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1 Introduction

The asymptotic behavior of expressions of the form
Pn

t=1 f(rnxt) where xt is
an integrated process, rn is a sequence of norming constants, and f is a mea-
surable function has been the subject of a number of articles in recent years.
We mention Borodin and Ibragimov (1995), Park and Phillips (1999), de Jong
(2003), Jeganathan (2004), Pötscher (2004), de Jong and Whang (2005), Berkes
and Horvath (2006), and Christopeit (2009) which study weak convergence re-
sults for such expressions under various conditions on xt and the function f .
Of course, these results also provide information on the order of magnitude ofPn

t=1 f(rnxt). However, to the best of our knowledge no result is available for
the case where f is non-integrable with respect to Lebesgue-measure in a neigh-
borhood of a given point, say x = 0. In this paper we are interested in bounds
on the order of magnitude of

Pn
t=1 jxtj

��
when � � 1, a case where the implied

function f is not integrable in any neighborhood of zero. As a by-product, we
shall also obtain bounds on the order of magnitude for

Pn
t=1 w

k
t+1 jxtj

��
where

wt denotes the increment of xt and k = 1 or 2. While the emphasis in this paper
is on negative powers that are non-integrable in any neighborhood of zero (i.e.,
� � 1), we present the results for general � 2 R. We do not care to improve the
results in case � < 1, but we shall occasionally mention better results available
in this case (or in subcases thereof) without attempting to be complete in the
coverage of such (better) results speci�c to the case � < 1.

�I would like to thank Kalidas Jana for inquiring about the order of magnitude of some of
the quantities now treated in the paper. I am indebted to Robert de Jong for comments on
an earlier version that have led to an improvement in Theorem 1.
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2 Results

Consider an integrated process

xt = xt�1 + wt

for integer t � 1, with the initial real-valued random variable x0 being indepen-
dent of the process (wt)t�1 which is assumed to be given by

wt =
1X

j=0

�j"t�j :

Here ("i)i2Z are independent and identically distributed real-valued random
variables that have mean 0 and a �nite variance, which � without loss of gener-
ality � is set equal to 1. The coe¢cients �j are assumed to satisfy

P1
j=0

���j
�� <1

and
P1

j=0 �j 6= 0. Furthermore, "i is supposed to have a density q with respect
to (w.r.t.) Lebesgue-measure. We note that under these assumptions xt pos-
sesses a density w.r.t. Lebesgue-measure for every t � 1, and the same is true for
wt; cf. Section 3.1 in Pötscher (2004). Furthermore, the characteristic function
 of "i is assumed to satisfy

Z 1

�1

j (s)j
�
ds <1

for some 1 � � < 1. These assumptions will be maintained throughout the
paper. They have been used in various forms, e.g., in Park and Phillips (1999),
de Jong (2004), de Jong and Whang (2005), and Pötscher (2004). We recall
from Lemma 3.1 in Pötscher (2004) that under these conditions densities ht of
t�1=2xt exist such that for a suitable integer t� � 1

sup
t�t�

khtk1 <1 (1)

is satis�ed. In the following we set � = supt�t� khtk1.

2.1 Bounds on the Order of Magnitude of
P

n

t=1
jxtj

��

We �rst consider the behavior of
Pn

t=1 jxtj
��
. Note that under our assumptions

this quantity is almost surely well-de�ned and �nite for every � 2 R.1 Recall
that we are mainly interested in the case � � 1.

Theorem 1

nX

t=1

jxtj
��
=

8
<

:

Op(n
�=2) if � > 1

Op(n
1=2 log n) if � = 1

Op(n
1��=2) if � < 1

1 In particular, how, and if, we assign a value in the extended real line to jxtj
�� on the

event fxt = 0g has no consequence for the results.
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Proof. Since
Pt��1

t=1 jxtj
��

is almost surely real-valued it su¢ces to prove the

result for
Pn

t=t�
jxtj

��
. We �rst consider the case � � 1: For 0 < � < 1 we

have almost surely

nX

t=t�

jxtj
��

=
nX

t=t�

jxtj
��
1

����t�1=2xt
��� > �=n

�
+

nX

t=t�

jxtj
��
1

����t�1=2xt
��� � �=n

�

= An(�) +Bn(�)

where t� is as in (1) and n � t�. First consider Bn(�): Set

Dn(�) =
n[

t=t�

n���t�1=2xt
��� � �=n

o
:

Observe that fBn(�) > 0g = Dn(�) up to null-sets and

Pr (Bn(�) > 0) = Pr (Dn(�)) �
nX

t=t�

Pr
����t�1=2xt

��� � �=n
�

=
nX

t=t�

Z �=n

��=n

ht(z)dz � 2��

holds for all n � t� in view of (1). Next we bound An(�): Observe that for
t � t�

