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Abstract 
 

Recent literature has been able to include into standard optimal growth models some 

hypotheses that allow for the generation of endogenous long run fluctuations. This paper 

contributes to this endogenous business cycles literature by considering social interactions. 

In the proposed model, individuals can choose, under a discrete choice rule, to which social 

group they prefer to belong to. This selection process is constrained essentially by the 

dimension of the group, which is the main determinant regarding the utility individuals 

withdraw from social interaction. The proposed setup implies the presence of cycles and 

chaotic motion describing the evolution of group dimension over time. Because being 

member of a group  involves costs to households, the inclusion of these costs in a standard 

Ramsey growth model will imply that endogenous cycles might arise in the time trajectory 

of the growth rate of output.     
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1. Introduction 

 

The analysis of social interactions on economics takes us along several directions, 

since it can serve different purposes. One can define social interactions as Bisin, Horst 

and Ozgur (2006) do, that is, by considering them as “socioeconomic environments in 

which markets do not  mediate all of agents’ choices, which might be in part 

determined, for instance, by family, peer group, or ethnic group effects” (page 74). 

Such a general definition can be applied to almost any field on economics, because it 

deals essentially with the ability of agents to establish relationships and to withdraw 

some amount of utility of these relationships.  

The literature on socio-economic relations is extensive and might be separated 

into two groups: first, comprehensive works that study the properties of models that 

allow for several types of interaction; in particular, these studies characterize static 

environments of interaction (essentially under a game theory approach) or address the 

stability features of dynamic frameworks. The distinction between complete and 

incomplete information is also relevant; furthermore, the issue of habit persistence is 

often discussed as well. These studies on the theory of social interactions include 

Glaeser and Scheinkman (1996), Blume and Durlauf (2001), Brock and Durlauf 

(2001a, 2001b) and Ioannides (2006). 

On a second group of studies, one finds more subject oriented insights, that focus 

on a specific type of interaction. At this level, we may begin by mentioning Glaeser, 

Sacerdote and Scheinkman (1996), who concentrate on the analysis of crime (they find 

a strong covariance between crime rates and geography, pointing to a social element 

determining the conduct of the individuals in a given neighbourhood). Others search for 

the connection between social interaction and education results; it is the case of 

Kooreman and Soetvent (2002) and Entorf and Lauk (2006), who emphasize the idea 

that the behaviour towards school is highly influenced by the decisions of peers. We 

can identify as well important interaction analyses in subjects like income inequality 

[Durlauf (1996)], ethnic or ratial segregation [Schelling (1972), Benabou (1993)], 

participation in stock markets [Hong, Kubik and Stein (2004)], the analysis of 

unemployment [Krauth (2000), Topa (2001)], or the effects of advertising over 

consumers [Castaldi and Alkemade (2004)]. 

Macroeconomic issues do not escape the need to address the way individuals 

connect with each other outside the boundaries of strict market relations. Technological 

complementarities in the context of economic growth are addressed by Durlauf (1993) 
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and Elison and Fudenberg (1993), specialization and international trade can also be 

subject to an interaction approach, as in Kelly (1997), and inflation as a result of social 

conflict is also analyzed [Crowe (2004)]. In this last case, the conclusion is that 

inflation tends to be higher in countries with higher inequality and with greater pro-rich 

bias. 

In the present paper, we associate the notion of social interaction to a framework 

of optimal growth in order to address the issue of endogenous business cycles (EBC). 

The literature on EBC began in the early 1980s with the contributions of Stutzer (1980), 

Benhabib and Day (1981), Day (1982) and Grandmont (1985), among others, and it has 

gained a new impulse with the work on business cycles triggered by increasing returns 

to scale / production externalities developed by Christiano and Harrison (1996), 

Schmitt-Grohé (2000), Guo and Lansing (2002) and Coury and Wen (2005), among 

others. Other approaches can also be mentioned, as it is the case of Cellarier (2006) 

[Cycles through constant gain learning] and Gomes (2006a, 2006b) [Imperfect demand 

expectations and technological complementarities]. 

The setup to develop below refers to a scenario where two social groups exist. 

Individuals choose to be members of one or of the other group. The choice is 

determined by two factors: the costs associated to being a member of the group (these 

can be direct costs, like a submission fee, or indirect, like the ones needed to have the 

same appearance or other common links with the mainstream characteristics of the 

group), and the number of individuals that already constitute the group. We will 

consider that the utility of being part of a group rises when the group has an 

intermediate dimension, and declines otherwise (a network effect explains the need for 

a not too small group, while a conspicuous effect justifies why individuals prefer not to 

be a part of a group where everyone is welcomed). 

