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Abstract

The result that firms competing in a Cournot oligopoly with pairwise collab-

oration form a complete network under zero or negligible link formation costs

provided by Goyal and Joshi (2003) no longer hold in multi-market oligopolies.

Link formation in one market affects a firm’s profitability in another market in

a possibly negative way resulting in the fact that it is no longer always prof-

itable in an unambiguous manner. With non-negative link formation costs, the

stable networks have a dominant group architecture and efficient networks are

charecterized by at most one non-singleton component with a geodesic distance

between players that is less than three.
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1 Introduction

In two landmark papers, Goyal and Joshi (2003, 2006) set forth the issue of using the

emerging network formation literature to discuss collaboration in R&D among a set

of oligopolistic firms. The first paper characterizes stable and efficient networks. The

second paper show that the model is an example of a more general category of models

called playing the field games. In this paper, we extend the analysis to oligopolistic

firms competing in more than one market.

Goyal and Joshi (2003) put forward the proposition that firms competing in a

homogeneous Cournot oligopoly with constant returns to scale cost functions and

forming collaborative links among themselves will form a complete network under

negligible link formation costs. The rationale is straightforward. Links lower marginal

costs of both players involved in forming a link. The firm gains in terms of gross profits

(or profits not including link formation costs) by the lowering of its marginal cost.

It loses by the lowering of its partner’s marginal costs. The gain outweighs the loss

and hence link formation is profitable. Similar results will follow if link formation

increases demand (for instance, by increasing the demand intercept) of both firms

forming a collaborative link. Such increases may be the outcome of quality enhancing

collaborations.

Now, consider the case where firms compete in more than one market. Then, the

mechanics of the effects associated with link formation are much more complicated.

Bulow et al. (1985) investigate some of these effects in a general strategic setting.

Suppose there are joint diseconomies across markets in the sense that higher quan-

tity produced in one market reduces marginal profitability associated with an unit

of production in the other. Furthermore, the market structure is such that goods

produced by competing firms are strategic substitutes. Then any strategic action

(such as collaborative link formation) designed to increase demand and reduce costs

inevitably increases the quantity produced in one market. This will (because of joint

diseconomies) reduce the marginal profitability and quantity produced in the other

market. Because of strategic substitutability, rival firms increase quantities produced

and this induces certainly a loss in the second market and possibly an overall loss for

the firm.

We investigate the stable and efficient networks that may form in the setting of
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a multi-market oligopoly with non-negative link formation costs. We assume a het-

erogeneous product market, linear demand curves and quadratic cost functions. In a

departure from Goyal and Joshi (2003), we look at quality-enchancing collaborations

rather than cost-reducing collaborations. Since multiple quality levels are incompati-

ble with the notion of a homogeneous product, we look at a market with differentiated

products. The quadratic cost functions are introduced in order to make sure that the

assumption of joint diseconomies (defined below) is valid. This play a key role in the

inter-market effects. If we use linear cost functions, the inter-market effects disap-

pear and we expect too see results that are similar to Goyal and Joshi (2003). A link

between two firms with shift the demand curves of both firms to right as a result of

quality improvements. Firms compete in two separate markets but for purposes of

simplicity, quality enhancing collaborations are restricted only to one market. The

cost function is a quadratic function of quantities produced in both markets.

It turns out that stable networks have, what Goyal and Joshi (2003) refer to

as the dominant group architecture. Namely, the firms can be partitioned into two

groups. In the first group, all firms are linked to each other. In the second group,

the firms have no links whatsoever. This is a consequence of increasing returns to

link formation. Namely, the more links a firm has, the greater the benefit of forming

an additional link. With regard to efficient networks, we cannot arrive at a precise

characterization of the networks that will result though we can derive some interesting

properties of such networks and restrict the set of networks that are efficient into a

small class. For four firms or more, efficient networks have only one component and

the geodesic distance between two connected players cannot exceed two. In other

words, dominant group architectures are possible candidates for efficient networks

but we show using examples, that stable and efficient networks need not coincide.

The rest of the paper proceeds as follows. Section 2 introduces the model and

discusses the notation and terminology. Section 3 discusses the inter-market effects

a la´ Bulow et. al. (1985). Section 4 discusses stable networks. Section 5 discusses

efficient networks. Section 6 concludes. The paper has a lot of tedious algebra most

of which has been relegated to the Appendix.
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2 Preliminaries

2.1 The Multi-market Cournot Model

Suppose there are n firms indexed i = 1, 2, . . . , n (where n > 2) that compete a la´

Cournot in two inter-related markets A and B. Demand in A for firm i is given by

pi = αi − qi −
X

j 6=i

qj. (1)

Demand in B for firm i is given by

Pi = βi −Qi −
X

j 6=i

Qj. (2)

The cost function of the firm i is given by

Ci(qi, Qi) =
1

2
(qi +Qi)

2 (3)

and profit of firm i is given by

πi = pi · qi + Pi ·Qi − Ci(qi, Qi). (4)

We begin by giving a rationale of the demand function employed here. Products

here are near substitutes but vertically differentiated. Differential quality levels allow

firms to charge different prices creating a sub-market within the larger market. This

demand function was introduced by Bowley (1924)1 and used by Spence (1976) and

Dixit (1979). More recently, such demand functions have been employed for instance

by Chakrabarti and Haller (2007) in the context of targeted advertising.

The assumption of joint diseconomies is equivalent to
∂2πi

∂qi∂Qi
< 0. In this model,

it holds because
∂2πi

∂qi∂Qi
= −1. The assumption of strategic substitutes is equivalent

to
∂2πi

∂Qi∂Qj
< 0. In this model, it holds because

∂2πi
∂Qi∂Qj

= −1.

First consider market 1 in isolation by assuming a priori that Qi = 0 for all i. Let

q∗i , Q
∗
i and π∗i denote equilibrium quantities and profits in the second stage. Then, it

1Usually, a more general formulation, pi = αi − qi − θ
X

j 6=i

qj where 0 6 θ 6 1 is employed. The

current formulation simplifies the exposition without changing the results.
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is straight forward to show that

π∗i =
3

8

µ(n+ 1)αi −
X

j 6=i

αj

n+ 2

¶
2

.

