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Abstract

This is an introductory work to trade automatization of the futures mar-
ket, so far operated by human traders. We are not focusing on maximizing
individual profits of any trader as done in many studies, but rather we try to
build a stable electronic trading system allowing to obtain a fair price, based
on supply and demand dynamics, in order to avoid speculative bubbles and
crashes. In our setup, producers and consumers release regularly their fore-
casts of output and consumption respectively. Automated traders will use this
information to negotiate price of the underlying commodity. We suggested a
set of analytical criteria allowing to measure the efficiency of the automatic
trading strategy in respect to market stability.

1 Introduction

Since their inception in mid 1850’s in the US, futures markets had expanded and
diversified in the community of merchants, producers, farmers, refiners, speculators,
etc. This expansion was due to the great flexibility brought by the instruments
of this market in hedging prices of crops, metals, crude oil, etc [3, 4]. The basic
instrument traded in this market is a futures contract which is a binding agreement
between a seller and a buyer. This contract is related to a specific commodity (the
underlying), with specific delivery time and location. The main feature of a futures
transaction is that the price of the commodity is fixed at the present time, whereas
the effective delivery of the merchandize, from the seller to the buyer, will occur in
a future date, which could be several months or years ahead [13].

Automation in futures markets had partially started in the last two decades
by replacing pit brokers by central computers receiving orders from outside human
traders1. The computer saves the orders, sort them depending on their types (sell or
buy) and price values, performs transactions and updates traders’ positions [2, 14].
Nowadays, another step in the automation process is necessary. We suggest herein
to replace the human traders, so far operating futures market, by automated traders

1A detailed mathematical description of the futures market’s platform was provided in [9], the
market mechanism was explained as well as the evolution of traders’ positions.

1



sufficiently intelligent to react to the supply and demand (S&D) forecasts and make
price projections, then issue sale and purchase orders which are channeled to the
market platform where they are executed. We consider a market where two groups
of automated traders are involved. The first group is representing the interests of
producers looking to hedge their selling price and the second group of automatons
are working on behalf of consumers looking to hedge their buying price. This new
practice may bring more rationality to the futures market and avoid major financial
crashes and speculative bubbles due to irrational behavior of human traders [7, 11].

Several studies in the literature suggested approches based on technical anal-
ysis [6] to automate the process of trading in futures markets. These approches
assesses the price history and other indicators, like exchanged daily volumes and
open interest, in order to establish the relevant order to put in the market platform.
Shelton [12] suggested an original approach of trading futures formulated as a the-
oretical 2-person game against nature between a trader and the market; the market
was assumed to have different moods (risky, less risky, etc.), and the trader has
several strategies (takes an agressive position, less agressive, no position). Preist [8]
has suggested an agent-based technic for trading commodities via the Internet; a set
of agents, representing the participants, enter into negotiation in a series of double
auctions in order to determine the market price. A genetic approach developed in [1]
helped to clarify the link between fundamental trading and technical trading and
showed how bubbles occur. Financial crashes and bubbles were examined using the
principle of phase transition known in statistical mechanics [5].

The next section outlines the mathematical formulation of the futures market’s
mechanism designed for many producers and consumers, it shows how transactions
occur and how traders’ positions are updated. The third section introduces the
automatic trading strategy used by automatons to issue their selling and buying
orders. This strategy takes into account the stream of S&D forecasts as well as the
evolution of nominal price. The strategy was parameterized in order to facilitate
its tuning later in conjunction with the stochastic profiles of the producers and
consumers’ S&D forecasts profiles. A set of seven analytical criteria measuring
the performance of a trading strategy are provided in the fourth section. When
aggregated, these criteria provide the average performance of the strategy measured
on one set of S&D forecasts time-series; over a sample of time-series, we compute
the global performance. The fifth section illustrates our study by the mean of
two computational examples, in both cases we consider a market with 3 producers
and 4 consumers having specific S&D forecasts profiles. In the first example, we
assume a fixed trading parameters matrix, then a Matlab code plots the price pattern
resulting from our automatic trading strategy and displays the obtained average and
global performances. The second example is a simulation-based heuristic allowing
to compute the quasi-optimal parameters matrix for our trading strategy.
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2 The futures market setup

Consider a commodity which is produced by n1 producers and purchased by n2

consumers or users. The producers and consumers will use the futures market [13]
to hedge their prices for a future delivery. Each producer is represented in the futures
market platform by an automated seller designed to hedge the selling price of the
forthcoming crop of this producer. Similarly, each consumer is represented by an
automated buyer conceived to hedge the purchasing price of the commodity ahead
of its actual reception by this consumer. Herein, n = n1 +n2 automated traders are
allowed to trade. Let N1 be the set of sellers, N2 the set of buyers and N the set of
all players, given by