E

����t�1=2xt
���
��

1(
���t�1=2xt

��� > �=n)

�

= E

����t�1=2xt
���
��

1(1 >
���t�1=2xt

��� > �=n)

�
+ E

����t�1=2xt
���
��

1(
���t�1=2xt

��� � 1)
�

�

Z

�=n<jzj<1

jzj
��

ht(z)dz + 1 � 2�

Z 1

�=n

z��dz + 1

�

�
1 + 2�(�� 1)�1�1��n��1 if � > 1

1 + 2� log
�
��1
�
+ 2� log n if � = 1:

Consequently, for n � max(t�; 3) we have

E(An(�)) =
nX

t=t�

t��=2E

����t�1=2xt
���
��

1(
���t�1=2xt

��� > �=n)

�

�

� �
1 + 2�(�� 1)�1�1��

�
n�=2 if � > 1

�
1 + 2�+ 2� log

�
��1
��
n1=2 log n if � = 1:

Now, for arbitrary " > 0 de�ne �(") = "=(4�) and chooseM(") > 0 large enough
to satisfy

M(") >

�
4"�1

�
1 + 2�(�� 1)�1�(")1��

�
if � > 1

4"�1 (1 + 2�+ 2� log (�(")�1)) if � = 1:
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Then, with dn = n�=2 in case � > 1 and dn = n1=2 log n in case � = 1, we
obtain using Markov�s inequality

Pr

 

d�1n

nX

t=t�

jxtj
��

> M(")

!

� Pr
�
d�1n An(�(")) > M(")=2

�
+ Pr

�
d�1n Bn(�(")) > M(")=2

�

� 2d�1n E(An(�(")))=M(") + Pr (Bn(�(")) > 0) < "

for all n � max(t�; 3). Since
Pn

t=t�
jxtj

��
is almost surely real-valued for all

n � t�, this completes the proof in case � � 1. In case � < 1 observe that for
n � t�

E

 
nX

t=t�

jxtj
��

!

=
nX

t=t�

t��=2E

����t�1=2xt
���
��

1

����t�1=2xt
��� < 1

��

+
nX

t=t�

E
�
jxtj

��
1

����t�1=2xt
��� � 1

��

�
nX

t=t�

t��=2
Z

jzj<1

jzj
��

ht(z)dz +
nX

t=t�

t��=2

�
�
2(1� �)�1�+ 1

� nX

t=1

t��=2 = O(n1��=2):

Hence, by Markov�s inequality
Pn

t=t�
jxt�1j

��
= Op(n

1��=2).

Remark 2 (i) For values of � such that x�� is well-de�ned for every x except
possibly x = 0, the quantity

Pn
t=1 x

��
t is almost surely well-de�ned and real-

valued. By the triangle inequality, Theorem 1 applies also to
Pn

t=1 x
��
t .

(ii) Not surprisingly, the expectation of
Pn

t=1 jxtj
��
will typically be in�nite

in the case � � 1 (e.g., if the density of xt is bounded from below in a neigh-
borhood of zero as is the case if xt is Gaussian). The expectation can, however,
also be in�nite in other case (e.g., if � < �2 and moments of xt of order �� do
not exist).

Remark 3 Suppose the stronger summability condition
P1

j=0 j
1=2
���j
�� < 1

is satis�ed. Under this additional assumption, more is known in case � < 1
than just the upper bound on the order of magnitude of

Pn
t=1 jxtj

��
given by

Theorem 1: If � < 1 then

n�=2�1
nX

t=1

jxtj
�� d
! j�j

��
Z 1

0

jW (s)j
��

ds (2)

for n ! 1, with the limiting variable being positive with probability one;
as a consequence, n1��=2 is the exact order of magnitude in probability ofPn

t=1 jxtj
��
. Here W is standard Brownian motion and � =

P1
j=0 �j , which is
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non-zero by assumption. Relation (2) follows from the �rst claim in Corollary
3.3 in Pötscher (2004), applied to the function T given by T (x) = jxj

��
for

x 6= 0 and T (0) = 0, and from the observation that n�=2�1
Pb

t=1 jxtj
��
! 0 as

n ! 1 for every �xed integer b. Note that T is locally integrable since � < 1
and that T satis�es T (�x) = j�j

��
T (x) for all x 2 R and all � 6= 0. Also note

that the integral in (2) is almost surely well-de�ned and �nite (independently of
how one interprets jW (s)j

��
for W (s) = 0 in case � > 0), cf. (2.4) and Remark

2.1 in Pötscher (2004). [In the case � � 0, it is well-known that (2) holds
even under much weaker conditions than used here, cf. Lemma A.1 in Pötscher
(2004). Since the emphasis in this paper is on positive �, we make no attempt
to spell out these sharper and well-known results for � � 0.]

