (k′

l, F̂
k′
l, N ′

l )−
n∑

j=1

Nj

N
V (ko

j , F̂
koj , No

j ) > (k̄′ − k̄o + h̄({α̂′
i})− h̄({α̂i}))g(N, T )

}

P−→ 1,

where we use PCo(n, {ko
j}, {Xi}) to denote that this model selection value is calcu-

lated based on the a priori true classification in the true model. PCo means that

the calculation of the model selection criterion value is based on the a priori true

classification but not on PDA, while PC means generally that the model selection

criterion value is calculated based on the classification using the PDA procedure.

The limit in probability in the equation above follows from the fact that the left hand

side of the inequality above has a positive limit and the right hand side converges

to zero.

Now we turn to the cases when an alternative model overestimates the number

of factors.

Case 2 The alternative model does not underestimate the number of factors in

its groups, and k′
i = ko

i for all groups in the intersection partition.

This can only happen when the alternative model separates a group in the true

model into more than one groups. Without loss of generality, we consider the case

in which the true model is an un-grouped model and the alternative model contains

more than one groups. Let the number of the true factors be ko. We have k′
l = ko.

The difference in the penalty factors can be calculated as follows:

n′

∑

l=1

α̂ik̄
′
l − ko +

n′

∑

l=1

α̂lh(α̂l, N, T )− h(1, N, T ) =

n′

∑

l=1

α̂lh(α̂l, N, T )− h(1, N, T ) > 0
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The last inequality is due to condition 3(c).

P (PCo(1, ko,X) > PC(n′, {k′l}, {Xs
l })

= P

{

V (ko, F̂ o, N)−
n′

∑

l

N ′
l

N
V (k′l, F̂

k′
l , Nl) >

(
n′

∑

l=1

α̂lh(α̂l, N, T )− h(1, N, T )

)

g(N,T )

}

= P







nI
i∑

i

N I
i

N
V (koi , F̂

o, N I
i )−

nI
∑

i

N I
i

N
V (k′i, F̂

k′i , N I
i ) >

(
n′

∑

l=1

α̂lh(α̂l, N, T )− h(1, N, T )

)

g(N,T )







= P







nI
i∑

i

N I
i

N
[V (koi , F̂

o, N I
i )− V (k′i, F̂

k′i , N I
i )] >

(
n′

∑

l=1

α̂lh(α̂l, N, T )− h(1, N, T )

)

g(N,T )







Now the term on the right hand side of the inequality is positive and converges at a

slower rate than C−2
N,T to zero, and we have

∑nI
i

i
NI

i

N
[V (ko

i , F̂
o, N I

i )−V (k′
i, F̂

k′i, N I
i )] =

Op(C
−2
NT ) by Lemma 6.3. Hence,

P (PCo(1, ko, X) > PC(n′, {k′
l}, {Xs

l })) → 0.

This implies

P (PCo(1, ko, X) < PC(n′, {k′
l}, {Xs

l })) → 1.

Case 3 The alternative model never underestimates the number of factors in its

groups and :k′
i ≥ ko

i for all i and k′
i > ko

i for some groups in the intersection
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partition. We calculate again the difference in the penalty factors.

φ =

n′

∑

l=1

N ′
l

N
k′
l +

n′

∑

l=1

N ′
l

N
h(α̂′

l)−
n∑

j=1

Nj

N
ko
j −

n∑

j=1

Nj

N
h(α̂o

j)

=
nI
∑

i=1

N I
i

N
k′
i +

nI
∑

i=1

N I
i

N
h(α̂′

i)−
nI
∑

i=1

N I
i

N
ko
i −

nI
∑

i=1

N I
i

N
h(α̂o

i )

=

nI
∑

i=1

N I
i

N
(k′

i − k0
i ) +

nI
∑

i=1

N I
i

N
(h(α̂′

i)− h(α̂o
i ))