Let us consider now the full fledged model. Upon solving the second stage of the

model, we get

q∗i =
1

3(3 + 4n+ n2)

£
(6 + 8n+ 2n2)αi − (3 + 4n+ n2)βi

¤

+
1

3(3 + 4n+ n2)

£
−(5 + 2n)α+ (4 + n)β

¤
;

Q∗i =
1

3(3 + 4n+ n2)

£
(6 + 8n+ 2n2)βi − (3 + 4n+ n2)αi

¤

+
1

3(3 + 4n+ n2)

£
−(5 + 2n)β + (4 + n)α

¤
.

where α =
nP

i=1

αi and β =
nP

i=1

βi. The calculations are in the appendix. The expression

for profit is complicated and given in the appendix.

2.2 Networks

Let the set of players be denoted by N = {1, 2, . . . , n}. A network g is a list of pairs

of players who are linked to each other. For simplicity, we denote the link between

i and j (where i 6= j) by ij, so ij ∈ g indicates i and j are linked in the network g.

The links are undirected in the sense that we do not distinguish between ij and ji.

Let gN be the set of all subsets of N of size 2. The network gN is referred to as the

complete network. The set G = {g ⊂ gN} denotes the set of all possible networks on

N . A network in which there are no links is called an empty network and is denoted

by g0.

We let g + ij denote the network formed by adding the link ij to the network

g. g − ij denotes the network formed by deleting the link ij from the network g. A

network payoff function ui : G→ R+ assigns an utility to player i by virtue of being

part of a network. Let u = (u1, u2, . . . , un) denote the vector of utility functions.

Then u combined with N defines a network game.2

2Originally, the term network game was used to denote a transferable utility version of the game

by Jackson (2005).
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A firm i’s neighborhood Ni(g) is given by {j ∈ N\{i}|ij ∈ g} and its cardinality

is given by ηi(g) = |Ni(g)|. ηi(g) is called the degree of player i in network g. We

also define N(g) = ∪i∈NNi(g). N(g) refers to the set of players that have at least one

link. Let η(g) = #N(g) with the convention that if N(g) = ∅, we let η(g) = 1.3

Player i therefore is participating in the links in her link set Li(g) = {ij ∈ g | j ∈
Ni(g)} ⊂ g. Let Li = Li(g

N) denote the set of all possible links involving player i.

Let λ(g) = 1
2

P

i∈N
ηi(g) be the total number of links in a network g.

For any h ⊂ g, let g − h denotes the network formed by deleting the link set h

from the network g. Similarly, for h ⊂ gN\g, g + h denotes the network formed by

adding the link set h from the network g.

A network g is regular if each player has the same number of neighbors. Namely,

for all i 6= j, ηi(g) = ηj(g).

A path in g connecting i and j is a set of distinct players {i1, i2, . . . , ip} ⊂ N(g)

with p > 2 such that i1 = i, ip = j, and {i1i2, i2i3, . . . , ip−1ip} ⊂ g. We refer to the

number of links on this path, here p− 1, as the length of the path.
We say i and j are connected to each other if a path exists between them and

they are disconnected otherwise. The number of links on the shortest path between

two distinct players i and j is called the geodesic distance between i and j.

The network g0 ⊂ g is a component of g if N(g0) > 2 and for all i ∈ N(g0) and

j ∈ N(g0), i 6= j, there exists a path in g0 connecting i and j and for any i ∈ N(g0) and

j ∈ N(g), ij ∈ g implies ij ∈ g0. In other words, a component is simply a maximally

connected subnetwork of g. We denote the set of network components of the network

g by C(g). The set of players that are not connected in the network g are collected

in the set of (fully) disconnected players in g denoted by

N0(g) = N \N(g) = {i ∈ N | Ni(g) = ∅}.

Such players are known as singletons. A component g0 ⊂ g is complete if for all

distinct i, j ∈ N(g0), ij ∈ g. A component g0 ⊂ g is regular if for all distinct

i, j ∈ N(g0), ηi(g) = ηj(g). The dominant group architecture gk is characterized by

one complete non-singleton component with k > 2 players and n− k singletons.

3We emphasize here that if N(g) 6= ∅, we have that η(g) > 2. Namely, in those cases the network
has to consist of at least one link.
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A network is a pairwise equilibrium network with regard to a profile of utility

functions u if

(a) for all i and h ⊂ Li (g), ui(g) > ui(g − h), and

(b) for all i and ij /∈ g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

An equivalent definition can be given as follows. Consider a non-cooperative game

where each player i has a strategy set si =
n
{sij}j 6=i

o
with sij ∈ {0, 1}. sij = 1means

i intends to form a link with j, while sij = 0 means i does not intend to form such

a link. A link between two players is formed if and only if sij = sji = 1. A strategy

profile s = {s1, s2, · · · , sn} induces a network g (s) =

(
S

i6=j,i∈N,j∈N
ij|sij = sji = 1

)

.

We say that the network g (s) is induced by the strategy profile s. A network g is a

pairwise equilibrium network (or simply and equilibrium network) if

(a) There is a Nash equilibrium strategy profile that induces g;

(b) for all i and ij /∈ g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

For any network g, and h ⊂ gN\g, we denote the marginal benefit of link formation

by

∆ui(g, h) = ui(g + h)− ui(g).

Obviously, for a pairwise equilibrium network, ∆ui(g − h, h) > 0 for all h ⊂ Li (g)

and if ∆ui(g, ij) > 0, then ∆uj(g, ij) < 0.

Next, we define efficient networks. Consider a social welfare function W given by

sums of payoffs of all the players. Therefore,

W (g) =
nX

i=1

ui(g).