The choice of an agent regarding the group to belong to is specified as arising 

from a discrete choice rule in the tradition of Manski and McFadden (1981), Anderson, 

de Palma and Thisse (1993), Brock and Hommes (1998) and Gomes (2005), among 

others. Under this rule, one is able to determine a one dimensional difference equation 

that describes the evolution of group dimension over time. This equation displays 

cyclical and chaotic dynamics for various values of parameters, and thus our social 

interaction setup gives rise to endogenous fluctuations regarding the dimension of each 

one of the two assumed groups.  

To the social interaction setup, one can associate a standard Ramsey growth 

model with the usual consumption – capital accumulation trade-off. This growth model 
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exhibits saddle-path stability (if this path is followed, endogenous variables, that is, 

consumption and the stock of capital, will converge to a fixed point steady state). If one 

considers the costs of group association in the decisions of households about the way 

they apply their income, the endogenous fluctuations interaction framework becomes 

essential in the growth setup and will determine the presence of endogenous business 

cycles in the long run. 

With this analysis we do not intend to claim that social interaction is the single or 

the most important determinant of cycles (price stickiness, coordination failures, 

innovation shocks or changes in government policy, have indeed their fundamental 

role), but we can support the idea that they can have a word to say in what concerns the 

introduction of nonlinearities over the linear optimal growth model. 

The remainder of the paper is organized as follows. Section 2 presents the social 

interaction setup. Section 3 derives dynamic results, namely the one that gives the 

presence of strange dynamics in the long run characterization of the interaction process. 

Section 4 combines the nonlinear interaction setup with a linear growth model, 

allowing for an economy’s growth rate that is endogenously cyclical. Finally, section 5 

concludes.    

  

2. A Framework of Social Interaction 

 

Consider an economy populated by a large but finite number of individual agents. 

Each individual may belong to one of two social groups (e.g., political parties or groups 

of football fans). Two characteristics determine the choice of an agent regarding the 

group she wishes to adhere. First, there is a cost or a fee that has to be paid to be 

accepted in the group. This cost may vary from one group to the other (costs will be 

addressed in section 4). Second, the utility of belonging to each one of the groups can 

be measured and, under the proposed setup, it can depend solely on the number of 

individuals that compose that group and not the other one. In this section we will focus 

on the measurement of utility.  

When choosing a group in which individuals develop their social relations, they 

are constrained by two effects. One is a network effect. People tend to dislike being part 

of too small groups and therefore we consider that utility falls when the share of 

individuals in one group is too low, and that utility variations become positive as the 

referred share rises. After some point, a conspicuous effect arises and eventually tends 

to dominate. When a large fraction of the members of society choose to belong to one of 
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the groups, the individual marginal utility will decline as new members enter this group. 

Therefore, the relation between the share of individuals that are members of one of the 

groups and the variation of utility for a representative agent in one of the groups will be 

given by an inverted U-shaped function. 

Let Q1t represent the utility of an agent from sharing the norms social group 1. 

Accordingly, Q2t will be the utility withdrawn from a representative agent in group 2. 

Consider as well variable at as the share of individuals that in each moment t constitute 

the first of the two groups. Assuming m
+
>0, m

-
<0, n

+
>0 and n

-
<0 as utility variation 

boundary values, figure 1 is able to illustrate how such variation of utility reacts to the 

percentage of individuals that prefer to be associated to each one of the groups.    

     

 

Figure 1 – Variation of individual utility as a function of group dimension. 

 

Relatively to figure 1, some remarks are important. The figure on the left hand 

side represents the variation of utility from an individual in group 1 when the relative 

number of agents composing this group assumes any value between 0 and 1. When a 

small share of elements is associated to group 1, the utility of belonging to such group 

declines (Q1t+1-Q1t<0); this tendency is inverted when a larger amount of individuals 

will stay in the group (this is the mentioned network effect; it expresses the idea that 

man is a social being and therefore utility declines when the individual is almost in 

isolation). After a given point (that we assume at=½ in order to simplify computation 

and analysis but that does not need to be necessarily so), the growth of utility will 

decline with the rise in the share of individuals within the group, as the conspicuous 

effect sets in (individuals dislike to make part of a group that everyone shares), and, 

hence, as fraction at approaches 1, the change in utility becomes negative again (note a 

m
+ 

1 

m
- 

at 

Q1t+1-Q1t 

½  

n
+ 

1 

n
- 

1-at 

Q2t+1-Q2t 

½  
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second simplification: the variation on utility when at=0 is the same as when at=1; the 

symmetry property intends solely to help in the tractability of the model).  