=
∑

k′i>koi

N I
i

N
(k′

i − k0
i ) +

∑

k′i>koi

N I
i

N
(h(α̂′

i)− h(α̂o
i )) +

∑

k′i=koi

N I
i

N
(h(α̂′

i)− h(α̂o
i ))

≥
∑

k′i>koi

N I
i

N
+
∑

k′i>koi

N I
i

N
h(α̂′

i)−
∑

k′i>koi

N I
i

N
h(α̂o

i ) +
∑

k′i=koi

N I
i

N
(h(α̂′

i)− h(α̂o
i ))

=
∑

k′i>koi

N I
i

N
(1− h(α̂o

i )) +
∑

k′i>koi

N I
i

N
h(α̂′

i) +
∑

k′i=koi

N I
i

N
(h(α̂′

i)− h(α̂o
i ))

> 0

The first two terms are positive because of condition 3(a) for h function. For the

case of k′
i = ko

i we must have α̂′
i < α̂o

i , because α̂′
i > α̂o

i would imply that group l of

the alternative model contains more variables than group j of the true model, and

hence the number of true factors in group l would be larger than ko
i . This contradicts

the assumption of k′
i = ko

i . Therefore the third term is nonnegative according to

condition 3(b). Hence, we always have φ > 0.

P (PCo(n, {koj }, {Xj}) > PC(n′, {k′l}, {Xs
l }))

= P







n∑

j=1

Nj

N
V (koj , F̂

o
j , Nj)−

n′

∑

l

Nl

N
V (k′l, F̂

′
l , Nl) > φg(N,T )







= P







nI
∑

i=1

N I
i

N
V (koi , F̂

o
i , N

I
i )−

nI
∑

i

N I
i

N
V (k′i, F̂

′
i , N

I
i ) > φg(N,T )







= P







nI
∑

i=1

N I
i

N
[V (koi , F̂

o
i , N

I
i )− V (k′i, F̂

′
i , N

I
i )] > φg(N,T )






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Now the term on the right hand side of the inequality is positive and converges at a

slower rate than C−2
N,T to zero, and we have

∑nI

i=1
NI

i

N
[V (ko

i , F̂
o
i , N

I
i )−V (k′

i, F̂
′
i , N

I
i )] =

Op(C
−2
NT ) by Lemma 6.3. Hence,

P (PCo(n, {ko
i }, {Xj}) > PC(n′, {k′

i}, {Xs
l })) → 0.

This implies

P (PCo(n, {ko
i }, {Xj}) < PC(n′, {k′

i}, {Xs
l })) → 1.

So far we have shown for all three possible cases the following probability convergence

holds.

P (PCo(n, {ko
j}, {Xj}) < PC(n′, {k′

l}, {Xs
l })) → 1. (6.60)

Since the true classification is usually unknown in practical applications, we need

to replace the true classification by the classification using the PDA procedure and

we need to prove that the model selection criterion of the true model using the PDA

procedure has the same property as given in (6.60), i.e. we need to prove

P (PC(n, {ko
j}, {Xs

j }) < PC(n′, {k′
l}, {Xs

l }))
P−→ 1 as T,N → ∞.

PC(n, {ko
j}, {Xs

j })− PC(n′, {k′
l}, {Xs

l })
︸ ︷︷ ︸

A

= PC(n, {ko
j}, {Xs

j })− PCo(n, {ko
j}, {Xi})

︸ ︷︷ ︸

B

+ PCo(n, {ko
j}, {Xj})− PC(n′, {k′

l}, {Xs
l })

︸ ︷︷ ︸

C

Because the PDA with the voting scheme is consistent we have
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P
(
PC(n, {ko

j}, {Xs
j })− PCo(n, {ko

j}, {Xi} = 0
)
= P ({Xs

i } = {Xi}) P−→ 1 (6.61)

Because plim
T,N→∞

B = 0, plim
T,N→∞

C < 0 and A = B + C, we have

plim
T,N→∞

A = plim
T,N→∞

B + plim
T,N→∞

C < 0.