A network is efficient it is maximizes the social welfare function. More specifically,

g0 is efficient if

W (g0) >W (g)

for all g 6= g0. For any network g, and h ⊂ gN\g, we denote the marginal change in

social welfare as a result of link formation by

∆W (g, h) =W (g + h)−W (g).
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Obviously, for an efficient network, ∆W (g − h, h) > 0 and ∆W (g, h) 6 0.

3 Inter-market Effects

We assume that firms can improve quality via collaborative links in market 1. This

enhances demand. Hence, if a firm has formed k links, then

αi = γ0 + γ · k (5)

It is reasonable to assume that γ0 > γ. For reasons that will be clear later, we assume

γ0 is sufficiently large compared to γ, namely,

γ0 >

·
(n− 1)2
2

¸
γ. (6)

Link formation costs are given by a real number c where c > 0. To keep the model

tractable, assume that no link formation is possible in the second market. Hence,

assume a two stage game where first stage consists of a link formation game and in

the second stage, Cournot competition ensues. Define

αi(g) = γ0 + γ · ηi(g).

Then, the relevant network network payoff function is given by

ui(g) = π∗i (αi(g))− c · ηi(g)

where π∗i (αi(g)) is derived by expressing optimal profits π
∗
i in (36) as a function of

αi = αi(g). Let us assume for time being that c = 0.

First consider market 1 in isolation by assuming a priori that Qi = 0 for all i. For

an incomplete network g, if i forms a link with k 6= i (where ik /∈ g), its net profits

increase by

∆ui(g, ik) =
3

4

µ
nγ

(n+ 2)2

¶"

(n+ 1)αi (g)−
X

j 6=i

αj (g) +
nγ

2

#

.

Now, (n+1)αi (g)−
X

j 6=i

αj (g) > (n+1)γ0−(n−1) (γ0 + (n− 1)γ) = 2·γ0−(n−1)2·γ >

0 from (6). Hence, each link unambiguously increases profitability and a complete

network is the unique pairwise stable network. This leads to the following lemma.
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Lemma 1 Let us exogenously impose the condition that Qi = 0 for all i. Then, with

c = 0, the unique pairwise equilibrium network is given by the complete network.

Let us consider now the full fledged model. If i forms a link with k 6= i, its net

profits increase by

∆ui(g, ik) =

·
αi (g) · γ

18(1 + n)2(3 + n)2

¸ ¡
22n4 + 110n3 + 90n2 − 134n+ 8

¢

−
·

Ã
X

j 6=i

αj (g)

!

· γ

18(1 + n)2(3 + n)2

¸ ¡
22n3 + 102n2 + 66n− 158

¢

−
·

βi · γ

18(1 + n)2(3 + n)2

¸ ¡
14n4 + 70n3 + 18n2 − 190n− 8

¢

+

·

Ã
X

j 6=i

βj

!

· γ

18(1 + n)2(3 + n)2

¸ ¡
14n3 + 78n2 + 42n− 166

¢

+

·
γ2

18(1 + n)2(3 + n)2

¸ ¡
11n4 + 44n3 − 6n2 − 100n+ 83

¢
. (7)

Clearly, ∆ui(g, ik) is not necessary positive. For instance, consider for all i, n =

6, βi = 400, γ0 = 100, γ = 0.05. Consider an empty network for which αi = γ0. In

such a network, ∆ui(g
0, ik) = −0.0894772 making the empty network an equilibrium

network. In a complete network, deleting a link yields a positive payoff of 0.0890931

and hence the complete network is not an equilibrium network. In other words, the

mechanics driving the results of Goyal and Joshi (2003) fail to hold.

We give some intuition behind these results. It follows from strategic complemen-

tarity and joint economies analyzed by Bulow et al. (1985). Note that

dπ∗i
dαi

=

µ
∂π∗i
∂q∗i

¶µ
dq∗i
dαi

¶
+
X

j 6=i

µ
∂π∗i
∂q∗j

¶µ
dq∗j
dαi

¶
+

µ
∂π∗i
∂Q∗i

¶µ
dQ∗i
dαi

¶

+
X

j 6=i

µ
∂π∗i
∂Q∗j

¶µ
dQ∗j
dαi

¶
+

µ
∂π∗i
∂αi

¶
. (8)
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Also,

π∗i =

Ã

αi −
nX

k=1

q∗k

!

q∗i +

Ã

βi −
nX

k=1

Q∗k

!

Q∗i −
1

2
(q∗i +Q∗i )

2.

Hence, for j 6= i,

∂π∗i
∂q∗j

= −q∗i < 0; (9)

∂π∗i
∂αi

= q∗i > 0; (10)

∂π∗i
∂Q∗j

= −Q∗i < 0. (11)

Also, from first order conditions of profit maximization,

∂π∗i
∂q∗i

= 0; (12)

∂π∗i
∂Q∗i

= 0. (13)

resulting in two terms of (8) dropping out. In Cournot competition, quantity pro-

duced by a firm in equilibrium is decreasing in the demand intercepts of it’s rivals.

Hence, µ
dq∗j
dαi

¶
< 0. (14)

Further, Bulow et al. (1985) show that

sign

µ
dQ∗j
dαi

¶
= sign

·µ
∂2πi

∂qi∂Qi

¶
·

µ
∂2πj

∂Qi∂Qj

¶¸
.

Given

µ
∂2πi

∂qi∂Qi

¶
= −1 and

µ
∂2πj

∂Qi∂Qj

¶
= −1 in this multi-market model,4

µ
dQ∗j
dαi

¶
> 0. (15)

Using inequalities (15), (14), (9), (10) and (11), we can sign each term to get the

following:
dπ∗i
dαi

=
X

j 6=i

µ
∂π∗i
∂q∗j

¶

| {z }
<0

µ
dq∗j
dαi

¶

| {z }
<0

+
X

j 6=i

µ
∂π∗i
∂Q∗j

¶

| {z }
<0

µ
dQ∗j
dαi

¶

| {z }
>0

+

µ
∂π∗i
∂αi

¶

| {z }
>0

. (16)

4Note that inequalities (15) and (14) can be verified from (34) and (35).
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So, the aberrant sign is introduced by the presence of

µ
∂Q∗j
∂αi

¶
being positive. If it were

negative, then any increase in αi would only boost profits and a complete network

would result in equilibrium. In fact, the precise expression for
dπ∗i
dαi

is given by

dπ∗i
dαi

= q∗i

µ
1 +

(5 + 2n)(n− 1)
3(3 + 4n+ n2)

¶
−Q∗i

µ
(4 + n)(n− 1)
3(3 + 4n+ n2)

¶
. (17)

Given that an increase in demand in one market no longer unambiguously increases

profit, the result follows.

