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Abstract

Let X be a set of states, and let I be an infinite indexing set. Any separable,
permutation-invariant preference order (�) on X I admits an additive representa-
tion. That is: there exists a linearly ordered abelian group R and a ‘utility function’
u : X−→R such that, for any x,y ∈ X I which differ in only finitely many coordi-
nates, we have x � y if and only if

∑
i∈I [u(xi) − u(yi)] ≥ 0. If (�) also satisfies a

weak continuity condition, then, for any x,y ∈ X I , we have x � y if and only if
∗
∑

i∈I u(xi) ≥ ∗
∑

i∈I u(yi). Here, ∗
∑

i∈I u(xi) represents a ‘nonstandard sum’ tak-
ing values in a linearly ordered abelian group ∗R, which is an ultrapower extension
of R. These results are applicable to infinite-horizon intertemporal choice, choice
under uncertainty, and variable-population social choice.

1 Main results

Let X be a set of states, and let I be an infinite indexing set. An element x ∈ X I assigns
a state xi to each i ∈ I. A preference order over X I has at least three interpretations:

(i) Intertemporal choice. I represents a ‘time-stream’ (an infinite sequence of moments
in time e.g. I = N or I = R+) and X represents the set of possible outcomes which
could happen at each moment. An element x ∈ X I thus represents a history where
outcome xi happens at time i.

(ii) Choice under uncertainty. I represents an infinite set of possible ‘states of nature’
(the true state is unknown), and X is the set of possible outcomes which could occur
in each state. An element x ∈ X I thus represents a ‘lottery’ (or ‘Savage act’) which
would yield the outcome xi if state i occurs.1

An important special case arises when X = {0, 1}, so that there is an obvious bijection
between X I and the set of all subsets of I. In this case, a preorder on X I can also
be interpreted as judging whether one subset of I is ‘more probable’ than another.

1Note that we do not assume a probability distribution on I.
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(iii) Variable population social choice. I represents an infinite set of ‘potential people’,
and X represents the set of possible personal physical/psychological states available
to each person.2 Suppose X contains a state o representing ‘nonexistence’. If x ∈ X I

and xi = o for all but finitely many coordinates, then x represents a finite (but
arbitrarily large) population.

One can also combine these interpretations:

(iv) Variable population intertemporal social choice under uncertainty. Let T represent
a time-stream (e.g. T := N), let S be a set of possible ‘states of nature’, let P be
a set of ‘possible people’, and suppose at least one of T , S, or P is infinite. Let
I := T × S ×P, and let X be a space of personal psychophysical states, including a
‘nonexistence’ state o. Then an element x ∈ X I represents a policy which will assign
personal state xt,s,p to person p at time t, if the state of nature s occurs.

For any x,y ∈ X I , let I(x,y) := {i ∈ I; xi 6= yi}, and d(x,y) := |I(x,y)|. A finitary

preorder on X I is a transitive, reflexive binary relation (�) such that, for any x,y ∈ X I ,

(
d(x,y) <∞

)
=⇒

(
x � y or x � y

)
. (1)

(�) is strictly finitary if the “=⇒” in (1) is actually “ ⇐⇒ ”.
A linearly ordered abelian group is a triple (R,+, >), where R is a set, + is an abelian

group operation, and > is a complete, antisymmetric, transitive binary relation such that,
for all r, s ∈ R, if r > 0, then r + s > s. For example: the set R of real numbers is
a linearly ordered abelian group (with the standard ordering and addition operator). So
is any subgroup of R. For any n ∈ N, the space Rn is a linearly ordered abelian group
under vector addition and the lexicographic order. In fact, Hahn’s Embedding Theorem

says that any linearly ordered abelian group can be represented as an ordered subgroup of
a lexicographically ordered vector space (possibly infinite dimensional); see §5.1 for details.

Let u : X−→R be a ‘utility function’. For any x,y ∈ X I , we have u(xi) − u(yi) = 0
for all i ∈ I \ I(x,y). Thus, if d(x,y) <∞, then

∑

i∈I

(
u(xi) − u(yi)

)
=

∑

i∈I(x,y)

(
u(xi) − u(yi)

)

is a finite sum of elements in R, and thus well-defined. One can then define a strictly
finitary preorder ( �

u
) on X I by specifying:

(
x �

u
y
)

⇐⇒

(∑

i∈I

(
u(xi) − u(yi)

)
≥ 0

)
, (2)

for all x,y ∈ X I with d(x,y) < ∞; this is the additive preorder induced by u. In in-
terpretation (i) above,

∑
i∈I (u(xi) − u(yi)) is the nondiscounted sum of future u-utility

2Thus, the elements of X are ‘extended alternatives’, which encode both the specific identity of a person
and any ethically relevant information about her physical and mental state.
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differences between x and y. In interpretation (ii), the sum
∑

i∈I (u(xi) − u(yi)) is the
difference between the expected u-utility of lottery x and that of lottery y (assuming a
uniform probability distribution on I(x,y)). In interpretation (iii), ( �

u
) is a generalized

utilitarian social welfare order. (See Example 5 below for further discussion.) However,
the next example shows that additive preorders are very versatile.

Example 1. (Leximin order) Suppose X = R. Let ZR denote the set of all functions
from R into Z, and let R := {z ∈ ZR; zr 6= 0 for only finitely many r ∈ R}. Let + be the
operation of componentwise addition on R, and let (>) be the lexicographical order on
R; then (R,+, >) is a linearly ordered abelian group. For any x ∈ R, let u(x) denote the
element z ∈ ZR such that zx = −1, while zy = 0 for all y ∈ R \ {x}; this defines a function

u : R−→R. The additive preorder ( �
u

) is the (finitary) leximin preorder on RI . ♦

A preorder (�) is separable3 if the following holds: for any J ⊂ I, with K := I \ J ,
and for every x,y,x′,y′ ∈ X I , if:

xJ = yJ , xK = x′
K,

x′
J = y′

J , and yK = y′
K,

(3)

then (x � y) ⇐⇒ (x′ � y′). Heuristically: if xJ = yJ , then the ordering between x and
y should be decided entirely by comparing xK and yK. Likewise, if x′

J = y′
J , then the

ordering between x′ and y′ should be decided entirely by comparing x′
K and y′

K. Thus, if
xK = x′

K and yK = y′
K, then the ordering between x and y should agree with the ordering

between x′ and y′.
A finitary permutation is a bijection π : I−→I such that the set I(π) := {i ∈ I;

π(i) 6= i} is finite. Let Πfin be the group of all finitary permutations of I. For any x ∈ X I

and π ∈ Πfin, we have I(x, π(x)) ⊆ I(π), so d(x, π(x)) < ∞, so x is comparable to π(x).
Say that (�) is Πfin-invariant if x ≈ π(x) for all x ∈ X I and π ∈ Πfin. In interpretation
(i) above, Πfin-invariance means there are no time preferences: the near and far future are
equally important. In interpretation (ii), Πfin-invariance means that all states of nature are
regarded as equally likely. In interpretation (iii), Πfin-invariance translates into ‘anonymity’:
all people must be treated the same by the social preference relation (�). In interpretation
(iv), Πfin-invariance implies all three of these things.

Theorem 2 Let (�) be a strictly finitary preorder on X I. Then (�) is Πfin-invariant

and separable if and only if there exists some linearly ordered abelian group (R,+, >) and

function u : X−→R such that (�) is the additive preorder defined by u.
Furthermore, R and u can be built with the following universal property: if (R′,+, >)

is another linearly ordered abelian group, and (�) is also the additive preorder defined by

some function u′ : X−→R′, then there exists some r′ ∈ R′ and some order-preserving

group homomorphism ψ : R−→R′ such that u′(x) = ψ[u(x)] + r′ for all x ∈ X .

3In Savage’s risky decision theory, this property is called the sure thing principle or Axiom P2. In
axiomatic measurement theory, it is variously called (joint) independence or single cancellation. In so-
cial choice, separability is a special case of the axiom of independence of (or elimination of) indifferent

individuals, which in turn is a special case of the Extended Pareto axiom.
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(The proof of Theorem 2 and all other results are in the Appendix.) Theorem 2 is
sufficient for variable-population social choice, or even for intertemporal (or uncertain)
choices between social alternatives which differ at only finitely many moments in time (or
states of nature). However, it is not sufficient for choice problems which implicate infinitely
many coordinates. To extend Theorem 2 to this setting, we will use nonstandard analysis.
Given any linearly ordered abelian group R, one can construct a larger linearly ordered
abelian group ∗R by supplementing R with a rich collection of ‘infinite’ and ‘infinitesimal’
elements with their own well-defined arithmetic.4 (For example, if R is the additive group
R of real numbers, then ∗R is the additive group of hyperreal numbers.) For any function

u : X−→R and any x ∈ X I , it is possible to evaluate the ‘sum’ ∗
∑

i∈I

u(xi) as an element of

∗R in a unique and well-defined way. We can then define the hyperadditive preorder (
∗�

u
)

on X I by

(
x

∗�
u

y
)

⇐⇒

(
∗
∑

i∈I

u(xi) ≥ ∗
∑

i∈I

u(yi)
)
, for all x,y ∈ X I . (4)

(
∗�

u
) is a complete, Πfin-invariant, separable preorder on X I , whose finitary part is the

additive preorder ( �
u

). Furthermore, it satisfies a weak continuity condition called g-

continuity, which will be defined in §3. In fact, a subset of these properties suffice to
characterize hyperadditive preorders:

Theorem 3 Let (�) be a preorder on X I. Then (�) is Πfin-invariant, separable and g-

continuous if and only if there exists some linearly ordered abelian group (R,+, >) and

some function u : X−→R such that (�) = (
∗�

u
).

Furthermore, R and u can be built with the same universal property as in Theorem 2.

In what sense does the function u represents individual preferences in Theorems 2 and
3? For any x ∈ X , any i ∈ I, and any z−i ∈ X I\{i}, let (x, z−i) be the element of X I

which has x in the ith coordinate and the entries of z−i in the other coordinates. Given a
separable, Πfin-invariant, finitary preorder (�) on X I , we can define a complete preorder

( �
1

) on X as follows: For any x, y ∈ X , we define x �
1
y if there exists some i ∈ I and

z−i ∈ X I\{i} such that (x, z−i) � (y, z−i). Since (�) is separable and Πfin-invariant, this

means x �
1
y if and only if (x, z−i) � (y, z−i) for all i ∈ I and z−i ∈ X I\{i}.