This means

P (PC(n, {ko
j}nj=1, {Xs

j }) < PC(n′, {k′
l}n

′

l=1, {Xs
l }))

P−→ 1 as T,N → ∞.

This proves Proposition 3.7.

✷

68



6.3 Variable List for the Empirical Example

Table 8: List of Variables and Classification
Group No. Name code
1 1 AUSTRALIAN AGRICULTURAL - TOT RETURN IND A:AACX(RI)
1 2 ADELAIDE BRIGHTON - TOT RETURN IND A:ABCX(RI)
1 3 ABACUS PROPERTY GROUP - TOT RETURN IND A:ABPX(RI)
1 4 AGL ENERGY - TOTRETURN IND A:AGKX(RI)(*)
1 5 AUSTRALIAN INFR.FUND - TOT RETURN IND A:AIXX(RI)
1 7 ARISTOCRAT LEISURE - TOT RETURN IND A:ALLX(RI)
1 8 ALESCO - TOT RETURN IND A:ALSX(RI)
1 9 AUSTRALAND PR.GP. - TOT RETURN IND A:ALZX(RI)
1 10 AMCOR - TOT RETURN IND A:AMCX(RI)
1 11 AMP - TOT RETURNIND A:AMPX(RI)
1 12 ANSELL - TOT RETURN IND A:ANNX(RI)
1 13 AUS.AND NZ.BANKING GP. - TOT RETURN IND A:ANZX(RI)
1 15 APA GROUP - TOT RETURN IND A:APAX(RI)
1 16 APN NEWS & MEDIA- TOT RETURN IND A:APNX(RI)
1 19 ASX - TOT RETURNIND A:ASXX(RI)
1 20 AUSTAR UNITED COMMS. - TOT RETURN IND A:AUNX(RI)
1 22 AWB - TOT RETURNIND A:AWBX(RI)
1 23 ALUMINA - TOT RETURN IND A:AWCX(RI)
1 25 AXA ASIA PACIFICHDG. - TOT RETURN IND A:AXAX(RI)
1 26 BILLABONG INTERNATIONAL - TOT RETURN IND A:BBGX(RI)
1 27 BENDIGO & ADELAIDE BANK - TOT RETURN IND A:BENX(RI)
1 29 BORAL - TOT RETURN IND A:BLDX(RI)
1 30 BANK OF QLND. - TOT RETURN IND A:BOQX(RI)
1 32 BLUESCOPE STEEL - TOT RETURN IND A:BSLX(RI)
1 33 BUNNINGS WHSE.PR.TST. - TOT RETURN IND A:BWPX(RI)
1 34 BRAMBLES - TOT RETURN IND A:BXBX(RI)
1 35 CABCHARGE AUSTRALIA - TOT RETURN IND A:CABX(RI)
1 36 COMMONWEALTH BK.OF AUS. - TOT RETURN IND A:CBAX(RI)
1 37 COCA-COLA AMATIL- TOT RETURN IND A:CCLX(RI)
1 40 CFS RETAIL PR.TST. - TOT RETURN IND A:CFXX(RI)
1 41 CHALLENGER FINL.SVS.GP. - TOT RETURN IND A:CGFX(RI)
1 42 CONSOLIDATED MEDIA HDG. - TOT RETURN IND A:CMJX(RI)
1 43 COCHLEAR - TOT RETURN IND A:COHX(RI)
1 44 COMMONWEALTH PR.OFFE.FD. - TOT RETURN IND A:CPAX(RI)
1 45 COMPUTERSHARE - TOT RETURN IND A:CPUX(RI)
1 46 CRANE GROUP - TOT RETURN IND A:CRGX(RI)
1 47 CSL - TOT RETURNIND A:CSLX(RI)
1 48 CSR - TOT RETURNIND A:CSRX(RI)
1 49 CALTEX AUSTRALIA- TOT RETURN IND A:CTXX(RI)(*)
1 51 CORPORATE EXPRESS AUS. - TOT RETURN IND A:CXPX(RI)