4 Configuration of Equilibrium Networks

While the payoff functions are quite complicated, this game has features that were

analyzed by Goyal and Joshi (2006). We will devote some space to reproducing their

definitions and terminology. Let us assume c > 0.

Suppose from the network g, we remove player i and all his links, and call the

resulting network g−i. Namely, g−i = g − Li(g). Now, the total number of links in

this network g−i is given by
1

2

P

j 6=i

ηj (g−i) = λ (g−i).

Definition 1 A network game is called playing the field game if the payoff function

of player i is a function of her degree ηi (g) and λ (g−i), namely,

ui (g) = Φ (ηi (g) , λ (g−i))− c · ηi(g).

Definition 2 The payoff function Φ is convex in its own links if the marginal returns

Φ (k + 1, l)−Φ (k, l) is strictly increasing in k.

Definition 3 Suppose l0 > l. The payoff function Φ satisfies the strategic substitutes

property if Φ (k + 1, l0)−Φ (k, l0) < Φ (k + 1, l)−Φ (k, l).

The next lemma is a reproduction of Proposition 3.1 of Goyal and Joshi (2006).

Lemma 2 For a playing the field game, if the payoff function satisfies convexity in

own links and the strategic substitutes property, then a pairwise equilibrium network

always exists. Furthermore, if the payoff function satisfies convexity in own links, the

pairwise equilibrium network is either complete or empty or has the dominant group

architecture.
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In the appendix we show that the network games qualifies as playing the field

game. Furthermore, the payoff function satisfies convexity in own links as well as the

strategic substitutes property. In fact, if we define

∆(k, l) = Φ (k + 1, l)−Φ (k, l) ,

then we show in the appendix that

∂∆

∂k
=
2γ2 (11n4 + 44n3 − 6n2 − 100n+ 83)

18 (1 + n)2 (3 + n)2
> 0

and
∂∆

∂l
= −4γ

2 (22n3 + 102n2 + 66n− 158)
18 (1 + n)2 (3 + n)2

< 0.

Therefore, applying Lemma 2, we get the following corollary.

Corollary 1 The pairwise equilibrium network exists and is either complete or empty

or has a dominant group architecture.

We note that in the one-market Cournot model, the dominant group architecture

emerges. To see this, one can verify that the one-market Cournot game is also an

example of playing the field game and then apply Lemma 2.

5 Configuration of Efficient Networks

We shall distinguish between three kinds of efficiency. First the efficient networks

for firms is one that maximizes the joint profits of firms. This corresponds to the

usual notion of efficiency as defined by Jackson and Wolinsky (1996) because firms

are involved in the link formation process. However, one can define two other kinds

of efficiency. The efficient networks for consumers are ones that maximize the overall

consumer surplus. Overall efficiency refers in our case to networks maximizing the

sum of joint profits and overall consumer surplus. If we just use the words, efficient

networks, we are referring to efficient networks for firms.
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5.1 Efficient Networks for Firms

In this section, we shall discuss efficient networks where the social welfare function

is defined by the sum of profits of all the firms. While we do not obtain an exact

characterization of efficient networks, we can identify certain properties of such net-

works. Let Π : G→ R+ denote the joint profit of firms as a function of the network.

In other words,

Π(g) =
nX

i=1

ui(g).

Consider the effect of link formation between two arbitrary firms i and k in a

network g. In the Appendix we show that such link formation alters the joint profit

of all firms by

∆Π(g, ik) = κ0

"

(αi + αk)−
τ 0

n

Ã
X

l 6=i,k

αl

!

+ Λ0

#

− 2c (18)

where τ 0 > 0, κ0 > 0 and Λ0 are constants independent of network structure. τ 0 has

an upper bound less than 11 (at n = 2, its value is 10.791) and is strictly decreasing

in n. It has a lower bound of 2 and converges asymptotically to 2. It is important to

note that at n = 4, τ 0 = 3.5. For the discussion that follows, let us assume n > 3.

Lemma 3 (i) For any network g and player i such that ik, im /∈ g and ηm(g) > ηk(g),

∆Π(g + ik, im) > ∆Π(g, ik).

(ii) If ηm(g) = ηk(g) but n > 4, ∆Π(g + ik, im) > ∆Π(g, ik) as well.

Proof. (i) Starting from an arbitrary network g with ik, im /∈ g suppose two players i

and k form a link. This implies from (18), the increase in social welfare is proportional

to

∆Π(g, ik)

κ0
= 2·γ0+γ·[ηi(g) + ηk(g)]−

τ 0

n

Ã

(n− 2)γ0 + γ
X

l 6=i,k,m

ηl(g) + γ · ηm(g)

!

+Λ0−2
³ c

κ0

´

Then, for forming yet another link say im, the the increase in social welfare is pro-

portional to

13



∆Π(g + ik, im)

κ0
= 2 · γ0 + γ · [ηi(g) + ηm(g) + 1]

−τ
0

n

Ã

(n− 2)γ0 + γ
X

l 6=i,k,m

ηl(g) + γ · (ηk(g) + 1)

!

+ Λ0 − 2
³ c

κ0

´

=
∆Π(g, ik)

κ0
+ γ

·µ
1− τ 0

n

¶
+

µ
1 +

τ 0

n

¶
(ηm(g)− ηk(g))

¸

=
∆Π(g, ik)

κ0
+ γ

·
2 +

µ
1 +

τ 0

n

¶
(ηm(g)− ηk(g)− 1)

¸

Now, if ηm(g) > ηk(g), it implies ηm(g) > ηk(g) + 1. Hence,
∆Π(g + ik, im)

κ0
>

∆Π(g, ik)

κ0
completing the proof.