N1 = {1, . . . , n1}, N2 = {n1 + 1, . . . , n}, N = N1 ∪N2. (1)

The trading process evolves over discret periods tj, j = 1, . . . ,m; an initial period
t0 is added to the game, though no transaction takes place at this instant, t0 serves
only to initiate some variables. Each producer i ∈ N1 will deliver his crop at the
final instant tm, and only at this time he will know the exact value of the quantity
he will be able to deliver; that is at a prior instant tj, j = 0, . . . ,m−1, the producer
has only a forecasted value Si(tj) of his crop, Si ∈ R

+. Similarly, consumer i ∈ N2

will know the exact amount of his needs at the final time tm; before this instant, he
has only forecasted values Di(tj), j = 0, . . . ,m − 1, of his demand, Di ∈ R

+.
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Figure 1: Futures market flowchart

As illustrated by figure 1, the setup of the futures market proposed herein is
inspired partially from the setup of a real futures market where sale and purchase
orders are directed respectively to the list of selling orders LSO and buying orders
LBO.

The order of an automated seller has the following form

Ui(tj) = (ui1(tj), ui2(tj)) ≡ (selling-price , selling-quantity), i ∈ N1,
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ui1 ∈ R
+, ui2 ∈ Z

−, meaning that seller i would like to sell a maximum quantity
of |ui2(tj)| units with a minimum unit price of ui1(tj). Similarly, the order of an
automated buyer is

Ui(tj) = (ui1(tj), ui2(tj)) ≡ (buying-price , buying-quantity), i ∈ N2,

ui1 ∈ R
+, ui2 ∈ Z

+, where ui2(tj) is the maximum quantity buyer i would like to
buy and ui1(tj) is the maximum unit price he would like to pay for this quantity.

Assuming that at instant tj, the best sale order is LSO(tj, 1) = [is, js, uis1, uis2]
and the best purchase order is LBO(tj, 1) = [ib, jb, uib1, uib2], a transaction will occur
at this instant, between the seller is and buyer ib, if selling-quantity and buying-
quantity verify

uis2 6= 0 and uib2 6= 0, (2)

and the selling-price and buying-price satisfy

uis1 ≤ uib1. (3)

In this event, the transactional price and quantity will be

p(tj) = uis1 1[js≤jb] + uib1 1[js>jb], q(tj) = min{|uis2|, uib2}, (4)

where js and jb are respectively the issuing times of the seller order LSO(tj, 1) and
buyer order LBO(tj, 1); and the conditional function 1[·] defined by: 1[C] = 1 if
condition C is satisfied, otherwise 1[C] = 0.

Positions yi(tj) of traders are initiated as yi(t0) = 0, ∀ i ∈ N , then updated as
follows

yis(tj) = yis(tj−1) − q(tj), (5)

yib(tj) = yib(tj−1) + q(tj), (6)

yi(tj) = yi(tj−1), ∀ i ∈ N \ {is, ib}, (7)

for j = 1, . . . ,m. If no transaction occurs at instant tj, then we set conventionally
p(tj) = p(tj−1), q(tj) = 0 and yi(tj) = yi(tj−1), ∀ i ∈ N .

✲✲

tj1 tj2 tj3 tj4 tj5

❄

Si1

✻

Ui2

r(p,q)
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Di3

✻

Ui4

❄

Ui5 r(p,q) ❄

Si6
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Figure 2: Unfolding of events in period tj

We assume that at any period tj of the trading game, at most three elementary
events can occur in the following sequence:

4



a) firstly, one new forecast of supply (or demand) is released by a producer (or
consumer),

b) secondly, one new selling (or buying) order is issued by an automated trader,

c) thirdly, one transaction is executed.

Figure 2 illustrates 5 scenarios over 3 × 3 × 2 = 18 possible cases.

3 Automatic trading strategy

Herein we suggest a trading strategy allowing to the automated traders to operate
the futures market by issuing sale and purchase orders based on the stream of S&D
forecasts and the moves in the underlying nominal price, p

N
, which is mainly made

up of production cost augmented by a profit margin. We assume that nominal price
is the same for all producer, and it has the feature of being stable over long periods
because producers often fix their inputs’ costs ahead of the production campaign.