1 52 DAVID JONES - TOT RETURN IND A:DJSX(RI)
1 54 DOWNER EDI - TOTRETURN IND A:DOWX(RI)
1 55 DEXUS PROPERTY GROUP - TOT RETURN IND A:DXSX(RI)
1 56 ELDERS - TOT RETURN IND A:ELDX(RI)
1 57 ENVESTRA - TOT RETURN IND A:ENVX(RI)
1 63 FOSTER’S GROUP -TOT RETURN IND A:FGLX(RI)
1 64 FKP PROPERTY GROUP - TOT RETURN IND A:FKPX(RI)
1 65 FLIGHT CENTRE - TOT RETURN IND A:FLTX(RI)
1 67 FLEETWOOD - TOT RETURN IND A:FWDX(RI)
1 68 FAIRFAX MEDIA - TOT RETURN IND A:FXJX(RI)
1 70 GOODMAN GROUP - TOT RETURN IND A:GMGX(RI)
1 71 GRAINCORP - TOT RETURN IND A:GNCX(RI)
1 72 GUNNS - TOT RETURN IND A:GNSX(RI)
1 73 GPT GROUP - TOT RETURN IND A:GPTX(RI)
1 74 GUD HOLDINGS - TOT RETURN IND A:GUDX(RI)
1 75 GWA INTERNATIONAL - TOT RETURN IND A:GWTX(RI)
1 76 HENDERSON GROUP CDI. - TOT RETURN IND A:HGGX(RI)
1 77 HILLS INDUSTRIES- TOT RETURN IND A:HILX(RI)
1 78 HEALTHSCOPE - TOT RETURN IND A:HSPX(RI)
1 79 HARVEY NORMAN HOLDINGS - TOT RETURN IND A:HVNX(RI)
1 80 INSURANCE AUS.GROUP - TOT RETURN IND A:IAGX(RI)
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Table 9: List of Variables and Classification(Cont.)
Group No. Name code
1 81 IOOF HOLDINGS - TOT RETURN IND A:IFLX(RI)
1 83 ING INDL.FUND - TOT RETURN IND A:IIFX(RI)
1 84 ILUKA RESOURCES - TOT RETURN IND A:ILUX(RI)(*)
1 85 ING OFFICE FUND - TOT RETURN IND A:IOFX(RI)
1 87 IRESS MARKET TECH. - TOT RETURN IND A:IREX(RI)
1 88 ISOFT GROUP - TOT RETURN IND A:ISFX(RI)
1 90 JB HI-FI - TOT RETURN IND A:JBHX(RI)
1 91 JAMES HARDIE INDS.CDI. - TOT RETURN IND A:JHXX(RI)
1 93 LEIGHTON HOLDINGS - TOT RETURN IND A:LEIX(RI)
1 95 LEND LEASE GROUP- TOT RETURN IND A:LLCX(RI)
1 97 MACMAHON HOLDINGS - TOT RETURN IND A:MAHX(RI)
1 98 MAP GROUP - TOT RETURN IND A:MAPX(RI)
1 101 MACQUARIE COUNTRY.TRUST - TOT RETURN IND A:MCWX(RI)
1 102 MIRVAC GROUP - TOT RETURN IND A:MGRX(RI)
1 104 MACQUARIE INFR.GROUP - TOT RETURN IND A:MIGX(RI)
1 107 MONADELPHOUS GROUP - TOT RETURN IND A:MNDX(RI)
1 108 MACQUARIE OFFICETRUST - TOT RETURN IND A:MOFX(RI)
1 110 MACQUARIE GROUP - TOT RETURN IND A:MQGX(RI)(*)
1 112 METCASH - TOT RETURN IND A:MTSX(RI)
1 113 NATIONAL AUS.BANK - TOT RETURN IND A:NABX(RI)
1 115 NUFARM - TOT RETURN IND A:NUFX(RI)
1 116 NEWS CORP.CDI.’B’ (ASX) - TOT RETURN IND A:NWSX(RI)
