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Abstract

There has been much reported on decisions from experience, also re-

ferred to as decisions in a complete ignorance fashion. This note lays out

a Bayesian decision-theoretical framework that provides a computable ac-

count for decisions from experience. To make the framework more tractable,

this note sets up and examines decisions in a incomplete ignorance fashion.

The current discussion asserts that well-known behavioural effects, such as

the hot stove effect, and the Bayesian framework may lead to different pre-

dictions.
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1 Introduction

The Bayesian decision-theoretical framework is useful to examine behavioural

tendencies in decisions under ambiguity. A concept of the Bayesian framework

is one of normative framework that are ubiquitously used by behaviourists to

provide a computable account for behavioural tendencies in “decisions from

experience”. It asserts that the Bayesian decision maker’s ultimate goal is to

judge the likelihood of events by updating her/his subjective probabilities in the

face of new evidence as a result of sequential search process (Fujikawa, 2007).

An area of decisions from experience (also referred to as “decisions in a com-

plete ignorance fashion”) is fast moving. Many research based on laboratory

experiments has been presented (e.g., Barron and Erev, 2003; Hertwig, Barron,

Weber, and Erev, 2004; Weber, Shafir, and Blais, 2004; Erev and Barron, 2005;

Yechiam and Busemeyer, 2006; Fujikawa, 2009; Barron and Yechiam, 2009). For

example, Table 1 shows two choice problems from Fujikawa (2009), where the

participants chose, at each period t (t = 1, 2, . . . , 400), between two unmarked

buttons that provided outcomes sampled from two distributions, “R” and “S”.

Let (v, p) denote a distribution, where the outcome v occurs with probability p

(otherwise zero). The right hand column shows the aggregated proportion of R

choices over 400 trials. The maximisation rate over the 400 trials were 0.28 in

Problem 2, for example. This result suggested that deviations from maximisa-

tion (i.e., the participants’ less selection of R) in a state of “complete ignorance”

were the consequence of the hot stove effect that could lead to a bias toward

S. The existence of the hot stove effect in decisions from experience was exam-

ined by analysing results of Fujikawa’s (2009) experiment, involving the state of

complete ignorance.

The participants did not receive prior information on payoff structure, but
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Problem R S PR

1 (4, 0.8) (3, 1) 0.48
2 (32, 0.1) (3, 1) 0.22

Table 1: Three choice problems and aggregated proportion of R choices in Fu-
jikawa (2009). The notation (v, p) denotes a prospect that provides v with prob-
ability p and 0 otherwise.

received the feedback that was limited to obtained payoffs at each round t. That

is, the experiment was run on a state of complete ignorance, where they were

disclosed neither the possible payoffs nor its likelihoods. The apparatus in this

state, however, seems to have challenging in examining the existence of the hot

stove effect in light of the Bayesian framework that combines prior information

on payoff distributions with data to obtain a posterior estimate. The participants

in Fujikawa (2009) who were in the state of complete ignorance were likely to

fail to use Bayesian framework, as they were not provided with any prior infor-

mation on the payoff distributions.

This note extends Fujikawa (2009) by laying out the Bayesian decision-theoretical

framework that accounts for decisions from experience. Instead of a state of

complete ignorance employed by Fujikawa (2009), we shall employ in this note

a state of “incomplete ignorance” in which the decision makers (DMs) can ob-

tain posterior estimates calculated by the Bayesian framework. A state of in-

complete ignorance is defined as one, where the DMs are disclosed possible

payoffs of available options, but not disclosed likelihood of the payoffs. Making

possible payoffs available to the participants could allow them to update data

through the Bayesian framework.
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2 A State of Complete Ignorance

We now define a state of complete ignorance as the state, where the DM’s prior

probability distribution (i.e., the distribution at t = 0) is uniform. A state of

complete ignorance was experimentally manipulated in previous studies on de-

cisions from experience given above. The authors used pairwise choice prob-

lems, such as the following Problem X:

Problem X. Choose between

AX: α points with probability of P∗
AX

; 0 otherwise

BX: β points with probability of P∗
BX

; 0 otherwise

We let α, β > 0, P∗
AX

, P∗
BX

∈ [0, 1], αP∗
AX

> βP∗
BX

. Typically, the DM is not pro-

vided any prior information on the payoff structure, and repeatedly asked to

make decisions, relying on the obtained feedback in the situation in the past.