At instant tj, total forecasted supply and demand are respectively

S(tj) =

n1
∑

i=1

Si(tj), D(tj) =
n

∑

i=n1+1

Di(tj). (8)

As a measure of S&D balance, we use the gap function defined by

G(tj) = S(tj) − D(tj). (9)

Then, we define the relative change in the gap by

G̈(tj) =
G(tj) − G(tj−1)

|G(tj−1)| + ǫ
, (10)

where ǫ is a small positive number guaranteeing the fact that the above denominator
is always positive. The relative change G̈(tj) compares the state of S&D balance
of the current instant with that of the prior instant. The sign and value of this
function is the catalyst of the next price move.

Firstly, according to this strategy, the selling-price of an automated seller i ∈ N1

or the buying-price of an automated buyer i ∈ N2, are established by the following
formula

ui1(tj) = [αi1pN
(tj) − (1 − αi1) p(tj−1)] ×

[

1 − αi2 G̈(tj)
]

. (11)

This relation works for both sellers and buyers, the only difference from one trader
to another is the value of parameters αi1, αi2 ∈ [0, 1], i ∈ N . In relation (11),
the purpose of the first parameter αi1 is to find a good equilibrium between the
current nominal price p

N
(tj) and the price of the prior transaction, p(tj−1). The

second parameter αi2 attempts to assign the right weight for S&D balance, via the
relative change function G̈(tj), in the construction of the component ui1(tj) of trader
i. As we will see later, in order to maximise the global performance of this trading
strategy, the choice of these parameters should be carried out in an optimal way.
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Secondly, our trading strategy suggests to compute the selling-quantity of seller
i by the following relation

ui2(tj) = −
Si(tj) + yi(tj−1)

αi3 × (m − j + 1)
, i ∈ N1. (12)

Namely, this strategy considers the current position yi(tj−1) of seller i and the fore-
casted quantity he needs to sell Si(tj), then dividing the difference by the number
of remaining periods in the trading process. Parameter αi3 ∈ [0, 1] offers the ability
to adjust in an optimal way the offered quantities by the seller. Applying the same
reasoning on the buying side, the buying-quantity requested by buyer i is calculated
by

ui2(tj) =
Di(tj) − yi(tj−1)

αi3 × (m − j + 1)
, i ∈ N2. (13)

Summarizing, this strategy assigns to each trader i, three parameters α11, α12, α13

which need to be calculated by an optimization method to guarantee a maximum
performance of the trading strategy. The parameters of all automated traders are
arranged in the following (n1 + n2) × 3 parameters-matrix α where the upper part
is the sellers’ parameters and the lower part is buyers’ parameters

α =



















α11 α12 α13
...

...
...

αn1,1 αn1,2 αn1,3

αn1+1,1 αn1+1,2 αn1+1,3
...

...
...

αn,1 αn,2 αn,3



















. (14)

4 Measuring performance of a trading strategy

We assume that our market is a transparent one, i.e. all agents have access to the
same information Φ(tj),

Φ(t0) = {S(t0), D(t0), pB(t0)}, (15)

Φ(tj) = Φ(tj−1) ∪ {S(tj), D(tj), pN
(tj), p(tj−1)}. (16)

At the beginning of period tj, the forecasts S(tj), D(tj) as well as p
N
(tj) are known,

but market price, p(tj), is not known; only at the final stage of this period it will
become known, this is way p(tj) does not appear in Φ(tj).

Let S = {S(tj), j = 0, m} and D = {D(tj), j = 0, m} be two time-series of
S&D forecasts respectively, where S(tj) and D(tj) are defined by relations (8). Each
automaton i ∈ N is using a trading strategy γi to generate its market orders, that
is Ui(tj) = γi(Φ(tj)); we set γ = {γi, i ∈ N}. The interaction of agents’ orders will
generate the market price curve p = {p(tj), j = 0, m} and transactional quantities
q = {q(tj), j = 0, m} according to the mechanism described in section 2.

We will adapt the approach suggested in [10] to measure the performance of the
trading strategies γ. This approach suggests a set of hypotheses on the properties
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of a benchmark price curve and proposes analytical measures zk(γ,S,D), k = 1, 7
allowing to evaluate the performance of trading strategies γ when applied on the
time-series of forecasts S and D. The measure zk is a ratio taking its values in
the range [0, 1], it measures the efficiency of the trading strategies in respect to
hypothesis k: if zk is close to 0 then the strategies have a very weak performance
relatively to this hypothesis; inversely, if zk is close to 1 then the strategies fully
respect hypothesis k. Explicitly, performance calculation is carried out as follows

z1(γ,S,D) =
1

m

m
∑

j=1

1[ sign(G(tj)−G(tj−1)) = −sign(p(tj)−p(tj−1)) ], (17)