1 120 ORICA - TOT RETURN IND A:ORIX(RI)
1 122 ONESTEEL - TOT RETURN IND A:OSTX(RI)
1 126 PRIME INFRASTRUCTURE GP. - TOT RETURN IND A:PIHX(RI)
1 129 PERPETUAL - TOT RETURN IND A:PPTX(RI)
1 130 PAPERLINX - TOT RETURN IND A:PPXX(RI)
1 131 PRIMARY HEALTH CARE - TOT RETURN IND A:PRYX(RI)
1 132 QANTAS AIRWAYS -TOT RETURN IND A:QANX(RI)
1 133 QBE INSURANCE GROUP - TOT RETURN IND A:QBEX(RI)
1 134 RAMSAY HEALTH CARE - TOT RETURN IND A:RHCX(RI)
1 137 RESMED CDI - TOTRETURN IND A:RMDX(RI)
1 141 SEVEN NETWORK - TOT RETURN IND A:SEVX(RI)
1 143 STOCKLAND - TOT RETURN IND A:SGPX(RI)
1 144 SINGAPORE TELECOM CDI. (ASX) - TOT RETURN IND A:SGTX(RI)
1 145 SONIC HEALTHCARE- TOT RETURN IND A:SHLX(RI)
1 146 SIGMA PHARMS. - TOT RETURN IND A:SIPX(RI)
1 147 SMS MAN.& TECH. - TOT RETURN IND A:SMXX(RI)
1 148 SPOTLESS GROUP -TOT RETURN IND A:SPTX(RI)
1 151 SUNCORP-METWAY -TOT RETURN IND A:SUNX(RI)
1 152 TABCORP HOLDINGS- TOT RETURN IND A:TAHX(RI)
1 153 TRANSURBAN GROUP- TOT RETURN IND A:TCLX(RI)
1 154 TELECOM CORP.NZ.(ASX) - TOT RETURN IND A:TELX(RI)
1 155 TEN NETWORK HOLDINGS - TOT RETURN IND A:TENX(RI)
1 157 TOLL HOLDINGS - TOT RETURN IND A:TOLX(RI)
1 158 TRANSFIELD SERVICES - TOT RETURN IND A:TSEX(RI)
1 159 UGL - TOT RETURNIND A:UGLX(RI)
1 160 VIRGIN BLUE HOLDINGS - TOT RETURN IND A:VBAX(RI)
1 161 WEST AUST.NWSP.HDG. - TOT RETURN IND A:WANX(RI)
1 162 WESTPAC BANKING - TOT RETURN IND A:WBCX(RI)
1 163 WESTFIELD GROUP - TOT RETURN IND A:WDCX(RI)
1 165 WORLEYPARSONS - TOT RETURN IND A:WORX(RI)
1 166 WOOLWORTHS - TOTRETURN IND A:WOWX(RI)
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Table 10: List of Variables and Classification (Cont.)
Group No. Name code
2 6 AJ LUCAS GROUP -TOT RETURN IND A:AJLX(RI)
2 14 ARROW ENERGY - TOT RETURN IND A:AOEX(RI)
2 17 AQUILA RESOURCES- TOT RETURN IND A:AQAX(RI)
2 18 AQUARIUS PLATINUM (ASX) - TOT RETURN IND A:AQPX(RI)
2 21 AVOCA RESOURCES - TOT RETURN IND A:AVOX(RI)
2 24 AWE - TOT RETURNIND A:AWEX(RI)
2 28 BHP BILLITON - TOT RETURN IND A:BHPX(RI)
2 31 BEACH ENERGY - TOT RETURN IND A:BPTX(RI)
2 38 CUDECO - TOT RETURN IND A:CDUX(RI)(*)
2 39 CENTENNIAL COAL - TOT RETURN IND A:CEYX(RI)
2 50 CARNARVON PETROLEUM - TOT RETURN IND A:CVNX(RI)