(ii) Now,
∆Π(g + ik, im)

κ0
=

∆Π(g, ik)

κ0
+ γ

·µ
1− τ 0

n

¶¸
.

Since τ 0 = 3.5 for n = 4,
τ 0

n
< 1. Furthermore, τ 0 and hence

τ 0

n
is strictly decreasing

in n, therefore
τ 0

n
< 1 for all n > 4. Hence, it follows that in all cases,

∆Π(g + ik, im)

κ0
>

∆Π(g, ik)

κ0
.

The following lemma plays a key role in the results that follow.

Lemma 4 For any efficient network for firms g, if ij ∈ g and ik /∈ g, then ηj(g) >

ηk(g). If n > 4, ηj(g) > ηk(g).

Proof. Suppose there exists an efficient network g and ij ∈ g and ik /∈ g. Then,

∆Π(g− ij, ij) > 0. Suppose, towards a contradiction, ηk(g) > ηj(g). This implies by

Lemma 3 that ∆Π(g, ik) > 0 contradicting that g is efficient. Hence, ηk(g) 6 ηj(g).

Next let ηj(g) = ηk(g) and n > 4. Again, ∆Π(g, ik) > ∆Π(g − ij, ij) > 0 which

contradicts that g is efficient. Therefore, ηk(g) < ηj(g).

The proposition below sets forth properties that characterize efficient networks

for firms.

14



Proposition 1 If n > 4: (i) The efficient network for firms cannot consist of more

than one component.

(ii) The geodesic distance between any two connected players in an efficient network

for firms is less than or equal to 2.

Proof. (i) Suppose h1, h2 ∈ C(g) where g is an efficient network and ij ∈ h1 and

kl ∈ h2. Now, i is linked to j and not to k which implies using Lemma 4, ηj(g) > ηk(g).

But l is linked to k but not to j which implies ηk(g) > ηj(g). Hence, we arrive at a

contradiction.

(ii) Take two players i and j such that i and j belong to N(h) where h ∈ C(g).

Hence, a path exists between i and j. Suppose the shortest path is {i1i2, i2i3, . . . , ip−1ip}

where i1 = i and ip = j and p > 4. i is linked to i2 but i is not linked to i3. Hence,

from Lemma 4, we get

ηi2(g) > ηi3(g). (19)

Now, i4 is linked to i3 but not linked to i2. Hence,

ηi3(g) > ηi2(g). (20)

But (20) contradicts (19).

5.2 Efficient Networks for Consumers

In this section, we shall discuss efficient networks with regard to consumers. Namely,

these are networks that maximize the consumer surplus. Consider the total consumer

surplus of agents in both markets. It is given by

CS =
X

i

(αi − p∗i ) q
∗
i +

X

i

(βi − P ∗i )Q
∗
i

15



where p∗i = αi − q∗ and P ∗i = βi −Q
∗
denotes prices in both markets at equilibrium.

Let Q =
nP

i=1

Qi and q =
nP

i=1

qi. Hence,

CS =
X

i

(αi − p∗i ) q
∗
i +

X

i

(βi − P ∗i )Q
∗
i

=
X

i

(q∗) q∗i +
X

i

³
Q
∗´

Q∗i

= (q∗)2 +
³
Q
∗´2

=

·
(n+ 2)α− β

3 + 4n+ n2

¸2
+

·
(n+ 2)β − α

3 + 4n+ n2

¸2

=
(n2 + 4n+ 5)

³
α2 + β

2
´
− 4(n+ 2)αβ

(3 + 4n+ n2)2
.

We can express consumer surplus CS as a function of the network. To this end, let

CS : G → R+ denote the overall consumer surplus as a function of the network.

Now, suppose two players i and k form a link in a network g where initially ik /∈ g.

Then, α increases by 2γ and hence,

∆CS(g, ik) =
(n2 + 4n+ 5) (2γ) (2α+ 2γ)− 4(n+ 2)β (2γ)

(3 + 4n+ n2)2
− 2c.

Proposition 2 The efficient network with regard to consumers is either complete or

empty.

Proof. Consider any two arbitrary links ij and kl where neither link belongs to the

network. Now,

∆CS(g + ij, kl)−∆CS(g, ij) =
8γ2(n2 + 4n+ 5)

(3 + 4n+ n2)2
> 0.

Hence, if ∆CS(g, ij) > 0, then ∆CS(g+ ij, kl) > 0 as well. Hence, starting from any

arbitrary network, if forming one link increases consumer surplus, then forming all

subsequent links enhances welfare as well. Hence, we end up in the complete network.

If on the other hand, link formation costs are sufficiently high, the empty network is

efficient.
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5.3 Overall Efficiency

Overall efficient networks have similar properties to that of networks for firms. Let

us define

W (g) = CS(g) +Π(g) (21)

for all g ∈ G. Suppose two players i and k form a link in a network g where initially

ik /∈ g. Then, let

∆W (g, ik) = ∆CS(g, ik) +∆Π(g, ik). (22)

Lemma 5 (i) For any network g and player i such that ik, im /∈ g and ηm(g) > ηk(g),

∆W (g + ik, im) > ∆W (g, ik).

(ii) If ηm(g) = ηk(g) but n > 4, ∆W (g + ik, im) > ∆W (g, ik) as well.

Proof. (i) From Lemma 3, ∆Π(g + ik, im) > ∆Π(g, ik). From Lemma 2, ∆CS(g +

ik, im) > ∆CS(g, ik). Hence, applying (22), the result follows.

(ii) The result is similar to (i).

The result leads to Lemma 6 which is the analog of Lemma 4.

Lemma 6 For any overall efficient network for firms g, if ij ∈ g and ik /∈ g, then

ηj(g) > ηk(g). If n > 4, ηj(g) > ηk(g).