Remark 4 Suppose
P1

j=0 j
1=2
���j
�� < 1 is satis�ed. In case � � 1 a crude

lower bound for the order of magnitude in probability of
Pn

t=1 jxtj
��

is given
by n1��=2, in the sense that

lim
n!1

Pr

 

n�=2�1
nX

t=1

jxtj
��

> M

!

= 1

holds for every M , i.e., n�=2�1
Pn

t=1 jxtj
��

! 1 in probability. This can be

seen as follows: Let Tk(x) = min(k; jxj
��
) for k 2 N. Then we have almost

surely

n�=2�1
nX

t=1

jxtj
��
= n�1

nX

t=1

���n�1=2xt
���
��

� n�1
nX

t=1

Tk(n
�1=2xt)

for every k 2 N. Furthermore, n�1
Pn

t=1 Tk(n
�1=2xt) converges in distribution

to
R 1
0
Tk(�W (s))ds by Corollary 3.4 in Pötscher (2004). Now, by Corollary 7.4

in Chung and Williams (1990) and the monotone convergence theorem we have
almost surely

Z 1

0

Tk(�W (s))ds =

Z 1

�1

Tk(�x)L(1; x)dx! j�j
��
Z 1

�1

jxj
��

L(1; x)dx =1

for k ! 1. The last equality in the above display follows since L(1; 0) > 0
almost surely and L(1; x) having almost surely continuous sample path together
imply that there exists a neighborhood U of zero (that may depend on the
realization of L(1; �)) such that infx2U L(1; x) > 0 holds almost surely. In case
� = 1, inspection of this lower bound and the upper bound given by Theorem 1
now shows that these bounds agree up to a logarithmic term and in this sense
are close to being sharp (under the stricter summability condition on �j imposed
here). For � > 1, however, there is a substantial gap between the lower and
upper bound. [The method leading to the lower bound seems to be too crude
to provide a tight bound. We also do not know if the upper bound is tight.]
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Remark 5 (i) All results above for
Pn

t=1 jxtj
��

apply analogously to sums of

the form
Pn

t=a jxtj
��

for any integer a > 1. [This follows, except for Remark

4, since
Pa�1

t=1 jxtj
��

is almost surely �nite; for Remark 4 note that the lower
bound n�1

Pn
t=a T (n

�1=2xt) di¤ers from n�1
Pn

t=1 T (n
�1=2xt) only by a term

that is op(1) since T is bounded.]

(ii) For � � 0 all results above for
Pn

t=1 jxtj
��

carry over to
Pn

t=0 jxtj
��
.

For � > 0 this is again so, provided the distribution of x0 does not assign
positive mass to the point 0; otherwise,

Pn
t=0 jxtj

��
is unde�ned on the event

where x0 = 0; if one chooses to de�ne jx0j
��

= 1 on this event, then the
above results clearly do not apply (except for the lower bound given in Remark
4 which holds then a fortiori).

Remark 6 Suppose that the assumptions of Theorem 5 in de Jong and Whang
(2005) are satis�ed. Note that these assumptions imply the maintained assump-
tions of the present paper. Let � > 1 be an integer. For every � > 0 we clearly
have that almost surely

n�(�(��1)+1+�=2)
nX

t=1

jxtj
��

� n��(��1)n�1 j�j
�

nX

t=1

����n�1=2xt
���
��

1

�����n�1=2xt
��� > n��

�

where � is as above. The statement in Theorem 5 of de Jong and Whang (2005)
implies that there is a � > 0, where � depends on the distribution of "t, such
that the right-hand side in the above display converges in distribution to a non-
degenerate random variable. But this contradicts the upper bound we have
obtained in Theorem 1, casting doubt on Theorem 5 (and the closely related
Theorem 4) in de Jong and Whang (2005).

2.2 Bounds on the Order of Magnitude of
P

n

t=1
w
k

t+1 jxtj
��

We next illustrate how the above results can be used to derive upper bounds
on the order of magnitude of

Pn
t=1 w

k
t+1 jxtj

��
. Note that this expression is

almost surely well-de�ned and �nite for every � 2 R and k 2 N.2 Applying the
Cauchy-Schwarz inequality gives almost surely

�����

nX

t=1

wkt+1 jxtj
��

�����
�

 
nX

t=1

w2kt+1

!1=2 nX

t=1

jxtj
�2�

!1=2
:

2 In particular, how, and if, we assign a value in the extended real line to wk
t+1

jxtj
�� on

the event fxt = 0g has no consequence for the results.
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Hence, if Ew2kt < 1 holds, we obtain from the ergodic theorem (applied to
w2kt+1) and Theorem 1

nX

t=1

wkt+1 jxtj
��
=

8
<

:

Op(n
(�+1)=2) if � > 1=2

Op(n
3=4 (log n)

1=2
) if � = 1=2

Op(n
1��=2) if � < 1=2

: (3)

Obviously, the same bound holds more generally if wkt+1 is replaced by f(wt+1)
with Ef2(wt+1) < 1 (or even by some arbitrary process vt, as long as it is
de�ned on the same probability space and v2t satis�es a law of large numbers).
Variations of this bound can obviously be obtained by using Hölder�s inequality.