Proposition 4 Let (R,+, >) be a linearly ordered group, let u : X−→R, and suppose (�)
is either the additive or hyperadditive preorder on X I defined by u. Then u is a utility

function for ( �
1

). Furthermore, for any x,y ∈ X I which are (�)-comparable, we have:

(
xi

�
1
yi for all i ∈ I

)
=⇒

(
x � y

)
.(

xi
�
1
yi for all i ∈ I, and xi

≻
1
yi for some i ∈ I

)
=⇒

(
x ≻ y

)
.

(5)

4Formally, ∗R is an ultrapower of R with respect to an ultrafilter g defined over the set of all finite
subsets of I. The precise construction of ∗R is somewhat technical, and will be provided in §3 below.
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Example 5. (i) Under interpretation (i), statement (5) is sometimes called monotonicity,
while Πfin-invariance implies no time preferences. In this case, u is a single-period utility
function for the individual or population in question, and Theorem 2 is comparable to
recent characterizations of ‘intertemporal utilitarianism’ by Banerjee (2006) and Basu and
Mitra (2007) (see §5.2 for more details). Meanwhile, Theorem 3 is similar to Theorem 5 of
Fleurbaey and Michel (2003). These models all assume X = R (with standard ordering)
and I = N. Banerjee (2006) and Basu and Mitra (2007) do not utilize the ordering of N,
but Fleurbaey and Michel’s (2003) ∗R-valued SWF on RN does: it is defined in terms of
sums over the sets [1 . . . T ] for T ∈ N.

(ii) Under interpretation (ii), statement (5) is the statewise dominance axiom. In this case,
u can be seen as a Bernoulli cardinal utility function, and ∗

∑
i∈I u(xi) represents the ‘ex-

pected utility’ of the lottery x. Thus, Theorems 2 and 3 are comparable to Savage’s (1954)
model of subjective expected utility, and its more recent lexicographic extensions (see §5.1
below). Separabilility corresponds to Savage’s axiom P2 (the Sure Thing Principle), while
Πfin-invariance implies Savage’s P3 (state-independent ordinal preferences).

However, Savage (1954) also assumes that (�) is ‘nonatomic’; hence all finite subsets
of I are null. In contrast, every nonempty subset of I is non-null for ( �

u
) and (

∗�
u

).
Also, in Savage’s model, the utility function u is bounded, whereas in Theorems 2 and
3 it might not be. Finally, Savage’s model yields not only u, but a finitely additive,
R-valued ‘subjective’ probability measure on I; both depend on (�). In contrast, Πfin-
invariance acts like Laplace’s ‘Principle of insufficient reason’, and effectively determines
a finitely additive, ‘uniformly distributed’ ∗N-valued measure on I, independent of (�)
(see Example 9 below). Thus, (�) is entirely determined by u alone in Theorems 2 and
3. Indeed, any x ∈ X I induces a finitely additive ∗N-valued measure ∗ρ on X , such that
∗
∑

i∈I u(xi) =
∑

x∈X
∗ρ(x)u(x). Given this correspondence, Theorems 2 and 3 are perhaps

more comparable to the von Neumann-Morgenstern model than the Savage model.

(iii) Under interpretation (iii), statement (5) is the strong Pareto axiom, while Πfin-invariance
is anonymity. In this case, u can be seen as a measure of individual well-being, and
∗
∑

i∈I u(xi) represents the ‘aggregate utility’ of a social policy x for society. Thus, Theo-
rems 2 and 3 are comparable to Blackorby, Bossert, and Donaldson’s (1998, Theorem 2)
variable-population characterization of generalized utilitarianism, or Fleming’s (1952) and
Debreu’s (1960) fixed-population characterizations of generalized utilitarianism.5

(iv) Suppose we combine interpretations (ii) and (iii). Let P be a space of possible people,
let S be an infinite space of states of nature, and let I = P ×S. Thus, an element x ∈ X I

represents a ‘social lottery’ which assigns outcome xp,s ∈ X to person p ∈ P in state of
nature s ∈ S. For any x ∈ X I and p ∈ P, let xp := (xp,s)s∈S (an element of X S); this is
the ‘personal lottery’ which x induces for person p. Define u(xp) := ∗

∑
s∈S u(xp,s) —the

expected utility of xp. Then ∗
∑

i∈I u(xp,s) = ∗
∑

p∈P u(xp). Thus, x
∗�

u
y if and only if

∗
∑

p∈P u(xp) ≥
∗
∑

p∈P u(yp). In this setting, Theorems 2 and 3 closely resemble Harsanyi’s
(1955) social aggregation theorem. ♦

5‘Generalized’ because u might actually be a monotone increasing transformation of the ‘true’ cardinal
utility function of the individuals.
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The rest of this paper is organized as follows. Section 2 discusses when u is real-valued.
Section 3 formally defines the ultrapower group ∗R and the hyperadditive order (

∗�
u

), and
states a series of lemmas which are the main steps in the proof of Theorem 3. Section 4
examines the meaning of the three axioms invoked in Theorems 2 and 3. Section 5 briefly
reviews related literature. Finally, the Appendix contains the proofs of all results.

2 Archimedean utilities

In Theorems 2 and 3, when can the utility function u be treated as real-valued? (Equiva-
lently: when is R ⊆ R?) A linearly ordered group R is Archimedean if, for any r, s ∈ R
with r > 0, there exists some N ∈ N such that N · r ≥ s. Heuristically, this means that R
contains no ‘infinite’ or ‘infinitesimal’ elements. For example: the additive group (R,+)
(with the standard ordering) is Archimedean. But if n ≥ 2, then the lexicographically
ordered group Rn is not Archimedean. Nor is the additive group ∗R of hyperreal numbers.

Hölder’s theorem. A linearly ordered group (R,+, >) is Archimedean if and only if

there is an order-preserving group isomorphism from R into some subgroup of (R,+).

Fix o ∈ X and define o ∈ X I by oi := o for all i ∈ I. For any x ∈ X I with
d(x,o) < ∞, and any N ∈ N, define xN as follows: find disjoint subsets J1, . . . ,JN ⊂ I
with |Jn| = d(x,o) for all n ∈ [1 . . . N ], let βn : Jn−→I(x,o) be bijections for n ∈ [1 . . . N ],
and then define xN

j := xβn(j) for all n ∈ [1 . . . N ] and j ∈ Jn, whereas xN
i := o for all

i ∈ I \ J1 ⊔ · · · ⊔ JN . We say (�) is o-Archimedean if and only if: for all x,y ∈ X I with
d(x,o) <∞, d(y,o) <∞, and x ≻ o, there exists some N ∈ N such that xN � y. If (�)
is separable, then this definition is independent of the choice of reference element o ∈ X ;
in this case we simply say (�) is Archimedean.6

Corollary 6 Let (�) be a strictly finitary preorder on X I. Then (�) is Πfin-invariant,

separable, and Archimedean if and only if there exists some u : X−→R such that (�) is

the additive preorder defined by u.

Suppose x ∈ X represents a state which is ‘just barely’ better than o. Let (xN ,o) denote
an element of X I which has x in exactly N coordinates, and o in all other coordinates.
If (�) is an o-Archimedean preorder on X I , then interpretation (iii) yields what Parfit
(1984) calls the Repugnant Conclusion: for any y ∈ X I with d(y,o) < ∞, there exists
some N ∈ N such that (xN ,o) ≻ y. (See Ryberg and Tännsjö (2004) and also Blackorby,
Bossert, and Donaldson (2002, §6) and (2005) for further discussion.)

On the other hand, if u is a non-Archimedean utility function (indeed, even if u
Archimedean, but unbounded above), then there is an opposite but equally repugnant
conclusion. In this case, there exists x ∈ X with u(x) > 0, such that, for any N ∈ N,
there exists some y ∈ X such that N · u(x) < u(y), and thus, (xN ,o) ≺ (y1,o). (If u is
non-Archimedean, there exists a single y ∈ X which works for all N ∈ N). In interpretation
(iii), x represents a state of reasonable happiness or satisfaction, while y represents Nozick’s

6In different contexts, the Archimedean property has been called continuity or substitutability.
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‘utility monster’: (�) says it is better to starve N moderately happy people, just so that
one person can achieve the ‘Nirvana’ state y. Interpretation (ii) yields the St. Petersburg
Paradox: (xN ,o) represents the status quo, and (y1

N ,o) represents a gamble with a very
small ( 1

N
) probability of yielding a fabulous payoff yN , and a very large (1− 1

N
) probability

of total ruin. Interpretation (i) yields the ‘Paradox of Eternally Deferred Gratification’.
There are similar paradoxes if u is unbounded below. To avoid them, u must be both
Archimedean and bounded: for any x, o ∈ X , if u(x)−u(o) > 0, then there is some M ∈ N

such that −M [u(x) − u(o)] < u(y) − u(o) < M [u(x) − u(o)] for all y ∈ X .

In general, R will not be Archimedean; even if R is, its ultrapower ∗R certainly will
not be. The literature on non-Archimedean utilities is reviewed in §5.1 below.

3 Formal definition of (
∗�

u )

Let F be the set of all finite subsets of I. Elements of F (i.e. subsets of I) will be indicated
by caligraphic letters (J , K). Let p be the power set of F. Typical elements of p (i.e.
subsets of F) will be denoted by upper-case Fraktur letters (e.g. E, G, H). Subsets of p are
lower-case Fraktur (e.g. f, g). A free filter is a subset f ⊂ p with the following properties:

(F0) No finite subset of F is an element of f. (In particular, ∅ 6∈ f.)

(F1) If D,E ∈ f, then D ∩ E ∈ f.

(F2) For any F ∈ f and P ∈ p, if F ⊆ P, then P ∈ f.

For any P ∈ p, axioms (F0) and (F1) together imply that at most one of P or P∁ can be
in f. A free ultrafilter is filter g ⊂ p which also satisfies:

(UF) For any P ∈ p, either P ∈ g or P∁ ∈ g.