The graphic on the right hand side offers a similar interpretation for the evolution 

of the utility withdrawn by an agent that shares group 2 characteristics. The 

consideration of different boundary values (n
+
 and n

-
) reflects the fact that variations of 

utility as a function of the number of agents in the group does not have to be necessarily 

the same across groups. In fact, it is this diversity that will allow to encounter rich and 

meaningful dynamic results.  

We can easily translate the mechanics of social interaction utility in figure 1 into 

analytical expressions. According to the figure, the only force determining the utility of 

sharing a social group membership is the dimension of the share of elements that 

already compose the group. This idea is enough to produce the kind of dynamics we are 

searching for. Nevertheless, to capture a set of other eventual forces influencing such 

utility variation, we consider in equations (1) and (2) an additional term, associated to a 

parameter µ, which is a constant real number. 

 

given   ,)1()(4 101111 QQmaammQQ ttttt µ++−⋅⋅−⋅=− −−+
+  (1) 

 

given   ,)1()(4 202212 QQnaannQQ ttttt µ++−⋅⋅−⋅=− −−+
+  (2) 

  

 If µ=0, then equations (1) and (2) are the exact analytical translation of the 

functions in figure 1. In the eventuality of µ>0, one can state that in the absence of 

variation in the relative number of the members of the group, the utility of belonging to 

that group grows positively (as a function of other exogenous and non specified 

factors); when µ<0, the growth rate of the presented utility variable is negative, that is, 

the representative individual will be progressively less satisfied with its social choice 

(this, of course, for a fixed at share). Later on we will end up by considering µ=0 

because this assumption is helpful for the analytical study of the model’s properties. 

The assumption can be interpreted as the result of an offsetting device: exogenous 

factors that contribute to a positive growth of utility impose a variation in utility that is 

exactly symmetrical to the effect caused by factors that make utility to decline. For now 

one maintains µ in the analytical developments that follow.  

The two previous equations are simple rules that describe the social preferences of 

individuals, mainly as a function of the number of members of each one of the existing 
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groups. It is our intention to add a growth framework to the previous mechanism; the 

link between the two concerns the costs associated to social choices. However, one can 

study autonomously the dynamic behaviour underlying the proposed social interaction 

setup. This is the task undertaken in the section that follows. To proceed, one has to 

define a rule through which individuals may change group through time. 

Considering a scenario of full rationality and absence of barriers to group 

mobility, agents would evaluate in every time moment the benefits of sharing their 

presence with each group [which are revealed by utility values, as measured through 

equations (1) and (2)] and the corresponding associated costs, and choose the option 

that would give the most favourable outcome. In practice, agents do not tend to react 

immediately and irreversibly to changes in net utility; if this is true for instance in what 

concerns commodity purchasing habits, this idea is reinforced in what concerns social 

relations: individuals do not quit immediately their group to adhere to the other just 

because in a specific time moment it is advantageous to do so. To capture this effect of 

sluggish and not totally rational switching behaviour, we adopt a standard discrete 

choice rule. The percentage of individual agents choosing to stay with one of the groups 

is a function of the corresponding utility levels through the following rule, 

 

)exp()exp(

)exp(
),(

21

1
21

tt

t

ttt
bQbQ

bQ
QQa

+
=  (3) 

  

Parameter b∈[0,+∞) is the intensity of choice. If b=0, then individuals will not 

change groups even though the utility of staying with a group might be systematically 

lower than the utility that the association to the other group allows to obtain. When 

b→+∞ the change is immediate, on the direction of the higher utility group. Hence, the 

higher the intensity of choice, the faster will be the decision of the individual in 

changing groups if this is the way to get the best utility result in each time moment. 

Note that with the specification in (3), at may be interpreted both as the share of agents 

associated to group 1, or the probability of a given agent being associated to group 1 in 

some time moment. This probability rises: (i) with the rise in the intensity of choice; (ii) 

with a higher utility level Q1t (relatively to Q2t). 

 

3. The Dynamics of Interaction 
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Equations (1) and (2), with the rule for at in (3), can be used to obtain a one 

dimensional difference equation with a unique endogenous variable, which is at. This 

equation has, as one will perceive, relevant dynamic properties. The equation is derived 

in appendix. Its expression is 

 

[ ]
��

�
�
�

��

�
�
�

−⋅+−⋅⋅+−−⋅⋅��
	



��
�

 −
+= −−−+−+

+

+ )()1()(4exp
1

11

1

1 mnbaammnnb
a

a
a tt

t

t

t

µ

 (4) 

 

Equation (4) defines the evolution over time of the allocation of individuals to 

social groups. As remarked before we consider µ=0 to simplify the analytical treatment 

of the model; we also define constants −− −≡ nmθ  and ++ −≡ mnρ  to simplify 

notations. 