Thus, it is unknown to the DM that one selection of AX (BX) yields α (β) points

with probability of P∗
AX

(P∗
BX

) and zero point with 1 − P∗
AX

(1 − P∗
BX

). It is, how-

ever, known to her that one selection of each option yields certain payoffs with

unknown probabilities. Suppose that the DM is asked to choose either AX or BX

t (0 ≤ t ≤ T) times in Problem X. Given that each of the mutually exclusive and

exhaustive outcomes x is equally likely, the prior probability distribution of AX

is

f0(x) =















1
x1+1 for 0 ≤ x ≤ x1,

0 for x < 0 or x > x1.

In case of a state of complete ignorance, x1 may largely vary among the DMs,

as they do not have any prior information on possible outcomes and probabili-

ties. For example, some participants in Fujikawa (2009) were likely to have high
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x1, while others low x1. Thus, it seems that a prior probability distribution on

AX would largely vary among the participants.

3 A State of Incomplete Ignorance

We here aim at introducing the Bayesian framework to examine behavioural

tendencies in decisions from experience. For this aim, we here present a state of

incomplete ignorance that is concerned with the situation, where the DMs have

incomplete information on a payoff structure. Let us consider the following

Problem Y:

Problem Y. Choose between

AY: γ points with probability of P∗
AY

; 0 otherwise

BY: θ points with probability of P∗
BY

; 0 otherwise

We let γ, θ > 0, P∗
AY

, P∗
BY

∈ [0, 1]. The DM makes a choice between AY and BY

at each period t (t = 1, 2, . . . , T). She is informed of possible payoffs of each

option, but not informed of corresponding probabilities. That is, she knows that

one selection of AY (BY) yields γ (θ) points with an unknown probability. Thus,

the density function of her a priori formulated beliefs is

f (x) =















0.5 if x = γ or x = 0,

0 otherwise.

A goal of Bayesian DMs is to compute a posteriori probabilities from a priori

probabilities. Since the DM does not possess the available objective prior in-

formation on P∗
AY

, she is to compute a posteriori probabilities of P∗
AY

from a priori
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probabilities of P∗
AY

, and her experienced probability Pexp. Below, we shall apply

a theoretical framework to the case of P∗
AY

, as the same argument holds for the

case of P∗
BY

. For computing the a posteriori probabilities, we consider the case of

n events: We define an event Rk (k = 1, 2, . . . , n) as an event that P∗
AY

falls within

region k ( k−1
n ≤ P∗

AY
<

k
n ) at period t. Each Rk has a probability Pt(Rk) = St(k)

n

that defines the likelihood of Rk. Each event is exclusive to the all of the other

events. Thus,

∀x ∈ 1, 2, ..., n, ∀y ∈ 1, 2, ..., n, x ̸= y : Pt(Rx ∩ Ry) = 0. (1)

Note that

Pt(
n
∪

1

Rk) =
n

∑
k=1

Pt(Rk) =
∑

n
k=1 St(k)

n
= 1 (2)

as P∗
AY

belongs to one of the regions. For example, if n = 2, there are two possible

events that are R1 (0 ≤ P∗
AY

< 0.5) and R2 (0.5 ≤ P∗
AY

< 1), and their probabili-

ties are Pt(R1) = St(1)
2 and Pt(R2) = St(2)

2 . The P∗
AY

belongs to either of the region,

so the sum of the probabilities is Pt(R1) + Pt(R2) = Pt(R1 ∪ R2) = 1. By defi-

nition, we can calculate the probability of the event Pt+1(Wt+1) at period t + 1,

where Wt+1 is an event that the highest payoff, γ, being realised at the period

t + 1. To calculate the probability Pt+1(Wt+1), we separate it to Pt+1(Wt+1|Rk)

when an event Rk occurs. From eq.(1) and eq.(2), we can calculate Pt+1(Wt+1) as

follows:

Pt+1(Wt+1) = Pt+1(Wt+1|
n
∪

1

Rk)

=
n

∑
k=1

Pt+1(Wt+1|Rk)Pt(Rk)

=
n

∑
k=1

Pt+1(Wt+1|Rk)
St(k)

n
. (3)
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Now we estimate and calculate Pt+1(Wt+1|Rk). We approximate this as fol-

lows:

Pt+1(Wt+1|Rk) =
2k − 1

2n
. (4)

Plugging this into eq.(3) gives

Pt+1(Wt+1) =
n

∑
k=1

(2k − 1)St(k)

2n2
. (5)