Equivalently, g a ‘maximal’ filter: it is not a proper subset of any other filter. Heuristically,
elements of g are ‘large’ collections of finite subsets of I; if G ∈ g and a certain statement
holds for all G ∈ G, then this statement holds for ‘generic’ finite subsets of I. In particular,
axioms (F0) and (UF) imply that F ∈ g. Given the Axiom of Choice, the existence of free
ultrafilters is assured by the following result:

Ultrafilter lemma. Every free filter f is contained in some free ultrafilter

Proof sketch. Consider the set of all free filters containing f; apply Zorn’s Lemma to get
a maximal element of this set. ✷

Let (R,+, >) be a linearly ordered abelian group (e.g. R = R). Let RF be the set of
all functions r : F−→R. For any r, s ∈ RF, let F(r, s) := {F ∈ F; r(F) ≥ s(F)}, and then

define r �
g
s if and only if F(r, s) ∈ g. Then ( �

g
) is a complete preorder on RF. (Proof:

( �
g

) is complete by Axiom (UF). Next, ( �
g

) is reflexive, because F ∈ g. Finally ( �
g

)
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is transitive, by Axioms (F1) and (F2).) Let ( ≈
g

) be the symmetric part of ( �
g

). Then
( ≈

g
) is an equivalence relation on RF. We define ∗R := RF/( ≈

g
). For any r ∈ RF, let ∗r

denote the equivalence class of r in ∗R.7

The preorder ( �
g

) factors to a linear order (>) on ∗R, defined by (∗r > ∗s) ⇐⇒ (r ≻
g
s)

for all ∗r, ∗s ∈ ∗R. Note that RF is an abelian group under pointwise addition. We can
define a binary operation ‘+’ on ∗R by setting ∗r + ∗s := ∗(r + s) for all ∗r, ∗s ∈ ∗R.

Lemma 7 (∗R,+, >) is a linearly ordered abelian group.8

Example 8. Suppose I is countable. Then F is also countable; hence RF can be identified
with RN, and g can be seen as an ultrafilter on N. If R = R, then ∗R = ∗R is the hyperreal

numbers (seen as a linearly ordered abelian group); see Anderson (1991). If R ⊂ R, then
∗R is some subgroup of ∗R. ♦

Fix a function r : I−→R. For any F ∈ F, define SF :=
∑

f∈F rf . This yields
a function S : F−→R. Define ∗

∑
i∈I ri to be the unique element of ∗R corresponding

to S. In particular, for any set X , any function u : X−→R and any x ∈ X I , define
∗
∑

i∈I u(xi) ∈
∗R in this way. Then define the hyperadditive preorder (

∗�
u

) by formula (4).

Example 9. (Uniform probability measure) Let Z denote the ring of integers; then R is
a Z-module. Let ∗Z denote the ultrapower of Z modulo F. Then ∗Z is an integral domain,
and ∗R is a ∗Z-module, by an argument similar to Lemma 7.

For any J ⊆ I, let 1J : I−→Z be the indicator function of J (i.e. 1J (i) := 1 if i ∈ J ,
while 1J (i) := 0 if i 6∈ J ). If J ⊆ I is finite, then ∗

∑
i∈I 1J (i) = |J |. However,

∗µ(J ) := ∗
∑

i∈I 1J (i) ∈ ∗Z is also well-defined when J is infinite, and gauges the ‘size’ of
the set J as a subset of I. In fact, ∗µ is a finitely additive, ∗Z-valued ‘probability measure’
defined on all subsets of I.

For any function r : I−→R, the ∗R-valued sum ∗
∑

i∈I r(i) can be interpreted as the
‘integral’ of r with respect to the measure ∗µ. In particular, for any set X , an element
x ∈ X I can be interpreted as an X -valued random variable over the probability space
I. The sum ∗

∑
i∈I u(xi) is the ‘expected utility’ of x. Thus, (

∗�
u

) ranks elements of X I

according to their ∗µ-expected u-utility.9 ♦

Lemma 10 (
∗�

u
) is a complete, separable preorder on X I.

7Formally, ∗R is called the ultrapower of R modulo the ultrafilter g. It is conventional to denote
ultrapower-related objects with the leading star ∗.

8In fact, Lemma 7 is a special case of  Loś’s theorem, which roughly states that any first-order properties
of any system of algebraic structures and/or N -ary relations on ∗R are ‘inherited’ by R. For example, if
R is a linearly ordered field, then ∗R will also be a linearly ordered field.

9For purely cosmetic reasons, one might want ∗µ[I] = 1, so that ∗µ seems more like a classical probability
measure. This can be achieved by embedding ∗Z in ∗Q, and replacing ∗µ with the ∗Q-valued measure ∗µ̃
defined by ∗µ̃(J ) := ∗µ(J )/∗µ(I). One can then define the integral of an R-valued function relative to ∗µ̃
by first embedding R into a lexical vector space via Hahn’s embedding theorem.
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Let Π be the group of all permutations of I. Any π ∈ Π defines a bijection π : F−→F

(because for any J ⊆ I, the image π(J ) is finite if and only if J is finite). Define

F(π) := {F ∈ F ; π(F) = F} = {F ⊆ I ; F a finite disjoint union of finite π-orbits}.

For example, if π ∈ Πfin, so that I(π) := {i ∈ I; π(i) 6= i} is finite, then any finite superset
of I(π) is an element of F(π). Let Πg := {π ∈ Π ; F(π) ∈ g}. (Geometrically speaking, the
elements of Πg are ‘measure-preserving’ transformations of I. If ∗µ is the uniform measure
from Example 9, then ∗µ[π(J )] = ∗µ[J ] for every J ⊆ I and π ∈ Πg.) Let (�) be a
preorder on X I . Say (�) is Πg-invariant if x ≈ π(x) for all x ∈ X I and π ∈ Πg.

Lemma 11 (a) Πg is a subgroup of Π.

(b) (
∗�

u
) is Πg-invariant.

Everything so far applies to any ultrafilter g ⊆ p. Now we will focus on a specific class
of ultrafilters. Let Γ ⊂ Π be a subgroup of Π. For any i ∈ I, let OΓ(i) := {γ(i); γ ∈ Γ}
be the Γ-orbit of i. The orbit partition of Γ is the collection OΓ := {OΓ(i); i ∈ I}. Say Γ
has finite orbits if OΓ ⊂ F. For any subset ∆ ⊆ Γ, let 〈∆〉 be the subgroup of Γ generated
by ∆.10 Say Γ has locally finite orbits if, for any finite ∆ ⊆ Γ, the subgroup 〈∆〉 has finite
orbits.11

Example 12. (a) Let P be any partition of I into disjoint finite subsets —i.e. P ⊂ F

and I =
⊔

P∈PP . Let Γ := {π ∈ Π; π(P) = P for all P ∈ P}; then OΓ = P, so Γ has
finite orbits.

(b) Πfin does not have finite orbits, but it does have locally finite orbits.

(c) Let I = N. Say a permutation π : N−→N is fixed step if there is some Tπ ∈ N such
that for all N ∈ N, we have π[1 . . . N Tπ] = [1 . . . N Tπ]. Let Πfs be the group of all fixed
step permutations.12 Then Πfs does not have finite orbits, but it does have locally finite
orbits. To see this, let ∆ = {δ1, . . . , δK} ⊂ Πfs, be any finite set. Let T be the lowest
common multiple of Tδ1 , . . . , TδK

. Then for any N ∈ N, we have δk[1 . . . N T ] = [1 . . . N T ]
for all k ∈ [1 . . . K]; thus, δ[1 . . . N T ] = [1 . . . N T ] for all δ ∈ 〈∆〉. Now, for any n ∈ N,
find N ∈ N with N T ≥ n. Then O〈∆〉(n) ⊆ [1 . . . N T ], so O〈∆〉(n) is finite, as desired. ♦

Fix a subgroup Γ ⊂ Π with locally finite orbits. For any finite subsets J ⊂ I and
∆ ⊆ Γ, let F∆(J ) := {F ∈ F; J ⊆ F and δ(F) = F for all δ ∈ ∆}. Then define
fΓ := {E ⊆ F; F∆(J ) ⊆ E for some finite J ⊆ I and ∆ ⊆ Γ}.

Lemma 13 (a) There exists a free ultrafilter g with fΓ ⊆ g.

10That is: 〈∆〉 := {δn1

1
· δn2

2
· · · δnk

k
; k ∈ N, δ1, . . . , δk ∈ ∆, and n1, . . . , nk ∈ Z}.

11Basu and Mitra (2006) show that a permutation group Γ ⊂ Π can be the symmetry group of some
Paretian social welfare relation on RN if and only if each single element of Γ has finite orbits. The condition
of locally finite orbits is similar, but somewhat more restrictive.

12Πfs-invariant social welfare relations on RN have been considered by Fleurbaey and Michel (2003; §4.2)
and Basu and Mitra (2006; §5).

9



(b) Πfin ∪ Γ ⊆ Πg.

Example 14. Let I = R. Any element of r ∈ R has a unique binary expansion r =∑
z∈Z

rz2
z for some sequence {rz}z∈Z taking values in {0, 1}, such that: (i) there exists some

N ∈ N such that rz = 0 for all z > N ; and (ii) for any M ∈ N, there exists some z < −M
with rz = 0.13 For all n ∈ Z, define πn : R−→R by πn(r) := (1− rn)2n +

∑
z∈Z\{n} rz2

z (i.e.

toggle the nth binary digit of r). Let Γ be the group generated by {πn}n∈Z; then Γ has
locally finite orbits (because any finite subset of Γ can only act upon a finite set of digits).

Let g be as in Lemma 13; then Γ ⊆ Πg. Let ∗µ be the ∗Z-valued measure on R defined by
g in Example 9. Then for any J ⊆ R and n ∈ Z, we have ∗µ[πn(J )] = ∗µ[J ]. This forces
∗µ to be very similar to the Lebesgue measure. For example, let ∗ǫ := ∗µ[0, 1). It is easy to

check that ∗µ
[

n
2k ,

m
2k

)
= (m−n)

2k
∗ǫ for any n,m, k ∈ Z with n < m. An interval of this kind is

called a dyadic interval. A dyadic subset is a finite disjoint union of dyadic intervals. If J
is any dyadic subset, with Lebesgue measure λ(J ), it follows that ∗µ(J ) = λ(J ) · ∗ǫ. ♦

From now on, define ∗R and (
∗�

u
) using the ultrafilter g from Lemma 13. Lemma 13(b)

implies that any Πg-invariant preorder is automatically Πfin-invariant.
If (�) is any finitary preorder on X I , then the finitary part of (�) is the strictly finitary

preorder ( �
fin

) defined by (x �
fin

y) ⇐⇒ (x � y and d(x,y) <∞).