The equation to study will then be 

 

[ ]
�
�
�

�
�
�

⋅−−⋅⋅+⋅⋅��
	



��
�

 −
+=+ θθρ baab

a

a
a tt

t

t

t )1()(4exp
1

111  (5) 

 

It is feasible to proceed with a local analysis of the dynamics of (5), however, as 

one will understand, the local stability analysis is not sufficient to withdraw all the 

relevant information about the equation’s dynamic behaviour. Therefore, global 

dynamics will be addressed as well in what follows.  

 

Proposition 1. If the constraints on parameters θ>0 and ρ<-θ ∨ ρ>0 are satisfied, 

then the existence of the steady state is guaranteed. The following two equilibria exist: 

�
�
	



�
�
�



+
±⋅=

θρ

ρ
1

2

1
a . 

 

Proof: The steady state is defined by the condition aaa tt ≡=+1 . Applying this 

condition to (5) one verifies that [ ] 1)1()(4exp =⋅−−⋅⋅+⋅ θθρ baab tt , that is, 

0)1()(4 =⋅−−⋅⋅+⋅ θθρ baab tt . Solving this equation in order to a , one gets the two 

solutions in the proposition. The constraints over parameters are essential to obtain 

admissible steady state values 10 << a � 
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The analysis of local stability of the equilibrium points requires computing the 

derivative 
t

t

da
da 1+  and evaluating it in the steady state points. Such computation leads 

to the statement of proposition 2.  

 

Proposition 2. The condition required for stability is 
ρ

θρ

θ

+
⋅<

2
b . A 

bifurcation point is given by the combination of parameters 
ρ

θρ

θ

+
⋅=

2
b  and, from a 

local analysis point of view, 
ρ

θρ

θ

+
⋅>

2
b  implies instability (i.e., the steady state 

value of at is never accomplished; instead, the value of this share diverges to zero or to 

one). 

 

Proof: The proof of this proposition requires essentially the computation of 

at

t

da
da 1+ . Note that 

[ ] �
�

�
�
�

�
+⋅⋅

−⋅−
−⋅⋅−−⋅⋅+⋅⋅= +

+ )(4
)21()1(1

)1()(4exp
2

2

1
1 θρθθρ b

a

aa

a
baaba

da
da

t

tt

t

ttt
t

t

 

Considering the derivative for the steady state values of at we verify that 

θρ

ρ
θ

+
⋅±=+ b

da
da

at

t 11 . Stability requires 10 1 << +

at

t

da
da

; recalling that θ>0, 

the unit circle condition is never satisfied for one of the steady states (the one 

corresponding to the plus sign in the above expression); thus, we focus on the other 

steady state. 

For the second steady state, one regards that the above derivative is always below 

unity but this does not imply that stability always holds: a bifurcation might exist if the 

condition 11 −=+

at

t

da
da

 is found to be true for some combination of parameter 

values. A flip bifurcation will then be observed under the condition 

11 −=
+

⋅−
θρ

ρ
θb  that, rearranging, is the bifurcation condition in the proposition. 

This boundary condition separates a region of stability (when the derivative remains 

inside the unit circle) from a region of instability � 
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Given the nonlinear nature of difference equation (5), it is possible that the local 

analysis furnishes an incomplete picture concerning the equation’s results. Looking at 

the global behaviour of (5) another reality will indeed arise: the bifurcation point will 

not only separate the long term results between stability and instability. The stable 

region is the one encountered in the previous discussion, but once the bifurcation point 

is passed, one finds cycles of various periodicities (and totally a-periodic cycles) before 

one reaches the area of instability.  

Thus, from the perspective of the intensity of choice, one generically encounters 

the following dynamic property: low levels of the intensity of choice will correspond to 

fixed point stability and, as this parameter’s value rises one passes through a bifurcation 

that leads to cyclical / chaotic behaviour until the instability result is finally achieved for 

high values of b. Only through numerical examples one can illustrate this result. Just 

consider admissible values for θ and ρ, e.g., θ=2 and ρ=1.  

Figure 2 presents, for these values, our dynamic result. In this case, the bifurcation 

point is 3=b . To the left of this value, fixed point stability holds; to the right, a 

bifurcation process implies multiple qualitative results regarding the dynamics of at for 

different values of b. After a given value of b, instability sets in (in this case, at diverges 

to one).
1
  

 

 

Figure 2 – Bifurcation diagram (b,at), with θθθθ=2 and ρρρρ=1. 