The proof follows from Lemma 5 in an analogous manner to that of the proof

of Lemma 4 so we skip it to avoid repetition. Now, Lemma 6 directly leads to

Proposition 3 and the proof is identical to the proof of Proposition 1, and so we skip

it to avoid repetition.

Proposition 3 If n > 4: (i) The overall efficient network for firms cannot consist

of more than one component.

(ii) The geodesic distance between any two connected players in an overall efficient

network for firms is less than or equal to 2.
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5.4 Some Examples

Next, for the purposes for illustration, let us consider some examples. By efficiency,

we are referring to the traditional notion, namely the efficiency of firms.

Example 1 Let n = 3. Then there are eight possible networks, namely complete,

empty, {12}, {13}, {23}, {12, 13}, {12, 23}, {13, 23}. Let βi = 400, γ0 = 100, γ =

0.05, c = 0. From our above lemmas the candidates for stability are complete, empty,

{12}, {13}, {23}, {12, 13, 23} while the candidates for efficiency include all networks.

The payoffs are summarized in the table below.

Network u1 u2 u3 Π

∅ 9756.94 9756.94 9756.94 29270.83

{12} 9756.92 9756.92 9757.89 29271.70

{13} 9756.92 9757.89 9756.92 29271.70

{23} 9756.92 9756.92 9756.92 29271.70

{12, 13} 9756.90 9757.87 9757.87 29272.60

{12, 23} 9757.87 9756.90 9757.87 29272.60

{13, 23} 9757.87 9757.87 9756.90 29272.60

{12, 13, 23} 9757.85 9757.85 9757.85 29273.60

The unique stable network is the empty network and the unique efficient network is

the complete network.

This example confirms that the sets of stable and efficient networks need not

coincide. Now, let us in Example 1 increase γ from 0.05 to 5. The complete network

remains the efficient network, but now the stable networks are given by {ij}, i, j ∈
{1, 2, 3} and the complete network. We show this in Example 2.

Example 2 Let n = 3. Let βi = 400, γ0 = 100, γ = 5, c = 0. The payoffs are

summarized in the table below.
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Network u1 u2 u3 Π

∅ 9756.94 9756.94 9756.94 29270.83

{12} 9758.99 9758.99 9855.29 29373.26

{13} 9758.99 9855.29 9758.99 29373.26

{23} 9855.29 9758.99 9758.99 29373.26

{12, 13} 9769.75 9849.85 9849.85 29469.44

{12, 23} 9849.85 9769.75 9849.85 29469.44

{13, 23} 9849.85 9849.85 9769.75 29469.44

{12, 13, 23} 9853.13 9853.13 9853.13 29559.38

Now, let us in Example 1 further increase γ from 5 to 45. We find that the unique

efficient network is the complete network and the unique stable network is {12}. We

show this in Example 3 below.

Example 3 Let n = 3. Let βi = 400, γ0 = 100, γ = 45. The payoffs are summarized

in the table below.

Network u1 u2 u3 Π

∅ 9756.94 9756.94 9756.94 29270.83

{12} 10089.24 10089.24 10889.24 31067.71

{13} 10089.24 10089.24 10089.24 31067.71

{23} 10089.24 10089.24 10089.24 31067.71

{12, 13} 11127.78 10615.28 10615.28 32358.33

{12, 23} 10615.28 11127.78 10615.28 32358.33

{13, 23} 10615.28 10615.28 11127.78 32358.33

{12, 13, 23} 11047.57 11047.57 11047.57 33142.71

The last example (Example 4) shows that the possibility exists that stable and

efficient networks might coincide.

Example 4 Let n = 3. Let βi = 50, γ0 = 100, γ = 40. The payoffs are summarized

in the table below.
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Network u1 u2 u3 Π

∅ 703.13 703.13 703.13 2109.38

{12} 1676.58 1676.58 450.66 3803.82

{13} 1676.58 450.66 1676.58 3803.82

{23} 450.66 1676.58 1676.58 3803.82

{12, 13} 3208.06 945.10 945.10 5098.26

{12, 23} 945.10 3208.06 945.10 5098.26

{13, 23} 945.10 945.10 3208.06 5098.26

{12, 13, 23} 1997.57 1997.57 1997.57 5992.71

The unique stable and efficient network is the complete network.

6 Conclusion

The dynamics of multi-market oligopolies first discussed in Bulow et. al. (1985) can

upset many results which would hold in isolated oligopoly markets. Here we take the

situation of collaborative link formation among Cournot oligopolists with zero link

formation costs. The results that a complete network materializes in equilibrium no

longer holds one we introduces participation of the same set of firms in another not

completely unrelated market. A variety of networks including the empty network can

materialize in equilibrium.

With positive link formation costs, stable networks have a dominant group archi-

tecture. Efficient networks have the interesting feature that they consist of only one

non-empty component and in that component, the geodesic distance between any two

players is two or less. An exact characterization of efficient networks in this example,

or more broadly, in playing the field games in general is an open question, and is

reserved as a future endeavour.
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7 Appendix

7.1 Derivation of the Multi-market equilibrium

First substituting (1)-(3) in (4), we get an expression for profits namely,

πi =

Ã

αi − qi −
X

j 6=i

qj

!

· qi +

Ã

βi −Qi −
X

j 6=i

Qj

!

·Qi −
1

2
(qi +Qi)

2. (23)

Differentiating (23) with respect to qi and Qi, we get the first order conditions:

∂πi
∂qi

= 0;

∂πi
∂Qi

= 0.

These result in the following two equations:

αi − 2qi −
X

j 6=i

qj − qi −Qi = 0; (24)

βi − 2Qi −
X

j 6=i

Qj −Qi − qi = 0. (25)

Let Q =
nP

i=1

Qi and q =
nP

i=1

qi. Then, (24) and (25) can be rewritten as

αi − 2qi − q −Qi = 0; (26)

βi − 2Qi −Q− qi = 0. (27)

Summing up (26) over all i, we get

nX

i=1

αi − 2 · q − n · q −Q = 0.