Proposition 15 If g is defined as in Lemma 13(a), then the finitary part of (
∗�

u
) is the

additive preorder ( �
u

).

For any x, z ∈ X I and J ⊆ I, let x
J
z
I\J

denote the element w ∈ X I defined by wj := xj

for all j ∈ J and wi := zi for all i ∈ I \ J .

Let x,y ∈ X I , and let G ∈ g. Write “x �
G

y” if, for all z ∈ X I and all J ∈ G,
we have x

J
z
I\J

� y
J
z
I\J

. Write “x ≻
G

y” if, for all z ∈ X I and all J ∈ G, we have

x
J
z
I\J ≻ y

J
z
I\J

. The preorder (�) is g-continuous if, for any x,y ∈ X I :

(C1) if x �
G

y for some G ∈ g, then x � y.

(C2) if x ≻
G

y for some G ∈ g, then x ≻ y.

Lemma 16 (
∗�

u
) is g-continuous. In fact, for any x,y ∈ X I, we have

(a)
(
x

∗�
u

y
)

⇐⇒
(
x

∗�
u,G

y for some G ∈ g

)
.

(b)
(
x

∗≻
u

y
)

⇐⇒
(
x

∗≻
u,G

y for some G ∈ g
)
.

Lemma 17 Let (�) be a preorder on X I, and let u : X−→R. Then

(
( �

fin
) = ( �

u
), and (�) is g-continuous

)
⇐⇒

(
(�) = (

∗�
u

)
)
.

13Condition (i) is because r is finite. Condition (ii) ensures uniqueness by excluding binary expansions
ending in an infinite sequence of 1’s.
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The hypothesis of g-continuity seems to be necessary for the conclusion of Theorem 3.
To see this, let R = R, let st : ∗R−→R be the standardization homomorphism, and define
the relation (�) on X I by:

(
x � y

)
⇐⇒

(
st

(
1

∗|I|

∑

i∈I

u(xi)

)
≥ st

(
1

∗|I|

∑

i∈I

u(yi)

))
.

Then (�) is complete, separable, and Πg-invariant. However, (�) is a much coarser ordering

that (
∗�

u
); for example, its finitary part is trivial (so the Pareto/dominance axiom (5)

becomes vacuous).

4 About the axioms

Πfin-invariance does not require (�) to be invariant under arbitrary permutations of I; in
this sense, it lacks the full ethical force of the standard ‘anonymity’ axiom of social choice
theory. Fortunately, (

∗�
u

) is invariant under a somewhat larger group Πg of permutations,
which includes some (but not all) non-finitary ones (Lemma 11(b)). Indeed, given any
permutation group Γ ⊂ Π with locally finite orbits, one can construct g so that Γ ⊂ Πg

(Lemma 13). Of course, Πg is still only a small subgroup of the group of all permutations
of I. However, it is well-known that (�) cannot be invariant under all permutations of I
and also satisfy the Pareto/dominance axiom (5).14

Part (C1) of the ‘g-continuity’ axiom is very similar to Fleurbaey and Michel’s (2003)
‘Limit Ranking’ axiom, or part (a) of Basu and Mitra’s (2007; Axiom 4) ‘Strong consis-
tency’. Part (C2) is similar to Asheim and Tungodden’s (2004; WPC) ‘Weak Preference
Consistency’, or part (b) of Basu and Mitra’s (2007; Axiom 5) ‘Weak consistency’. One
difference is that these other axioms suppose I = N and specify a particular choice of G

(namely: G := {[1 . . . T ]; T ∈ N}), whereas g-continuity allow G to be any element of
g; in this sense, the other axioms are less demanding than g-continuity is. On the other
hand, the other axioms apply if the hypotheses of (C1) and (C2) hold for even one choice
of z ∈ X I , whereas g-continuity only applies if these hypotheses hold for all z ∈ X I ; in
this sense, the other axioms are more demanding than g-continuity is.

Separability imposes a mild restriction on attitudes towards (i) intertemporal volatility,
(ii) risk, and/or (iii) interpersonal inequality. Separability means that preferences over xK

versus yK must be independent of whether the outcomes encoded in xK and/or yK are
on average much better or much worse than the outcomes encoded in xJ and/or yJ . For
example, improving xi to yi is has the same social value, whether i ∈ I is currently the
least happy person, time period, or state of nature in x, or already the most happy person,
time period, or state of nature in x.15 This excludes ‘rank-dependent expected utility’

14Basu and Mitra (2003, 2006) and Fleurbaey and Michel (2003; Theorem 1) have analyzed this
Pareto/anonymity conflict in greater detail.

15Of course, individuals can still derive (dis)utility from memory of the past, anticipation of the future,
altruism/envy towards other people, or the contingency of fate, as long as the relevant cognitive states are
explicitly encoded in X .
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models of risky choice, and excludes ‘rank-weighted utilitarian’ social welfare orders such
as the ‘generalized Gini’ family.

We can still encode a considerable amount of volatility/risk/inequality aversion into
( �

u
) and (

∗�
u

) by defining u := f ◦w, where w : X−→R is measures the ‘true’ welfare level
of the states in X on some cardinal scale, and f : R−→R is a concave increasing function
(see Example 1). However, this merely strengthens the grip of the Repugnant Conclusion:
the more concave f is, the easier it becomes for a large population of uniformly miserable
people to dominate a smaller population of happy people. Also, in a model like Example
5(iv), u acts like a vNM utility function describing each individual’s lottery preferences.
Thus, the risk-preferences of the social preorders ( �

u
) and (

∗�
u

) must exactly match the
risk-preferences of the individuals.

5 Related literature

There are at least three ways to obtain an additive utility representation for a separable
preference order on a Cartesian product. The ‘subjective expected utility’ approach, orig-
inating with Savage (1954), begins with a separable, nonatomic preference relation on X I ,
and represents it using a utility function on X and a subjective probability measure on
I (see Example 5(ii) above). The ‘topological’ approach, originating with Debreu (1960)
and Gorman (1968), concerns a continuous preference relation on a product of (connected)
topological spaces. The ‘algebraic’ approach, exemplified by Krantz et al. (1971), concerns
a complete order relation (sometimes called an ‘additive conjoint measurement’) defined on
a product of abstract, often finite, and generally nonidentical sets, and supplements sepa-
rability with various ‘higher-order cancellation’ and ‘solvability’ axioms. Fishburn (1982),
Narens (1985) and Wakker (1989) are good references for these theories.

Since it involves no topological assumptions, Theorem 2 is closest to the algebraic tradi-
tion, but with three notable differences. First, aside from separability, Theorem 2 invokes
only one simple hypothesis: permutation invariance (which is inapplicable to many other
models in measurement/utility theory). Second, most of the existing literature invokes
an Archimedean condition to ensure a real-valued representation (with the exceptions dis-
cussed in §5.1 below). Third, virtually all of the existing literature in both the topological
and algebraic traditions concerns finite Cartesian products,16 whereas Theorem 2 is about
infinite Cartesian products. Indeed, instead of being a problem, the infinite cardinality of
I plays an essential role in the construction of the utility representation.

Theorem 3 is not purely ‘algebraic’, since it does invoke a weak continuity condition.
But this condition has nothing to do with any topology on X , and is introduced only to
deal with the infinite cardinality of I.

5.1 Non-Archimedean utility and probability

Let (N , >) be a totally ordered set. For any r ∈ RN , let N (r) := {n ∈ N ; rn 6= 0}. Let
L := {r ∈ RN ; N (r) is well-ordered by >}. Then L is a linear subspace of RN . (If N

16Wakker and Zank (1999) is an important exception.
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is well-ordered —in particular, if N is finite —then L = RN .) Define the lexicographical

order ≫ on L by setting r ≫ s if rn > sn, where n := min[N (r − s)]. Then (L,≫) is
a linearly ordered vector space, which is Archimedean if and only if N = {1}. Call L a
lexical vector space, and call a utility function u : X−→L a lexicographical utility function.

Hahn’s Embedding Theorem says that any linearly ordered abelian group can be iso-
morphically embedded as an ordered subgroup of a lexical vector space; see Gravett (1956)
for details. Similarly, Hausner and Wendel (1952) showed that any linearly ordered vector
space admits a linear embedding as an ordered subspace of a lexical vector space. Thus,
any non-Archimedean utility function can be reduced to a lexicographical utility function.

Hausner (1954) was the first to study lexicographical von Neumann-Morgenstern (vNM)
utility functions. Chipman (1960, Theorem 3.1) showed that any totally ordered set (X ,�)
could be represented by an ordinal lexicographical utility function.17 He also (1960, §3.5)
discussed how to construct lexicographical cardinal utility functions, compatible with a
certain measure of ‘preference intensity’ on (X ,�). Since then, there has been a great deal
of interest in lexicographical utility functions; Fishburn (1974; §5-§6) and (1982, Chapt.4)
gives two good surveys of the earlier literature, while Blume et al. (1989) and Halpern
(2010,§1) survey more recent developments. Fishburn and LaValle (1998) and Fishburn
(1999, §5) summarize a series of papers in which these two authors developed a theory of
finite-dimensional lexicographical vNM utilities and ‘matrix-valued’ probabilities.

Much of this literature either combines lexicographical probabilities with real-valued
utilities, or combines lexicographical utilities with real-valued (or matrix-valued) proba-
bilities. The reason is that there is no way to ‘multiply’ two elements of a lexical vector
space. (This also makes it difficult to define ‘conditional probability’ for lexicographical
probabilities.) In contrast, it is possible to multiply elements of the field ∗R, so one can
easily combine ∗R-valued utility with ∗R-valued probability. Richter (1971) was the first
to suggest the use of ∗R-valued vNM utilities and/or subjective probabilities. Skala (1974,
1975) and Narens (1974) and (1985, Chapt.4-6) developed this approach in more detail.
Blume et al. (1991a), Hammond (1994) and Halpern (2010) study both lexicographical and
∗R-valued probabilities, and conclude that the latter model subsumes the former.