z2(γ,S,D) =
1

m − 1

m−1
∑

j=1

1[ sign(G(tj+1)−G(tj)) = sign(p(tj)−p(tj−1)) ], (18)

z3(γ,S,D) =
1

m

m
∑

j=1

1[ sign(G(tj)) = −sign(p(tj)−p
N

(tj)) ], (19)

z4(γ,S,D) =
1

m − h

m−h
∑

k=1

1[|σ
G

(tk, tk+h)−σp(tk, tk+h)|≤ǫ], (20)

z5(γ,S,D) =
1

m
1[q(tj)>0], (21)

z6(γ,S,D) =
1

m − h

m−h
∑

k=1

1[σq(tk, tk+h)≤ǫ], (22)

z7(γ,S,D) =
1

n

∑

i∈N

min{|yi(tm)| ; SDi(tm)}

max{|yi(tm)| ; SDi(tm)}
. (23)

where ǫ is a small positive number; σ
G
, σp and σq are respectively standard deviations

of the gap G, transactional price p and exchanged quantities q; and h is a fixed
integer.

The measure z1 evaluates the effects of S&D over transactional price p. Measure
z2 assesses the influence of price p over the S&D balance. Measure z3 quantifies
the relationship between nominal price p

N
, transactional price p and S&D. Measure

z4 compares the volatility of price to that of S&D. Regarding the transactional
quantity q, the measure z5 and z6 respectively calculate the stability and volatility
of this variable. Finally, z7 is the satisfaction degree of traders’ objectives in terms
of overall sold and purchased quantities [10].

We may favor one hypothesis over another, this is done by associating different
weights wk to these hypotheses, with 0 ≤ wk ≤ 1, k = 1, 7, and

∑7
k=1 wk = 1. The

average performance of γ, over the times-series S and D, is

z̄(γ,S,D) =
7

∑

k=1

wk zk. (24)

Now, assuming that two sets of representative samples of S&D time-series,
S = {S(1), . . . ,S(K)} and D = {D(1), . . . ,D(K)}, are available, and strategies γ were
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parameterized by a parameters-matrix α ∈ A
(n1+n2)×3, then for a specific α(0) ∈ A,

the global performance of strategy γ over the sets of samples S and D, is

¯̄z(γ(α(0)), S, D) =
1

K

K
∑

k=1

z̄(γ(α(0)),S(k),D(k)). (25)

Therefore, the optimal parameters-matrix for this strategy over S and D, is

α∗ = arg max
α∈A

¯̄z(γ(α), S, D). (26)

5 Numerical examples

5.1 Computing average and global performances

In case of a trading game with n1 = 3 producers and n2 = 4 consumers, and a
given parameters-matrix α(0), a dedicated Matlab code has generated the set of
S&D forecasts time-series shown in figure 3 for the corresponding agents: On the
left column are shown the supply forecasts of the three producers and on the right
are the demand forecasts of the four consumers. The trading process evolves over
m = 100 periods. We will use this kind of data as inputs to the automatons in order
to test the functioning of our trading strategy and compute its performance.

Feeding the data shown on figure 3 as inputs to the above trading strategy, de-
scribed by relations (11), (12) and (13), has generated the price pattern on figure 4d.

Figure 4a shows time-series of total supply S and total demand D. Figure 4b
represents the evolution of the gap function G. The obtained performances in respect
to each criterion are

z1 = 0.2800, z2 = 0.1717, z3 = 0.4700, z4 = 0.0111,
z5 = 0.4000, z6 = 0.0222, z7 = 0.3712,

with an average performance z̄ = 0.2226. Running the Matlab code over a large set
of forecasts time-series, K = 30, the calculated global performance was ¯̄z = 0.3203.
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Figure 3: Samples of supply and demand (S&D) forecasts time-series

5.2 Parameters optimization by simulation heuristic

We know that each parameter αik, i ∈ N and k = 1, 2, 3, can take an infinity of
feasible values. However, in order to obtain a quasi-optimal solution in a short time,
we simplify the problem by considering that the set of feasible solutions is limited.
Since parameters αik are weighing factors, then their values are generally belonging
to the interval [0, 1]. Let’s take three representative values in this interval, for
instance,

αik ∈ A = {0.1, 0.5, 0.9}. (27)

Even in this restrictive case, it will be hard to deal with all possible combinations of
parameters-matrices α. Indeed, for instance in the case of the above mentioned game
with n1 = 3 producers and n2 = 4 consumers, the number of possible parameters-
matrices is card(A)(n1+n2)×3 = 321 = 10, 460, 353, 203. This huge number will render
running time on computer very prohibitive. In addition, even if we obtain the

9



Figure 4: Pricing obtained by the automatic trading strategy

optimal solution, say α∗, maximizing the global performance of our trading system,
then α∗ is not necessarily the optimal solution. This is due to the fact that the
choice of αik was carried out only in the set {0.1, 0.5, 0.9} whereas the optimal
value of a given parameter αik may not belong to this set.