Remark 7 (i) In the trivial case � = 0 we can appeal to the law of large
numbers for wkt+1 (or to the central limit theorem in case k = 1) and directly

obtain the bound Op(n) (or Op(n
1=2)).

(ii) For � � �2 distributional convergence of n(��1)=2
Pn

t=1 wt+1 jxtj
��

can
be obtained from Theorem 3.1 in Ibragimov and Phillips (2008). This theorem
makes assumptions on the process xt that are stronger in some dimensions
(e.g., higher moment assumptions) but are weaker in other respects (e.g., no
assumption about existence of a density). Not surprisingly, for this range of
values of �, the resulting bound on the order of magnitude of

Pn
t=1 wt+1 jxtj

��

is better than the simple-minded bound (3). However, for � > �2 (which
includes the case of negative powers of interest here) the results in Ibragimov
and Phillips (2008) do not apply.

In the important special case where wt = "t (i.e., �j = 0 for all j > 0) and
k = 1 or = 2, bounds better than (3) can be obtained by observing that the
sequence

Pn
t=1 wt+1 jxtj

��
is then a martingale transform and by combining

Theorem 1 with results in Lai and Wei (1982). [Note that
Pn

t=1 wt+1 jxtj
��
will

typically not be a martingale as the �rst moment will in general not exist, cf.
Remark 2(ii); hence, martingale central limit theorems are not applicable.]

Proposition 8 Suppose that in addition to the maintained assumptions also
�j = 0 for all j > 0 holds. Then

nX

t=1

wt+1 jxtj
��
=

8
><

>:

op(n
�=2 (log n)

1=2+�
) if � > 1=2

op(n
1=4(log n)1+� ) if � = 1=2

op(n
(1��)=2 (log n)

1=2+�
) if � < 1=2

and
nX

t=1

w2t+1 jxtj
��
=

�
op
�
n�=2+�

�
if � � 1

op
�
n1��=2+�

�
if � < 1

hold for every � > 0.

Proof. In case � = 0 the result is trivially true (with more precise information
on the order of magnitude following immediately from the central limit theo-
rem and the law of large numbers, respectively). Hence assume � 6= 0. Since
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Pt
s=1 ws is a (nondegenerate) recurrent random walk under the assumptions

of the proposition that is not of the lattice-type (as it has uncountably many
possible values in the sense of Chung (2001, Section 8.3) by Lebesgue�s di¤er-
entiation theorem), it visits every interval in�nitely often almost surely. From
independence of x0 and (ws)s�1 we may conclude that almost surely jxtj falls

into the interval (1=2; 3=2) in�nitely often. This shows that the sum
Pn

t=1 jxtj
��

diverges almost surely for every value � 6= 0. Now apply Lemma 2(iii) in Lai
and Wei (1982) to conclude that

nX

t=1

wt+1 jxtj
��
= o

0

@
 

nX

t=1

jxtj
�2�

!1=2 

log
nX

t=1

jxtj
�2�

!1=2+�1

A a:s:

and
nX

t=1

w2t+1 jxtj
��
= o

0

@
 

nX

t=1

jxtj
��

!1+�1

A a:s:

for every � > 0. Apply Theorem 1 (applied to 2� and �, respectively) to
complete the proof.

Remark 9 (i) If a moment of wt higher than the second moment exists, apply-
ing Corollary 2 in Lai and Wei (1982) yields the slightly better bound

nX

t=1

wt+1 jxtj
��
=

8
><

>:

Op(n
�=2 (log n)

1=2
) if � > 1=2

Op(n
1=4(log n)) if � = 1=2

Op(n
(1��)=2 (log n)

1=2
) if � < 1=2

:

(ii) Under the assumptions of Proposition 8 the same bounds can be obtained
for

Pn
t=1 vt+1 jxtj

��
and

Pn
t=1 v

2
t+1 jxtj

��
, respectively, where (vt) is an arbi-

trary martingale di¤erence sequence w.r.t a �ltration Ft (de�ned on the same
probability space as xt) satisfying the assumptions of Lemma 2(iii) (Corollary
2) in Lai and Wei (1982), provided xt is measurable w.r.t. the �-�eld Ft.
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