Blume et al. (1991b) apply their theory of lexicographical and ∗R-valued probabilities
to explicate equilibrium refinements in game theory. This idea has since been explored by
several authors, most recently Halpern (2009). Unfortunately, aside from Fleurbaey and
Michel (2003; Theorem 5), there seems to have been no application of ∗R-valued utilities
to infinite-horizon intertemporal choice.

5.2 Intertemporal and intergenerational choice

Let I = N, and for all t ∈ N, interpret xt and u(xt) as, respectively, the social state
and social welfare at time t. Then Theorems 2 and 3 are comparable to several previous
extensions of utilitarianism to infinite-horizon intertemporal choice. For example, let ℓ∞

be the set of bounded, real-valued sequences indexed by N. Any ultrafilter G ⊂ 2N defines

17In fact, this result had earlier been proved independently in papers by Sierpiński, Cuesta, and Mendel-
son; see (Fishburn, 1974, §5) for details. Starting from Chipman’s work, Gottinger (1982) and Herden and
Mehta (2004) have developed continuous lexicographical ordinal utility functions.
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a linear map limG : ℓ∞−→R. Given any ‘utility stream’ (ut)
∞
t=1 ∈ ℓ∞, one can then

compute the limG of the sequence of time averages { 1
T

∑T

t=1 ut}
∞
T=1 as T→∞, to obtain

a sort of ‘Cesáro average’ (dependent on G). One can then linearly combine the Cesáro
averages induced by many different ultrafilters; the result is a continuous, linear function
F : ℓ∞−→R, called a medial limit, and can be used to define a (complete) social welfare
order on ℓ∞. Lauwers (1998; Proposition 3) characterizes the family of medial limits as the
unique continuous, linear, real-valued functions on ℓ∞ which satisfy a strong anonymity
condition (invariance under all ‘bounded’ permutations). However, medial limits violate the
strong Pareto condition (5), because they are insensitive to a change in any finite number
of coordinates. Indeed Lauwers (1998, Proposition 1) shows than his strong anonymity
axiom is incompatible with Pareto.

Given two ‘utility streams’ u,v ∈ RN, define u � v if there is some T ∈ N such
that

∑T

t=1 ut ≥
∑T

t=1 vt while u[T ...∞] Pareto dominates v[T ...∞]. This (incomplete) social
welfare order is characterized by Basu and Mitra (2007; Theorem 1). Banerjee (2006; §4)
characterizes an extension of the Basu-Mitra relation where u and/or v can be transformed
by some admissible permutation prior to comparison. Unlike Lauwer’s medial limit order,
the Basu-Mitra-Banerjee preorder satisfies the strong Pareto condition (5); however, it is
quite incomplete. Furthermore, both Basu and Mitra (2007) and Banerjee (2006) use an
axiom of ‘partial translation scale invariance’ to make utility cardinal and interpersonally
comparable. (Likewise, Lauwer’s (1998) characterization invokes linearity). In contrast,
Theorems 2 and 3 do not impose any scale-invariance condition on utility —indeed, the
utility function u is not even a primitive of the model, but emerges as a consequence of
the separability axiom.

The definition of (
∗�

u
) is also reminiscent of the ‘catching-up’ preorder ( �

u

c
) and

‘overtaking’ preorder ( �
u

o
) originally proposed by Atsumi (1965) and von Weizsäcker

(1965). Formally, for any x,y ∈ X I , we have x �
u

c
y iff there exists T0 ∈ N such that∑T

t=1 u(xt) ≥
∑T

t=1 u(yt)) for all T ≥ T0. Likewise, x ≈
u

o
y iff there exists T0 ∈ N such that∑T

t=1 u(xt) =
∑T

t=1 u(yt) for all T ≥ T0; meanwhile x ≻
u

o
y iff there exists T0 ∈ N such that∑T

t=1 u(xt) >
∑T

t=1 u(yt) for all T ≥ T0. Asheim and Tungodden (2004; Propositions 4 and
5) and Basu and Mitra (2007; Theorems 2 and 3) provide axiomatic characterizations.

Clearly, (x �
u

o
y) =⇒ (x �

u

c
y). However, as observed by Banerjee (2006;§5), both ( �

u

c
)

and ( �
u

o
) are rather incomplete. Furthermore, their definitions clearly depend on the

ordering of N, which is appropriate for intertemporal choice, but somewhat dubious for
interpretations (ii) and (iii). Lauwers and Vallentyne (2004; Theorem 4) generalize ( �

u

c
) to

any countable, unordered set, by defining the weak catching-up preorder: x �
u

w
y iff there

exists some F ∈ F such that
∑

j∈J u(xj) ≥
∑

j∈J u(yj) for all J ∈ F with F ⊆ J .

However ( �
u

w
) is even more incomplete than ( �

u

c
). Clearly, (x �

u

w
y) =⇒ (x

∗�
u

y). But
the ultrafilter axiom (UF) ensures that (

∗�
u

) is complete.

5.3 Ultrafilters and aggregation

The close relationship between preference aggregation and ultrafilters was first noted by
Kirman and Sondermann (1972), and thoroughly analyzed by Lauwers and Van Liedekerke
(1995). In their analysis, the elements of the ultrafilter represent decisive coalitions of
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voters; thus, Kirman and Sondermann interpret a free ultrafilter as defining an ‘invisible
dictator’. However, Fleurbaey and Michel (2003, p.792) observe that this interpretation is
inappropriate for (

∗�
u

), because the elements of g now do not represent decisive subsets of
I, but instead represent ‘large’ subsets of F (operationalizing some notion of summation
over a ‘generic finite subset’ of I).

A more serious objection to (
∗�

u
) is that, since it is defined through an ultrafilter,

it is not explicitly constructable within the Zermelo-Fraenkel (ZF) axioms. But this is
unavoidable: Zame (2007) and Lauwers (2010) have both shown that any ‘reasonable’
infinite-horizon intertemporal preference order is nonconstructable in ZF. This is closely
related to another problem. Let Γ ⊂ Π be a permutation subgroup with locally finite
orbits. Say that a free ultrafilter g is Γ-admissible if fΓ ⊆ g, as in Lemma 13(a). There
are an uncountable number of distinct Γ-admissible ultrafilters on F , and for any such
ultrafilter g, we can define an ultrapower ∗R

(g)
and a corresponding version (

∗�
u

g

) of the
hyperadditive ordering on X I . If g and h are two such ultrafilters, then (

∗�
u

g

) and (
∗�

u

h
)

will be different orderings, and will produce opposite rankings for certain pairs of elements
in X I . This makes the ordering between these elements seem somewhat arbitrary. But
there is a partial resolution of this ambiguity, which is sufficient for most practical purposes.

For any x,y ∈ X I , we define x �
u

Γ
y iff there exists some finite E ⊂ I and finite ∆ ⊆ Γ

such that
∑

j∈J u(xj) ≥
∑

j∈J u(yj) for all J ∈ F∆(E). Thus, ( �
u

w
) ⊆ ( �

u

Γ
), with

equality if Γ is trivial. If Γ ⊆ Θ ⊂ Π, then ( �
u

Γ
) ⊆ ( �

u

Θ
). Thus, the larger Γ is, the

greater the scope of the next result:

Proposition 18 Let R be a linearly ordered abelian group and let u : X−→R. For any

x,y ∈ X I, we have x �
u

Γ
y if and only if x

∗�
u

g

y for every Γ-admissible ultrafilter g on F.

It is often ZF-decidable whether x �
u

Γ
y, and in this case, we can immediately deduce

that x
∗�

u

g

y without knowing anything about the structure of g. On the other hand, if
neither x �

u

Γ
y nor x �

u

Γ
y, then the difference between x and y is so subtle that perhaps

we can treat them as ‘virtually indifferent’ for practical purposes.

Appendix: Proofs

Proof of Theorem 2. “⇐=” It is easy to check that the additive preorder defined by (2) is
Πfin-invariant and separable.

“=⇒” Fix some o ∈ X , and let (A,+) be the free abelian group generated by X \{o}.
That is, A consists of all formal Z-linear combinations of the form “J1x1 + J2x2 + · · ·+
JNxN” where N ∈ N, J1, . . . , JN ∈ Z \ {0}, and x1, . . . , xN ∈ X \ {o} are distinct.

Let B′ ⊂ A be the set of all elements where J1, . . . , JN > 0. For any such b ∈ B′, we
define wb ∈ X I as follows. Let J1,J2, . . . ,JN be disjoint subsets of I, with |Jn| = Jn

for all n ∈ [1 . . . N ]. For all n ∈ [1 . . . N ] and all j ∈ Jn, let wb
j := xn. Meanwhile, for

all i ∈ I \ J1 ⊔ · · · ⊔ JN , define wb
i := o. (Heuristic: if we regard the elements of X

as ‘goods’ and ‘bads’, then wb represents a ‘bundle’ containing Jn units of xn for each
n ∈ [1 . . . N ].) Because (�) is Πfin-invariant, it doesn’t matter how we choose the sets
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J1, . . . ,JN ; if wb and w̃b are two different elements of X I built using the above recipe,
then we automatically have wb ≈ w̃b.

Finally, if 0 denotes the identity element of A, then let B := {0} ⊔ B′, and define
w0 by setting w0

i := o for all i ∈ I. For any b, b′ ∈ B, if b = J1x1 + · · · + JNxN

and b′ = J ′
1x

′
1 + · · · + J ′

Mx
′
M , then say b and b′ are disjoint if the sets {x1, . . . , xN} and

{x′1, . . . , x
′
M} are disjoint.

Claim 1: Let a ∈ A.

(a) There exist unique disjoint a+, a− ∈ B such that a = a+ − a−.

(b) Let b, c ∈ B be any other elements such that a = b − c. Then (wb � wc) ⇐⇒
(wa+ � wa−).

Proof. (a) If a = 0, then let 0+ := 0 and 0− := 0. Then 0+, 0− ∈ B are disjoint, and
0 = 0+ − 0−.

Now suppose a 6= 0. Let a =
∑

w∈W

Aww, where W ⊆ X is a finite subset and

Aw ∈ Z \ {0} for all w ∈ W. Then W := W− ⊔W+, where W− := {w ∈ W; Aw < 0}

and W+ := {w ∈ W; Aw > 0}. Let a+ :=
∑

w∈W+

Aww and a− :=
∑

w∈W−

(−Aw)w. (If

W+ = ∅, then a+ := 0. If W− = ∅, then a− := 0.) Then a+, a− ∈ B are disjoint and
a = a+ − a−.