In order to obtain rapidly a solution, the current heuristic simplifies further the
problem by assuming that a) all the producers have the same parameters and b) all
the consumers have the same parameters equally. In other words, the first n1 lines
of parameters-matrix α are all the same and the last n2 lines of this matrix are also
identical. A parameters-matrix α satisfying the requirements of this heuristic could
be written into a new (reduced) matrix α

′

, with 2× 3 dimension. Consequently, the
number of different matrices that we can build in this manner with the elements of
of the set A is card(A)2×3 = 36 = 729.

This heuristic was written into a Matlab code testing all the 729 different parameters-
matrices gathered into groups of 50 matrices. The code computes the individual
performances of each matrice and its global performance. The best solution in each
group is displayed in table 1.

Over the set of 729 tested matrices, the best global performance was 0.3735
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Group z1 z2 z3 z4 z5 z6 z7 ¯̄z
001-050 0.3210 0.2226 0.7527 0 0.4353 0.0100 0.8728 0.3735

051-100 0.3170 0.2209 0.7317 0.0011 0.4320 0.0104 0.8732 0.3695
101-150 0.2510 0.1751 0.6957 0.0037 0.3493 0.1437 0.7662 0.3407
151-200 0.3160 0.2232 0.7027 0.0033 0.4333 0.0100 0.8743 0.3661
201-250 0.3303 0.2451 0.5673 0.0022 0.4833 0.0067 0.8876 0.3604
251-300 0.3187 0.2195 0.6683 0 0.4367 0.0081 0.8721 0.3605
301-350 0.3367 0.2327 0.6823 0.0037 0.4557 0.0196 0.8765 0.3725
351-400 0.3407 0.2404 0.6780 0.0033 0.4690 0.0185 0.4843 0.3192
401-450 0.3220 0.2209 0.6703 0.0033 0.4373 0.0081 0.8701 0.3617
451-500 0.3303 0.2391 0.5863 0.0026 0.4800 0.0089 0.8897 0.3624
501-550 0.3100 0.2199 0.5883 0 0.4323 0.0100 0.8741 0.3478
551-600 0.2997 0.2098 0.6877 0.0026 0.4153 0.0678 0.8349 0.3597
601-650 0.3187 0.2222 0.5893 0.0015 0.4440 0.0115 0.6438 0.3187
651-700 0.3007 0.2088 0.6533 0.0033 0.4113 0.0267 0.8583 0.3518
701-729 0.3220 0.2266 0.5953 0.0048 0.4490 0.0074 0.4861 0.2988

Table 1: Results obtained by the simulation heuristic

corresponding to the following quasi-optimal reduced parameters-matrix

α∗′ =

[

0.1 0.1 0.1
0.1 0.1 0.1

]

. (28)

Comparing global performance ¯̄z = 0.3203 obtained in the previous section and
the current one, ¯̄z = 0.3735, we conclude that this heuristic based on simulation,
even restrictive, has nevertheless improved the solution by almost 17%.

6 Conclusion and perspectives

The current work has proved that it is possible to automate thoroughly a futures
market and replace human decision-makers by computer-based programs. The sug-
gested strategy for trading takes into account the main ingredients of the futures
market, namely the evolution of S&D forecasts as well as nominal price, positions of
traders and the remaining time for trading at each stage. The mathematical criteria
suggested for measuring performance of a trading strategy proved to be a practical
and efficient tool for classifying strategies and selecting optimal parameters’ values.

The framework of the suggested market was large enough to take into account
the major actors of a real futures market, though we can enlarge it by considering the
intervention of speculators who bring a lot of market liquidity. On the other hand, we
need to increase the global strategy performance by improving the efficiency of the
trading strategy. This can be carried out by several means, for instance introducing
a new parameterization system, or imbedding several terms in the trading strategy
each terme related to a specific criterion, or building price bands around the nominal
price line, if price frequency in a specific band has exceeded a typical threshold

11



value then it will trigger a particular behavior from the automated traders side.
Establishing optimal trading strategies could also be considered from an optimal
control perspective where it will be necessary to find an optimal command pattern
for each automated trader in reaction to the stream of S&D forecasts. Finally,
optimisation of parameters could be done via other technics like genetic algorithms
and training neural nets.
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