2 53 DOMINION MINING - TOT RETURN IND A:DOMX(RI)
2 58 EQUINOX MINERALSCDI. - TOT RETURN IND A:EQNX(RI)
2 59 ENERGY RES.OF AUS. - TOT RETURN IND A:ERAX(RI)
2 60 EASTERN STAR GAS- TOT RETURN IND A:ESGX(RI)
2 61 ENERGY WORLD - TOT RETURN IND A:EWCX(RI)
2 62 EXTRACT RESOURCES - TOT RETURN IND A:EXTX(RI)
2 66 FORTESCUE METALSGP. - TOT RETURN IND A:FMGX(RI)
2 69 GINDALBIE METALS- TOT RETURN IND A:GBGX(RI)
2 82 INDEPENDENCE GROUP - TOT RETURN IND A:IGOX(RI)
2 86 INCITEC PIVOT - TOT RETURN IND A:IPLX(RI)(*)
2 89 INVOCARE - TOT RETURN IND A:IVCX(RI)(*)
2 92 KINGSGATE CONSOLIDATED - TOT RETURN IND A:KCNX(RI)
2 94 LIHIR GOLD - TOTRETURN IND A:LGLX(RI)
2 96 LYNAS - TOT RETURN IND A:LYCX(RI)
2 99 MACARTHUR COAL -TOT RETURN IND A:MCCX(RI)
2 100 MINCOR RESOURCES- TOT RETURN IND A:MCRX(RI)
2 103 MOUNT GIBSON IRON - TOT RETURN IND A:MGXX(RI)
2 105 MEDUSA MINING - TOT RETURN IND A:MMLX(RI)
2 106 MURCHISON METALS- TOT RETURN IND A:MMXX(RI)
2 109 MOLOPO ENERGY - TOT RETURN IND A:MPOX(RI)
2 111 MINARA RESOURCES- TOT RETURN IND A:MREX(RI)
2 114 NEWCREST MINING - TOT RETURN IND A:NCMX(RI)
2 117 NEXUS ENERGY - TOT RETURN IND A:NXSX(RI)
2 118 OM HOLDINGS - TOT RETURN IND A:OMHX(RI)
2 119 ORIGIN ENERGY (EX BORAL) - TOT RETURN IND A:ORGX(RI)
2 121 OIL SEARCH - TOTRETURN IND A:OSHX(RI)
2 123 OZ MINERALS - TOT RETURN IND A:OZLX(RI)
2 124 PANORAMIC RESOURCES - TOT RETURN IND A:PANX(RI)
2 125 PALADIN ENERGY -TOT RETURN IND A:PDNX(RI)
2 127 PLATINUM AUSTRALIA - TOT RETURN IND A:PLAX(RI)
2 128 PANAUST - TOT RETURN IND A:PNAX(RI)
2 135 RIO TINTO - TOT RETURN IND A:RIOX(RI)
2 136 RIVERSDALE MINING - TOT RETURN IND A:RIVX(RI)
2 138 ROC OIL COMPANY - TOT RETURN IND A:ROCX(RI)
2 139 ST BARBARA - TOTRETURN IND A:SBMX(RI)
2 140 SUNDANCE RESOURCES - TOT RETURN IND A:SDLX(RI)
2 142 SIMS METAL MANAGEMENT - TOT RETURN IND A:SGMX(RI)
2 149 STRAITS RESOURCES - TOT RETURN IND A:SRLX(RI)
2 150 SANTOS - TOT RETURN IND A:STOX(RI)
2 156 TELSTRA - TOT RETURN IND A:TLSX(RI)(*)
2 164 WESFARMERS - TOTRETURN IND A:WESX(RI)(*)
2 167 WOODSIDE PETROLEUM - TOT RETURN IND A:WPLX(RI)
2 168 WESTERN AREAS - TOT RETURN IND A:WSAX(RI)
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