(b) Suppose b :=
∑

y∈Y

Byy and c :=
∑

z∈Z

Czz, for some finite subsets Y ,Z ⊆ X and coeffi-

cients By ∈ N for all y ∈ Y and Cz ∈ N for all z ∈ Z. If b− c = a, then we must have
W ⊆ Y ∪ Z, Y \ Z ⊆ W+, and Z \ Y ⊆ W−. Furthermore:

• By = Ay for all y ∈ Y \ Z.

• Cz = −Az for all z ∈ Z \ Y.

• Bw − Cw = Aw for all w ∈ Y ∩ Z ∩W.

• Bx = Cx for all x ∈ (Y ∩ Z) \W .

Let J := max ({By; y ∈ Y} ∪ {Cz; z ∈ Z}). For all x ∈ Y ∪ Z, let Jx ⊂ I be a subset
of cardinality J , and suppose all these sets are disjoint. Because (�) is Πfin-invariant,
we can permute the coordinates of wb and/or wc each in any desired finitary way
without changing their (�)-ordering. Likewise, we can finitarily permute wa+ and/or
wa− without changing their (�)-ordering. Thus, without loss of generality, we can
suppose:

• wa+ assigns the value w to exactly Aw coordinates in Jw, for each w ∈ W+.

• wa− assigns the value w to exactly −Aw coordinates in Jw, for each w ∈ W−.

• wb assigns the value y to exactly By coordinates in Jy, for each y ∈ Y .

• wc assigns the value z to exactly Cz coordinates in Jz, for each z ∈ Z.

We describe these as the ‘active’ coordinates. In all four cases, we assign all other
(‘inactive’) coordinates the value o. We can further assume that:
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1. For all y ∈ Y \ Z, wa+ and wb involve the same By = Ay active coordinates.

2. For all z ∈ Z \ Y, wa− and wc involve the same Cz = −Az active coordinates.

3. For all x ∈ (Y ∩ Z) \ W , wb and wc involve the same set Ix ⊆ Jx of Bx = Cx

active coordinates.

4. For all w ∈ Y ∩ Z ∩W+, the set of active coordinates in wb is the disjoint union
of the active coordinates of wa+ and wc. In this case, let Iw ⊆ Jw be the active
coordinates of wc.

5. For all w ∈ Y ∩ Z ∩W−, the set of active coordinates in wc is the disjoint union
of the active coordinates of wa− and wb. In this case, let Iw ⊆ Jw be the active
coordinates of wb.

Now suppose wb � wc. We define

J :=
⊔

x∈(Y∩Z)\W

Ix ⊔
⊔

w∈Y∩Z∩W+

Iw ⊔
⊔

w∈Y∩Z∩W−

Iw.

Then wb
J = wc

J , by assumptions 3, 4 and 5. Meanwhile w
a+

J = oJ = w
a−

J , by
assumptions 4 and 5. On the other hand, if K := I \ J , then we have wb

K = w
a+

K

(by assumptions 1, 4, and 5) and wc
K = w

a−

K (by assumptions 2, 4, and 5). Thus, the
separability of (�) implies that (wb � wc) ⇐⇒ (wa+ � wa−), as desired. ✸ Claim 1

Let C+ := {a ∈ A; wa+ ≻ wa−}, C− := {a ∈ A; wa+ ≺ wa−}, and C0 := {a ∈ A;
wa+ ≈ wa−}. Then A = C− ⊔ C0 ⊔ C+. Let C0+ := C0 ⊔ C+ and C0− := C0 ⊔ C−.

Claim 2: Let b, c ∈ A.

(a) If b, c ∈ C0+, then b+ c ∈ C0+. If also b ∈ C+ or c ∈ C+ then b+ c ∈ C+.

(b) If b, c ∈ C0−, then b+ c ∈ C0−. If also b ∈ C− or c ∈ C− then b+ c ∈ C−.

(c) b ∈ C0+ if and only if −b ∈ C0−.

(d) C0 is a subgroup of A.

Proof. (a) Claim 1(a) says that b = b+ − b− and c = c+ − c− for some disjoint
b+, b−, c

+, c− ∈ B. Clearly, b+ c = (b+ + c+)− (b− + c−), and (b+ + c+) and (b− + c−)
are also elements of B.

Define J +
b := I(wb+ ,o), J −

b := I(wb− ,o), J +
c := I(wc+ ,o), and J −

c := I(wc− ,o).
By Πfin-invariance, we can assume without loss of generality that:

• J +
b , J −

b , J +
c , and J −

c are disjoint.

• I(wb++c+ ,o) = J +
b ⊔ J +

c . Furthermore, w
b++c+

J+
b

= w
b+

J+
b

and w
b++c+

J+
c

= w
c+

J+
c

.

• I(wb−+c− ,o) = J −
b ⊔ J −

c . Furthermore, w
b−+c−

J−
b

= w
b−

J−
b

, and w
b−+c−

J−
c

= w
c−

J−
c

.
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Let J := I \ (J +
b ⊔ J −

b ⊔ J +
c ⊔ J −

c ). Then we can indicate the three assumptions
above with the following equations:

wb+ = (w
b+

J+
b

oJ−
b

oJ+
c

oJ−
c

oJ );

wb− = (oJ+
b

w
b−

J−
b

oJ+
c

oJ−
c

oJ );

wc+ = (oJ+
b

oJ−
b

w
c+

J+
c

oJ−
c

oJ );

wc− = (oJ+
b

oJ−
b

oJ+
c

w
c−

J−
c

oJ );

wb++c+ = (w
b+

J+
b

oJ−
b

w
c+

J+
c

oJ−
c

oJ );

and wb−+c− = (oJ+
b

w
b−

J−
b

oJ+
c

w
c−

J−
c

oJ ).

(6)

Now, b ∈ C0+, so wb+ � wb− . Applying separability in the J +
c coordinates to the first

two equations of (6), we get

(w
b+

J+
b

,oJ−
b
,w

c+

J+
c
,oJ−

c
,oJ ) � (oJ+

b
,w

b−

J−
b

,w
c+

J+
c
,oJ−

c
,oJ ). (7)

Also, c ∈ C0+, so wc+ � wc− . Applying separability in the J −
b coordinates to the

third and fourth equations of (6), we get

(oJ+
b
,w

b−

J−
b

,w
c+

J+
c
,oJ+

c −,oJ ) � (oJ+
b
,w

b−

J−
b

,oJ+
c
,w

c−

J+
c −
,oJ ). (8)

Combining equations (7) and (8) via transitivity, we get

(w
b+

J+
b

,oJ−
b
,w

c+

J+
c
,oJ−

c
,oJ ) � (oJ+

b
,w

b−

J−
b

,oJ+
c
,w

c−

J+
c −
,oJ ). (9)

Now, matching the two sides of equation (9) with the last two equations in (6), we
get wb++c+ � wb−+c− . But b + c = (b+ + c+) − (b− + c−). Thus, Claim 1(b) implies
that b+ c ∈ C0+.

If b ∈ C+, then wb+ ≻ wb− , which makes equation (7) strict, which makes equation
(9) strict, which means that wb++c+ ≻ wb−+c− , and hence b + c ∈ C+. Likewise, if
c ∈ C+, then equations (8) and (9) become strict, so that b+ c ∈ C+.

(b) Similar to (a).

(c) Let b ∈ C0+, and write b = b+ − b−. If c = −b, then c = b− − b+, and these elements
are disjoint, so the uniqueness part of Claim 1(a) implies that c+ = b− and c− = b+.
We have wb+ � wb− (because b ∈ C0+); thus, wc− � wc+ , so c ∈ C0−.

By identical argument, if −b ∈ C0−, then b ∈ C0+.

(d) First note that (a) and (b) together imply that C0 is closed under addition, and (c)
implies that C0 is closed under inverses. Finally, we have 0 ∈ C0, because 0+ = 0− = 0,
so that w0− = w0+ = w0 = o. ✸ Claim 2

Define R := A/C0; then R is an abelian group. Let φ : A−→R be the quotient map.
Then define R+ := φ(C+) and R− := φ(C−).

Claim 3: (a) For all nonzero r ∈ R, either r ∈ R+ or −r ∈ R+, but not both.

(b) For all r, s ∈ R+, we have (r + s) ∈ R+.
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Proof. Mapping Claim 2(a) through φ immediately yields (b).

To check (a), note that A = C− ⊔ C0 ⊔ C+; thus, R = φ(C−) ∪ φ(C0) ∪ φ(C+) =
R− ∪ {0} ∪ R+. Thus, any nonzero element of R is either in R+ or R−.

It remains only to show that R+ and R− are disjoint. By contradiction, suppose
r ∈ R+ ∩R−. Find b ∈ C+ and c ∈ C− such that φ(b) = φ(c) = r. Claim 2(c) implies
that −c ∈ C+. Thus, Claim 2(a) yields b−c ∈ C+. But φ(b−c) = φ(b)−φ(c) = r−r = 0,
so b− c ∈ C0. Contradiction. ✸ Claim 3

Now define a binary relation (>) on R by setting r > s if and only if r− s ∈ R+. Claim
3(a) implies that (>) is complete and antisymmetric. Claim 3(b) implies that (>) is
transitive. Thus (>) is a total order relation.

Finally, define u : X−→R by u(x) := φ(1 ·x) (where 1 ·x denotes an element of A). It
remains to show that (�) satisfies statement (2). Let x,y ∈ X I , with d(x,y) <∞. Let
K := I(x,y) and J := I \K, and define x′,y′ ∈ X I by setting x′

K := xK and y′
K := yK,

while x′j = y′j = o for all j ∈ J .

Let x1, . . . , xN be the distinct elements of X \ {o} which occur in x′, and for each
n ∈ [1 . . . N ], let Jn ∈ N be the number of times we see xn. If a := J1x1 + · · · JNxN ∈ B,
then there exists some π ∈ Πfin such that π(x′) = wa; thus x′ ≈ wa by Πfin-invariance.