Summing up (27) over all i, we get

nX

i=1

βi − 2 ·Q− n ·Q− q = 0.
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Denoting α =
nP

i=1

αi and β =
nP

i=1

βi, the above two equations can be re-written as:

α− (n+ 2)q −Q = 0; (28)

β − (n+ 2)Q− q = 0. (29)

(28) and (29) constitute a simultaneous equation system of two equations in two

unknowns which can be solved to yield

q∗ =
(n+ 2)α− β

3 + 4n+ n2
; (30)

Q
∗
=

(n+ 2)β − α

3 + 4n+ n2
. (31)

Substituting (30) and (31) in (26) and (27), we again get a linear system of two

equations in two unknowns, namely,

αi − 2qi −
(n+ 2)α− β

3 + 4n+ n2
−Qi = 0; (32)

βi − 2Qi −
(n+ 2)β − α

3 + 4n+ n2
− qi = 0. (33)

Solving (32) and (33), we get

q∗i =
1

3(3 + 4n+ n2)

£
(6 + 8n+ 2n2)αi − (3 + 4n+ n2)βi

¤

+
1

3(3 + 4n+ n2)

£
−(5 + 2n)α+ (4 + n)β

¤
; (34)

Q∗i =
1

3(3 + 4n+ n2)

£
(6 + 8n+ 2n2)βi − (3 + 4n+ n2)αi

¤

+
1

3(3 + 4n+ n2)

£
−(5 + 2n)β + (4 + n)α

¤
. (35)

Substituting (30), (31), (34), and (35) in (23), we get an expression for profits, namely,
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π∗i =
h

α2i
18(1+n)2(3+n)2

i ¡
8 + 24n+ 107n2 + 66n3 + 11n4

¢

+
h

αi·βi
18(1+n)2(3+n)2

i ¡
16 + 48n− 110n2 − 84n3 − 14n4

¢

+
h

β2i
18(1+n)2(3+n)2

i ¡
8 + 24n+ 107n2 + 66n3 + 11n4

¢

+




αi·

Ã
P

j 6=i
αj

!

18(1+n)2(3+n)2



¡
−8− 182n− 124n2 − 22n3

¢

+




βi·

Ã
P

j 6=i
αj

!

18(1+n)2(3+n)2



¡
−8 + 142n+ 92n2 + 14n3

¢

+




Ã
P

j 6=i
αj

!
2

18(1+n)2(3+n)2



¡
83 + 58n+ 11n2

¢

+




αi·

Ã
P

j 6=i
βj

!

18(1+n)2(3+n)2



¡
−8 + 142n+ 92n2 + 14n3

¢

+




βi·

Ã
P

j 6=i
βj

!

18(1+n)2(3+n)2



¡
−8− 182n− 124n2 − 22n3

¢

+




Ã
P

j 6=i
βj

!
2

18(1+n)2(3+n)2



¡
83 + 58n+ 11n2

¢

+




Ã
P

j 6=i
αj

!Ã
P

j 6=i
βj

!

18(1+n)2(3+n)2



¡
−158− 100n− 14n2

¢
(36)
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Hence,

ui(g) =
h

αi(g)
2

18(1+n)2(3+n)2

i ¡
8 + 24n+ 107n2 + 66n3 + 11n4

¢

+
h

αi(g)·βi
18(1+n)2(3+n)2

i ¡
16 + 48n− 110n2 − 84n3 − 14n4

¢

+
h

β2i
18(1+n)2(3+n)2

i ¡
8 + 24n+ 107n2 + 66n3 + 11n4

¢

+



αi(g)·

Ã
P

j 6=i
αj(g)

!

18(1+n)2(3+n)2



¡
−8− 182n− 124n2 − 22n3

¢

+




βi·

Ã
P

j 6=i
αj(g)

!

18(1+n)2(3+n)2



¡
−8 + 142n+ 92n2 + 14n3

¢

+




Ã
P

j 6=i
αj(g)

!
2

18(1+n)2(3+n)2



¡
83 + 58n+ 11n2

¢

+




αi(g)·

Ã
P

j 6=i
βj

!

18(1+n)2(3+n)2



¡
−8 + 142n+ 92n2 + 14n3

¢

+




βi·

Ã
P

j 6=i
βj

!

18(1+n)2(3+n)2



¡
−8− 182n− 124n2 − 22n3

¢

+




Ã
P

j 6=i
βj

!
2

18(1+n)2(3+n)2



¡
83 + 58n+ 11n2

¢

+




Ã
P

j 6=i
αj(g)

!Ã
P

j 6=i
βj

!

18(1+n)2(3+n)2



¡
−158− 100n− 14n2

¢

−c · ηi(g). (37)

7.2 Pairwise Equilibrium Networks

First, we will show that the network game is playing the field game. There are

two arguments in the payoff function. The first one is αi (g) and the second one is
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X

j 6=i

αj (g). First,

αi (g) = γ0 + γ · ηi (g) .

Second, X

j 6=i

αj (g) = (n− 1) γ0 + γ
X

j 6=i

ηj (g) .

Consider the links of player j 6= i in network g given by Nj (g). One can divide this

set into two subsets. First, the links with player i, given by say N i
j (g) which is either

ij or ∅. The second is the links with players other than i, given by N−i
j (g). Let the

respective cardinalities be given by ηij (g) and η−ij (g). Therefore,

X

j 6=i

ηj (g) =
X

j 6=i

ηij (g) +
X

j 6=i

η−ij (g)

= ηi (g) + 2 · λ (g−i) .

Hence,

ui (g) = Φ (ηi (g) , λ (g−i))− c · ηi(g).

The rest of the derivation is an exercise in tedious algebra. Let us define a set of

positive parameters.