Having observed the result of period t + 1 sequence, the DM updates the pos-

sibility
St(k)

n of an event Rk by using the Bayesian framework. If an event Wt+1

occured, the possibility of an event Rk (i.e.,
St+1(k)

n ) is

St+1(k)

n
= Pt+1(Rk|Wt+1) =

Pt+1(Wt+1|Rk)Pt(Rk)

Pt+1(Wt+1)

=

(2k − 1)

2n

St(k)

n

∑
n
j=1

(2j − 1)St(j)

2n2

=
(2k − 1)St(k)

∑
n
j=1(2j − 1)St(j)

. (6)
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If an event Wt+1 is not realised, the possibility of an event Rk (i.e.,
St+1(k)

n ) is

St+1(k)

n
= Pt+1(Rk|Wt+1) =

Pt+1(Wt+1|Rk)Pt(Rk)

Pt+1(Wt+1)

=

(2n − 2k + 1)

2n

St(k)

n

∑
n
j=1

(2n − 2j + 1)St(j)

2n2

=
(2n − 2k + 1)St(k)

∑
n
j=1(2n − 2j + 1)St(j)

. (7)

Thus, the possibility of an event Rk (i.e.,
St+1(k)

n ) is

St+1(k)

n
=















































(2k − 1)St(k)

∑
n
j=1(2j − 1)St(j)

if Wt+1 is realised

(2n − 2k + 1)St(k)

∑
n
j=1(2n − 2j + 1)St(j)

if Wt+1 is realised.

(8)

Eq.(8) is discrete, and we apply it to continuous representations. By so doing,

we get

St+1(k) =







































































lim
n→∞

(2k − 1)St(k)

∑
n
j=1(2j − 1)St(j)

1

n

if Wt+1 is realised

lim
n→∞

(2n − 2k + 1)St(k)

∑
n
j=1(2n − 2j + 1)St(j)

1

n

if Wt+1 is realised.

(9)
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By using infinity, we assume
St(k)

n to be a continuous probability distribu-

tion. Then, we define the continuous probability density function pt(x) with the

following properties:

lim
n→∞

∫ k
n

0
pt(x)dx = lim

n→∞

k

∑
j=0

pt

(

j
n

)

n
= lim

n→∞

k

∑
j=0

St(j)

n
(10)

and

lim
n→∞

∫ 1

k
n

pt(x)dx = lim
n→∞

n

∑
j=k

pt

(

j
n

)

n
= lim

n→∞

n

∑
j=k

St(j)

n
, (11)

where k = 1, 2, . . . , n, and x is the imaginary possibility of the P∗
AY

.

Thus, Eq.(9) is

pt+1

(

k

n

)

=



















































































lim
n→∞

(2k − 1)

n
pt

( k

n

)

∑
n
j=1

(2j − 1)

n
pt

( j

n

) 1

n

if Wt+1 is realised

lim
n→∞

(2n − 2k + 1)

n
pt

( k

n

)

∑
n
j=1

(2n − 2j + 1)

n
pt

( j

n

) 1

n

if Wt+1 is realised.

(12)
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Then, we obtain

pt+1

(

k

n

)

=



































































































lim
n→∞

k

n
pt

( k

n

)

∑
n
j=1

j

n
pt

( j

n

) 1

n

if Wt+1 is realised

lim
n→∞






1 −

k

n






pt

( k

n

)

∑
n
j=1






1 −

j

n






pt

( j

n

) 1

n

if Wt+1 is realised.

(13)

From eq.(11), we have

pt+1(x) =















































xpt(x)
∫ 1

0 ypt(y)dy
if Wt+1 is realised

(1 − x)pt(x)
∫ 1

0 (1 − y)pt(y)dy
if Wt+1 is realised.

(14)

As shown in eq.(11), pt(x) is a probability density of Pt(Rk), so that

∫ 1

0
pt(x)dx = 1. (15)

Without losing much generality and accuracy, it can be said that the DMs are

updating the probability density pt(x) from experienced results. Simply put, we
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define

ft(x) =































fw(x) = x if Wt+1 is realised

fl(x) = 1 − x if Wt+1 is realised.

(16)

Eq.(14) is transformed as

pt+1(x) =
ft(x)pt(x)

∫ 1
0 ft(y)pt(y)dy

. (17)
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Eq.(17) holds true at any time period t, thus

pt+1(x) =
ft(x)pt(x)

∫ 1
0 ft(y)pt(y)dy

=

ft(x)
ft−1(x)pt−1(x)

∫ 1
0 ft−1(z)pt−1(z)dz

∫ 1
0 ft(y)

ft−1(y)pt−1(y)
∫ 1

0 ft−1(z)pt−1(z)dz
dy

=
ft(x) ft−1(x)pt−1(x)

∫ 1
0 ft(y) ft−1(y)pt−1(y)dy

=
ft(x) ft−1(x) ft−2(x)pt−2(x)

∫ 1
0 ft(y) ft−1(y) ft−2(x)pt−2(x)dy

...