Likewise, let y1, . . . , yM be the distinct elements of X \ {o} which occur in y′, and
for each m ∈ [1 . . .M ], let Km ∈ N be the number of times we see ym. If b := K1y1 +
· · ·KMyM ∈ B, then there exists some τ ∈ Πfin such that τ(y′) = wb; thus y′ ≈ wb by
Πfin-invariance. Now we have:

(
x � y

)
⇐

(∗)
⇒

(
x′ � y′

)
⇐

(†)
⇒

(
wa � wb

)
⇐

(⋄)
⇒

(
a− b ∈ C0+

)

⇐
(@)
⇒

(
φ(a− b) ∈ R+ ⊔ {0}

)
⇐

(‡)
⇒

(
φ(a− b) ≥ 0

)
. (10)

(∗) is by separability, because x,y,x′,y′ satisfy the separability conditions (3) by con-
struction. Next, (†) is because x′ ≈ wa and y′ ≈ wb. Finally, (⋄) is by Claim 1(b) and
the definition of C0+, (@) is by definition of R+, and (‡) is by definition of (>). Now,

φ(a− b) = φ(J1x1 + · · · JNxN) − φ(K1y1 + · · ·KMyM)
(∗)

N∑

n=1

Jn u(xn) −
M∑

m=1

Km u(ym)

=
∑

i∈I(x,y)

u(xi) −
∑

i∈I(x,y)

u(yi) =
∑

i∈I

(
u(xi) − u(yi)

)
. (11)

Here (∗) is because φ(1 · xn) = u(xn) and φ(1 · ym) = u(ym). Combining statements (10)
and (11) yields (2). Thus, (�) is the additive preorder on X I defined by u.

Universal property. Let (R′,+, >) be another linearly ordered abelian group, and let
u′ : X−→R′ be some function such that (�) is also the additive preorder defined by u′.
Let r′ := u′(o), and define u′′ : X−→R′ by u′′(x) := u′(x)− r′. Thus u′′(o) = 0, and (�)
is also the additive preorder defined by u′′.
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φ

γ

ψ
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Figure 1: A commuting diagram illustrating the proof of the universal property in Theorem 2. Here

i represents an inclusion map (regard X as a subset of A in the obvious way) and 0 represents a zero

homomorphism.

Define γ : A−→R′ by setting γ(
∑

w∈W Aw w) =
∑

w∈W Aw u
′′(w) for any finite W ⊆

X \{o} and coefficients {Aw}w∈W ⊆ Z. Equivalently, γ(a) :=
∑

I

(
u′′(wa+) − u′′(wa−)

)

for all a ∈ A. This is automatically a group homomorphism, because A is the free abelian
group generated by X \ {o}.

Claim 4: C0 ⊆ ker(γ).

Proof. If a ∈ C0, then wa+ ≈ wa−. Thus,

γ(a) :=
∑

I

(
u′′(wa+) − u′′(wa−)

)
(∗)

0.

Thus, a ∈ ker(γ), as desired. Here (∗) is by eqn.(2), because wa+ ≈ wa−, and (�) is
the additive preorder defined by u′′. ✸ Claim 4

Claim 4 means that γ factors through φ to yield a homomorphism ψ : R−→R′ such that
ψ ◦ φ = γ. (See Figure 1.)

Claim 5: u′′ = ψ ◦ u.

Proof. Let x ∈ X . Let a = 1x (an element of A). Then u′′(x) = γ(a) = ψ ◦ φ(a) =
ψ(u(x)). ✸ Claim 5

It remains only to show that ψ is order-preserving. Let r ∈ R; then r = φ(a) for some
a ∈ A.

(
r ≥ 0

)
⇐⇒

(
a ∈ C0+

)
⇐⇒

(
wa+ � wa−

)
⇐

(∗)
⇒

(∑

I

(
u′′(wa+) − u′′(wa−)

)
≥ 0
)

⇐
(†)
⇒

(
γ(a) ≥ 0

)
⇐

(⋄)
⇒
(
ψ(r) ≥ 0

)
,
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as desired. Here, (∗) is by eqn.(2), because (�) is the additive preorder defined by u′′.
Next, (†) is by definition of γ, and (⋄) is because ψ ◦ φ = γ and φ(a) = r. ✷

Proof of Corollary 6. Let (R,+, >) be a linearly ordered abelian group, let u : X−→R,
and let ( �

u
) be the additive preorder defined by (2). Assume without loss of generality

that the image set u(X ) generates R (otherwise replace R with the subgroup generated
by u(X ).)

Claim 1: ( �
u

) is Archimedean if and only if R is Archimedean.

Proof. Let x,y ∈ X I , with d(x,o) <∞ and d(y,o) <∞. Suppose

r =
∑

i∈I

(
u(xi) − u(o)

)
and s =

∑

i∈I

(
u(yi) − u(o)

)
. (12)

For any N ∈ N, we have

∑

i∈I

(
u(xN

i ) − u(yi)
)

= N ·
∑

i∈I

(
u(xi) − u(o)

)
−
∑

i∈I

(
u(yi) − u(o)

)
= N · r−s.

Thus, xN ≻ y if and only if N · r − s > 0.

“⇐=” If x ≻ o, then r > 0. Since R is Archimedean, there exists N ∈ N such that
N · r > s, and thus, xN ≻ y.

“=⇒” For any r, s ∈ R, we can construct some x,y ∈ X I satisfying (12) (because
u(X ) generates R by hypothesis). Since (�) is Archimedean, there exists N ∈ N such
that xN ≻ y and thus, N · r > s. ✸ Claim 1

Now combining Theorem 2, Hölder’s Theorem, and Claim 1 yields the result. ✷

We will now prove the results of §3, culminating in the proof of Theorem 3. First we
define some convenient notation. For any x ∈ X I and any function u : X−→R, we define
∗
∑

I
u(x) := ∗

∑

i∈I

u(xi). Also, for any F ∈ F, define
∑

F u(x) :=
∑

f∈F

u(xf ).

Proof of Lemma 7. Let 0F be the constant 0 element of RF, and define Z := {r ∈ RF;
r ≈

g
0F};

Claim 1: Z is a subgroup in RF.

Proof. For any r ∈ RF, let O(r) := {F ∈ F; r(F) = 0}. Then r ∈ Z if and only if
O(r) ∈ g. But, for any r, s ∈ RF, we have O(r− s) ⊇ O(r)∩O(s); thus, if r ∈ Z and
s ∈ Z, then axioms (F1) and (F2) imply r − s ∈ Z. ✸ Claim 1

For any r, s ∈ RF, it is easy to check that r ≈
g
s if and only if (r − s) ∈ Z. Thus, ∗R

is just the quotient group RF/Z. The relation (>) defines a linear order on ∗R. ✷
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Proof of Lemma 10. Definition (4) says that the function (x 7→ ∗
∑

I
u(x)) is a utility

function for the preorder (
∗�

u
). The value of ∗

∑
I
u(x) is well-defined for all x, and the

∗R is totally ordered, so (
∗�

u
) is a complete preorder on X I .

Separable. Let J ⊂ I and let K := I \ J . Suppose x,y,x′,y′ ∈ X I satisfy the
separability conditions (3). We must show that (x

∗�
u

y) ⇔ (x′ ∗�
u

y′).

Define F(x,y) := {F ∈ F;
∑

F u(x) ≥
∑

F u(y)}. Then (∗
∑

I
u(x) ≥ ∗

∑
I
u(y)) ⇔

(F(x,y) ∈ g) and (∗
∑

I
u(x′) ≥ ∗

∑
I
u(y′)) ⇔ (F(x′,y′) ∈ g). Thus, it suffices to show

that (F(x,y) ∈ g) ⇔ (F(x′,y′) ∈ g). In fact, we will show that F(x′,y′) = F(x,y).

For any F ∈ F, the equations (3) imply:

(a)
∑

F∩J u(x) =
∑

F∩J u(y), (b)
∑

F∩K u(x) =
∑

F∩K u(x′),
(c)

∑
F∩J u(x′) =

∑
F∩J u(y′), and (d)

∑
F∩K u(y) =

∑
F∩K u(y′).

Furthermore, F = (F ∩ J ) ⊔ (F ∩ K) (because I := J ⊔ K); thus

(e)
∑

F u(x) =
∑

F∩J u(x) +
∑

F∩K u(x),
∑

F u(y) =
∑

F∩J u(y) +
∑

F∩K u(y);
(f)

∑
F u(x′) =

∑
F∩J u(x′) +

∑
F∩K u(x′),

∑
F u(y′) =

∑
F∩J u(y′) +

∑
F∩K u(y′).

Thus, for all F ∈ F, we have:

(
F ∈ F(x,y)

)
⇐⇒

(∑
F u(x) ≥

∑
F u(y)

)
⇐

(∗)
⇒
(∑

F∩K u(x) ≥
∑

F∩K u(y)
)

⇐
(†)
⇒

(∑
F∩K u(x′) ≥

∑
F∩K u(y′)

)
⇐

(⋄)
⇒
(∑

F u(x′) ≥
∑

F u(y′)
)

⇐⇒
(
F ∈ F(x′,y′)

)
.

Thus, F(x′,y′) = F(x,y). Here, (∗) is by equations (a) and (e); (†) is by equations (b)
and (d); and (⋄) is by equations (c) and (f). ✷

Proof of Lemma 11. (a) If ǫ ∈ Π is the identity permutation, then clearly F(ǫ) = F ∈ g.
Also, for any π ∈ Π, it is clear that F(π−1) = F(π), so π ∈ Πg if and only if π−1 ∈ Πg.

Finally, let π1, π2 ∈ Πg. Then F(π1 ◦ π2) ⊇ F(π1) ∩ F(π2). But F(π1) ∩ F(π2) ∈ g by
Axiom (F1); thus, F(π1 ◦ π2) ∈ g by (F2); thus, π1 ◦ π2 ∈ Πg.

(b) Let x ∈ X I and π ∈ Πg. Then for every F ∈ F, we have
∑

F u(x) =
∑

π(F) u[π(x)].

But if F ∈ F(π), then π(F) = F , so we get
∑

F u(x) =
∑

F u[π(x)]. If F(π) ∈ g, then
this implies that ∗

∑
I
u(x) = ∗

∑
I
u[π(x)]; thus, x

∗≈
u
π(x). ✷

Proof of Lemma 13. (a) Recall that fΓ := {E ⊆ F; F∆(J ) ⊆ E for some finite J ⊂ I
and ∆ ⊆ Γ}.

Claim 1: f is a free filter.
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Proof. We must check axioms (F0)-(F2).