ν = 18(1 + n)2(3 + n)2;

ρ1 = (8 + 24n+ 107n
2 + 66n3 + 11n4) ;

ρ2 = (−16− 48n+ 110n2 + 84n3 + 14n4) ;
ρ3 = (8 + 182n+ 124n

2 + 22n3) ;

ρ4 = (−8 + 142n+ 92n2 + 14n3) ;
ρ5 = (83 + 58n+ 11n

2) ;

ρ6 = (158 + 100n+ 14n
2) .
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Then,

Φ (k, l) =
1

ν

£
ρ1 (γ0 + γ · k)2 − ρ2 · βi (γ0 + γ · k)

¤

−1
ν
[ρ3 (γ0 + γ · k) ((n− 1) γ0 + γ · k + 2 · γ · l)] (38)

+
1

ν
[βi · ρ4 ((n− 1) γ0 + γ · k + 2 · γ · l)]

+
1

ν

£
ρ5 ((n− 1) γ0 + γ · k + 2 · γ · l)2

¤

+
1

ν

"

ρ4

Ã
X

j 6=i

βj

!

(γ0 + γ · k)

#

−1
ν

"

ρ6

Ã
X

j 6=i

βj

!

((n− 1) γ0 + γ · k + 2 · γ · l)

#

+C

where C is a collection of term unrelated to k or l and hence can be treated as a

constant.

Therefore,

∆(k, l) = Φ (k + 1, l)−Φ (k, l)

=
1

ν

£
ρ1
¡
2γ0 · γ + γ2 (2k + 1)

¢¤

−
µ
1

ν

¶
γ · ρ2 · βi +

µ
1

ν

¶
γ · ρ4 · βi +

µ
1

ν

¶
γ · ρ4

Ã
X

j 6=i

βj

!

+
1

ν
[ρ5 · γ (2 (n− 1) γ0 + γ (2k + 1) + 4 · γ · l)]

−1
ν

£
ρ3
¡
γ0 · γ · n+ γ2 (2k + 2l + 1)

¢¤

−1
ν

"Ã
X

j 6=i

βj

!

ρ6 · γ

#

.

Hence,

∂∆

∂k
=

µ
2γ2

ν

¶
(ρ1 − ρ3 + ρ5)

=

µ
2γ2

ν

¶¡
11n4 + 44n3 − 6n2 − 100n+ 83

¢
> 0.
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Finally,

∂∆

∂l
= 2

µ
γ2

ν

¶
(2ρ5 − ρ3)

= −2
µ
γ2

ν

¶¡
22n3 + 102n2 + 66n− 158

¢
< 0.

7.3 Efficient Networks for Firms

Consider the effect of link formation between two arbitrary firms i and k on firm

l 6= k, i. The change in profits is given by

∆π∗l = −
·

αl · γ

18(1 + n)2(3 + n)2

¸ ¡
44n3 + 248n2 + 364n+ 16

¢

+

·

Ã
X

m6=l

αm

!

· γ

18(1 + n)2(3 + n)2

¸ ¡
44n2 + 232n+ 332

¢

+

·
βl · γ

18(1 + n)2(3 + n)2

¸ ¡
28n3 + 184n2 + 284n− 16

¢

−
·

Ã
X

m6=l

βm

!

· γ

18(1 + n)2(3 + n)2

¸ ¡
28n2 + 200n+ 316

¢

+

·
γ2

18(1 + n)2(3 + n)2

¸ ¡
44n2 + 232n+ 332

¢
. (39)
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Further, from (7), the change in profits of k gross of link formation costs are given

by:

∆π∗k =

·
αk · γ

18(1 + n)2(3 + n)2

¸ ¡
22n4 + 110n3 + 90n2 − 134n+ 8

¢

−
·

Ã
X

j 6=k

αj

!

· γ

18(1 + n)2(3 + n)2

¸ ¡
22n3 + 102n2 + 66n− 158

¢

−
·

βk · γ

18(1 + n)2(3 + n)2

¸ ¡
14n4 + 70n3 + 18n2 − 190n− 8

¢

+

·

Ã
X

j 6=k

βj

!

· γ

18(1 + n)2(3 + n)2

¸ ¡
14n3 + 78n2 + 42n− 166

¢

+

·
γ2

18(1 + n)2(3 + n)2

¸ ¡
11n4 + 44n3 − 6n2 − 100n+ 83

¢
. (40)

Hence,

∆Π(g, ik) = ∆π∗i +∆π∗k +
X

l 6=i,k

∆π∗l − 2c

=

·
(αi + αk) · γ

18(1 + n)2(3 + n)2

¸ ¡
22n4 + 132n3 + 132n2 − 332n− 498

¢

−
·

Ã
X

l 6=i,k

αl

!

· γ

18(1 + n)2(3 + n)2

¸ ¡
44n3 + 352n2 + 860n+ 696

¢

_

·
(βi + βk) · γ

18(1 + n)2(3 + n)2

¸ ¡
14n4 + 84n3 + 84n2 − 316n− 474

¢

+

·

Ã
X

l 6=i,k

βl

!

· γ

18(1 + n)2(3 + n)2

¸ ¡
28n3 + 224n2 + 652n+ 600

¢

+

·
γ2

18(1 + n)2(3 + n)2

¸ ¡
22n4 + 132n3 + 132n2 − 332n− 498

¢

−2c (41)
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Note that we can simplify (41) into

∆Π(g, ik) = κ0

"

(αi + αk)−
1

n

Ã
X

l 6=i,k

αl

!
(44n3 + 352n2 + 860n+ 696)¡

22n3 + 132n2 + 132n− 332− 498
n

¢ + Λ0

#

− 2c

= κ0

"

(αi + αk)−
τ 0

n

Ã
X

l 6=i,k

αl

!

+ Λ0

#

− 2c (42)

where τ 0 > 0, κ0 > 0 and Λ0 are constants independent of network structure. τ 0 has

an upper bound less than 11 (at n = 2, its value is 10.791) and is strictly decreasing

in n. It has a lower bound of 2 and converges asymptotically to 2. It is important to

note that at n = 4, τ 0 = 3.5.
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