=
ft(x) ft−1(x) ft−2(x) ft−3(x).... f2(x) f1(x)p1(x)

∫ 1
0 ft(y) ft−1(y) ft−2(x) ft−3(x).... f2(x) f1(x)p1(x)dy

=
p1(x) ∏

t
k=1 fk(x)

∫ 1
0 p1(y) ∏

t
k=1 fk(y)dy

. (18)

Letting r be a total number of times of the highest payoff realised, we have

t

∏
k=1

fk(x) = fw(x)r fl(x)(t−r) = x(tPexp)(1 − x)(t(1−Pexp)). (19)

Finally, we obtain

pt+1(x) =
p1(x)x(tPexp)(1 − x)(t(1−Pexp))

∫ 1
0 p1(y)y(tPexp)(1 − y)(t(1−Pexp))dy

. (20)
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Figure 1: The process of probability dencity change in case of realised Wt+1 and
Wt+1. We label the axes: P∗

AY
on x-axis and pt(x) on y-axis.

Thus, pt+1(x) only depends on Pexp (i.e., the proportion of the highest payoff

realised) at period t and initial probability density of p1(x). If we assume the

initial probability density function has the constant value as p1(x) = 1 then

eq.(20) only depends on Pexp as

pt+1(x) =
x(tPexp)(1 − x)(t(1−Pexp))

∫ 1
0 y(tPexp)(1 − y)(t(1−Pexp))dy

. (21)
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Figure 2: The temporal development of population distribution in the case of
P∗

AY
= 0.5.

4 Discussion and Concluding Remarks

Figure 1 shows a process of the earlier stage: It shows how the probability den-

sity changes as a result of an alternative case in each trial. At period t = 1, there

is no prior information on the probability of the highest payoff, so that its den-

sity is constant as p1(x) = 1. After the decision is made at t = 1, the DM will

face either of the two events in choosing an option at t = 2: (1) an event that

the highest payoff is realised (i.e., an event W2); (2) an event that the lowest pay-

off is realised (i.e., W2). If the highest payoff is realised, the probablity density

function is updated as p2(x) = 2x by the result. If, on the other hand, the lowest

payoff is realised, the probability density function is updated as p2(x) = 2 − 2x

by the result. At t = 3, the following three cases are possible: first, p3(x) = 3x2

if events W2 and W3 are realised. Second, p3(x) = 6x(1 − x) if either of the two

conditions are met: (i) a condition that W2 and W3 are realised; (ii) a condition

that W2 and W3 are realised. Third, p3(x) = 3(1 − x)2 if W2 and W3 are realised.

Figure 2 shows the earlier stage of the population histogram for the case

of P∗
AY

= 0.5. In this case, the population of the DMs are divided into two

symmetrical situations: (1) a situation, where the lucky DMs face an event W,

and (2) a situation, where the unlucky DMs face an event W. Stochastically
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Figure 3: The temporal development of population distribution in the case of
P∗

AY
= 0.1.

and approximately, the population is gathered to the center of the histogram,

predicting the probability density function as similar to Gaussian.

On the other hand, Figure 3 shows the earlier stage of the population his-

togram for the case of P∗
AY

= 0.1. In this case, the population of the DMs

are divided into the asymmetrical situation. Stochastically and approximately,

the population is gathered to Pexp = 0.1, predicting the the probability den-

sity function with its maximum value at x = 0.1. From these aspects, by using

the Bayesian framework, we can predict P∗
AY

intuitively by the mathematical

background without any previous information, and its coefficient of confidence

stochastically depends on its trial number which increases the value of it.

An attention is to be given to future laboratory experiments to show ro-

bustness of the Bayesian decision-theoretical framework developed in this note,

which could provide an alternative account for behavioural tendencies in deci-

sions from experience. For example, Fujikawa (2009) presented experiments on

decisions from experience, and discussed the existence of the hot stove effect,

the predictions of which are different from predictions implied by the Bayesian

framework. Future experimental work will help us document whether people

often make choices predicted by well-known behavioural effects (e.g., the hot

stove effect and payoff variability effect), or choices predicted by the Bayesian
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framework.
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