(F0) For any finite subset ∆ ⊆ Γ, let O∆ be the orbit partition generated by 〈∆〉. Then
O∆ has an infinite number of elements, because I is infinite, whereas each element of
O∆ is a finite subset (because Γ has locally finite orbits).

For any finite subset J ⊆ I let O∆(J ) := {O; O ∈ O∆ and J ∩ O 6= ∅};
then O∆(J ) is finite, and F∆(J ) := {

⊔
P∈PP ; P ⊆ O∆ any finite subset such that

O∆(J ) ⊆ P}. Thus F∆(J ) is infinite.

Thus, if E ⊆ F is finite, then we cannot have F∆(J ) ⊆ E for any finite subsets
J ⊆ I and ∆ ⊆ Γ; thus, E 6∈ f.

(F1) Let D,E ∈ f. Then there exist finite subsets J ,K ⊂ I and ∆,E ⊂ Γ such that
F∆(J ) ⊆ D and FE(K) ⊆ E. Thus, J ∪ K and ∆ ∪ E are also finite, and we have
F∆∪E(J ∪ K) = F∆(J ) ∩ FE(K) ⊆ D ∩ E. Thus, D ∩ E ∈ f also.

(F2) Let D ∈ f; then F∆(J ) ⊆ D for some finite subsets J ⊂ I and ∆ ⊆ Γ. Thus, for any
E ⊆ F, if D ⊆ E, then F∆(J ) ⊆ E also, so E ∈ f. ✸ Claim 1

Now apply the Ultrafilter Lemma to obtain some ultrafilter g which contains fΓ.

(b) Let π ∈ Πfin; then I(π) is finite. Thus, for any finite subset ∆ ⊆ Γ, we have F∆[I(π)] ∈
fΓ ⊆ g. But F∆[I(π)] ⊆ F(π); thus, axiom (F2) implies F(π) ∈ g, so π ∈ Πg.

Now let γ ∈ Γ, and fix a finite J ⊆ I. If F ∈ F{γ}(J ), then γ(F) = F , so F ∈ F(γ).
Thus, F{γ}(J ) ⊆ F(γ), so F(γ) ∈ fΓ, and thus F(γ) ∈ g. Thus, γ ∈ Πg. ✷

Proof of Proposition 15. Let x,y ∈ X I with d(x,y) < ∞. The set I(x,y) is finite, and
for any J ∈ F[I(x,y)], we have:

∑

J

u(x) −
∑

J

u(y) =
∑

j∈J

u(xj) −
∑

j∈J

u(yj) =
∑

i∈I(x,y)

u(xi) −
∑

i∈I(x,y)

u(yi),

because xj = yj for all j ∈ J \ I(x,y).

If x �
u

y, then
∑

i∈I(x,y)

u(xi) ≥
∑

i∈I(x,y)

u(yi); thus,
∑

J u(x) ≥
∑

J u(y) for all J ∈

F[I(x,y)]. But F[I(x,y)] ∈ fΓ ⊆ g; thus, ∗
∑

I
u(x) ≥ ∗

∑
I
u(y). Thus x

∗�
u

y.

Likewise, if x ≻
u

y, then
∑

i∈I(x,y)

u(xi) >
∑

i∈I(x,y)

u(yi); thus,
∑

J u(x) >
∑

J u(y) for

all J ∈ F[I(x,y)] ∈ g; thus, ∗
∑

I
u(x) > ∗

∑
I
u(y). Thus x

∗≻
u

y. ✷

Proof of Lemma 16.

Claim 1: Let G ∈ g.

(a) x
∗�
u,G

y if and only if
∑

J u(x) ≥
∑

J u(y) for all J ∈ G.
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(b) x
∗≻
u,G

y if and only if
∑

J u(x) >
∑

J u(y) for all J ∈ G.

Proof. Fix J ∈ G and z ∈ X I , and let x′ := x
J
z
I\J

and y′ := y
J
z
I\J

. Then I(x′,y′) ⊆

J , so d(x′,y′) < ∞ (because J is finite). Thus, the ( �
u

)-order of x′ and y′ is
well-defined, and Proposition 15 says that

(
x′ �

u
y′
)

⇐⇒
(
x′ ∗�

u
y′
)

and
(
x′ ≻

u
y′
)

⇐⇒
(
x′ ∗≻

u
y′
)
. (13)

Furthermore,
∑

i∈I

(
u(x′i) − u(y′i)

)
=

∑

J

u(x) −
∑

J

u(y). (14)

(a) “=⇒” Suppose x
∗�
u,G

y. Then for any J ∈ G and z ∈ X I , if x′ and y′ are defined as

above, then x′ ∗�
u

y′. Thus, statement (13) says that x′ �
u

y′, so
∑

i∈I

(
u(x′i) − u(y′i)

)
≥

0. But then statement (14) implies that
∑

J u(x) ≥
∑

J u(y).

“⇐=” Fix z ∈ X I and J ∈ G. If x′ and y′ are defined as above, then statement

(14) implies that
∑

i∈I

(
u(x′i) − u(y′i)

)
≥ 0, so x′ �

u
y′, so statement (13) says x′ ∗�

u
y′.

This holds for all J ∈ G and z ∈ X I ; thus, x
∗�
u,G

y.

(b) The proof is similar to (a); change “≥” to “>” and “�” to “≻” everywhere. ✸ Claim 1

(a) “=⇒” Suppose x
∗�

u
y. Thus, if G := {F ∈ F;

∑
F u(x) ≥

∑
F u(y)}, then G ∈ g. By

definition,
∑

J u(x) ≥
∑

J u(y) for all J ∈ G. Thus, Claim 1(a) says that x
∗�
u,G

y.

“⇐=” If x
∗�
u,G

y; then Claim 1(a) says that
∑

J u(x) ≥
∑

J u(y) for all J ∈ G. But

G ∈ g, so this means that ∗
∑

I u(x) ≥ ∗
∑

I u(y), which means x
∗�

u
y.

(b) The proof is the same as (a), but using Claim 1(b) instead of Claim 1(a). ✷

Proof of Lemma 17. “⇐=” follows from Proposition 15 and Lemma 16.

“=⇒” Let x,y ∈ X I , and suppose x
∗�

u
y. Then Lemma 16(a) yields some G ∈ g such

that, for all z ∈ X I and J ∈ G, we have x
J
z
I\J

∗�
u

y
J
z
I\J

, and thus, x
J
z
I\J

�
u

y
J
z
I\J

,

by Proposition 15. But then x
J
z
I\J

�
fin

y
J
z
I\J

, because ( �
fin

) = ( �
u

) by hypothesis.

This holds for all z ∈ X I and J ∈ G; thus, (C1) forces x � y, because (�) is
g-continuous. Thus, we have (x

∗�
u

y) =⇒ (x � y).

Likewise, if x
∗≻

u
y, then Lemma 16(b) and (C2) imply that x ≻ y.

Since (
∗�

u
) is a complete preorder on X I , we conclude that (�) = (

∗�
u

). ✷

24



Proof of Theorem 3. “⇐=” follows from Lemmas 10, 11(b), 13(b), and 16.

“=⇒” Let ( �
fin

) be the finitary part of (�). Then ( �
fin

) is Πfin-invariant and separable,
so Theorem 2 yields a linearly ordered abelian group (R,+, >) and u : X−→R such that

( �
fin

) = ( �
u

). Then Lemma 17 implies that (�) = (
∗�

u
).

The existence of an R and u with the universal property follows from the construction
in Theorem 2. ✷

Proof of Proposition 18. Fix x,y ∈ X I . Let Fx := {F ∈ F;
∑

F u(x) ≥
∑

F u(y)}, while
Fy := F∁

x
= {F ∈ F;

∑
F u(x) <

∑
F u(y)}.

“=⇒” If x �
u

Γ
y, then there exists some J ∈ F and finite ∆ ⊂ Γ such that

∑

F

u(x) ≥

∑

F

u(y) for all F ∈ F∆(J ). Thus, F∆(J ) ⊆ Fx. But F∆(J ) ∈ g for any Γ-admissible

ultrafilter g; thus, Fx ∈ g by (F2). Thus, x
∗�

u

g

y.

“⇐=” (by contrapositive) Suppose x 6�
u

Γ
y. Then there is no J ∈ F and finite ∆ ⊆ Γ

with F∆(J ) ⊆ Fx. Thus, F∆(J ) ∩ Fy 6= ∅ for every J ∈ F and finite ∆ ⊆ Γ. Thus,

E ∩ Fy 6= ∅, for every E ∈ fΓ. (15)

Now define fyΓ := {D ⊆ F; E ∩ Fy ⊆ D for some E ∈ fΓ}.

Claim 1: (a) fyΓ is a free filter, and (b) fΓ ⊆ fyΓ.

Proof. (a) fyΓ satisfies (F1) because fΓ satisfies (F1) and (15). It satisfies (F2) by
construction. To verify (F0), it suffices to show that E ∩ Fy is infinite for any E ∈ fΓ.

By contradiction, suppose E∩Fy is finite. Each element of E∩Fy is a finite subset
of I. Let F :=

⋃
{E ; E ∈ E ∩ Fy}; then F is also finite, hence, a proper subset of

I. Let D ⊂ I be a finite subset disjoint from F ; then no element of E ∩ Fy contains
D; thus, for any ∆ ⊂ Γ, we have F∆(D) ∩ E ∩ Fy = ∅. But F∆(D) ∩ E ∈ fΓ by (F2),
because F∆(D) ∈ fΓ by definition. This contradicts (15). By contradiction, E ∩ Fy

must be infinite.

(b) Let E ∈ fΓ. Then E ⊇ E ∩ Fy; hence E ∈ fyΓ by definition. ✸ Claim 1

Claim 1(a) and the Ultrafilter Lemma says there exists a free ultrafilter gy containing
fyΓ. Claim 1(b) implies that gy also contains fΓ, so it is Γ-admissible.

Claim 2: x
∗≺

u

gy

y.

Proof. Let E ∈ fΓ be arbitrary. Then E ∩ Fy ∈ fyΓ by definition, and E ∩ Fy ⊆ Fy, so

Fy ∈ fyΓ by (F2), so Fy ∈ gy, which means x
∗≺

u

gy

y. ✸ Claim 2

Thus, it is false that x
∗�

u

g

y for every Γ-admissible ultrafilter g on F. ✷
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