                                                
1
  Figure 2 and all the following are drawn using IDMC software (interactive Dynamical Model 

Calculator). This is a free software program available at www.dss.uniud.it/nonlinear, and copyright of 

Marji Lines and Alfredo Medio. 
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Among the several possibilities in terms of qualitative results, the absence of any 

identifiable periodicity in the evolution of at is the one that is more appealing from a 

mathematical point of view. The existence of chaos can be measured through the 

computation of Lyapunov characteristic exponents (LCEs). Our one dimensional system 

allows for the computation of one LCE; its sign will indicate the kind of dynamics 

associated to the equation. If LCE>0, then one concludes that there is sensitive 

dependence on initial conditions, that is, orbits that start nearby tend to rapidly diverge 

(the LCE is in fact a measure of exponential divergence of nearby orbits). When 

LCE≤0, cycles of any finite periodicity may exist. Figure 2 allows to perceive which 

periodicity is present in each case. Table 1 presents the value of the LCE for different 

intensities of choice and the periodicity associated to the long run time path of the share 

of individuals that compose the first social group (the values of parameters θ and ρ are 

the same as before). 

 

Value of b LCE Dynamics 

1.5 -0.314 Fixed point 

1.7 -0.044 Fixed point 

1.9 -0.510 Period 2 cycle 

2.1 -0.740 Period 2 cycle 

2.3 -0.054 Period 2 cycle 

2.5 0.186 Chaos 

2.7 0.386 Chaos 

2.9 -0.121 Period 4 cycle 

3.1 -- Instability 

3.3 -- Instability 

 

Table 1 – LCE and dynamic characterization of at trajectory for different values of b. 

 

To reinforce the previous results, one selects a value of b for which chaotic motion 

is found (b=2.7) to draw two additional diagrams. The first (figure 3) is just a long term 

time series of at; one observes that no regularity is observable in the way the variable 

evolves over time. The second (figure 4) gives an additional insight about the dynamic 

behaviour, since it represents a phase diagram and illustrates the fact that independently 
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of the number of time moments one considers, the variable’s value will never converge 

or diverge completely relatively to the steady state value (that in this case is 211.0=a ). 

 

 

Figure 3 – Long run time series of at  (b=2.7, θθθθ=2, ρρρρ=1). 

 

 

Figure 4 – Convergence dynamics (b=2.7, θθθθ=2, ρρρρ=1). 

 

Having understood the dynamics of social group changing, we should discuss the 

meaning of the results. Our main initial hypothesis is that two forces determine the 

utility that agents withdraw from sharing social values. The two conflicting forces are a 

network effect and a conspicuous effect. It is this conflict, together with a boundedly 

rational mechanism of choice, that gives place to a nonlinear equation describing the 

evolution of at, and this equation may produce several varieties of long term cycles. 

Most importantly, our framework allows for a group dimension dynamics that does not 
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end in the moment the steady state is accomplished: the dimension of the two groups 

may vary forever, under completely predictable low periodicity cycles or through a 

completely a-periodic and unpredictable time path. As one will regard along the next 

section, the constant migration of individuals between groups can be used to address the 

important issue of business cycles.      

 

4. The Growth – Cycles Model 

 

Consider a conventional endogenous growth model. This comprises two pieces: an 

intertemporal consumption utility maximization problem and the corresponding capital 

accumulation constraint. The constraint takes the form ttttt kkfskk δ−⋅=−+ )(1 , k0 

given. Variable kt defines the per capita stock of physical capital, st is the savings rate 

(0≤st≤1) and δ corresponds to a positive capital depreciation rate. The endogenous 

growth nature of the model requires f(kt) to exhibit constant returns to scale; hence, we 

just assume that f’=A>0 constant.  

The intertemporal control problem is assumed as an infinite horizon problem, for 

which one must define a discount factor 0<β<1, �
+∞

=

⋅
0

)(
t

t

t
cUMax β ; this maximization 

problem is constrained by the capital accumulation equation. To simplify the analysis 

one considers a simple functional form for the utility function, in particular, 

tt ccU ln)( =  [this obeys to the standard utility function requirements, i.e., marginal 

utility of consumption is positive but diminishing: U’>0, U’’<0; ct is per capita 

consumption].  

The only difference between the conventional growth setup and the framework 

here proposed consists in the relation between the savings rate and per capita 

consumption. Besides consumption and savings, we consider a third use for the income 

of households: the share of expenditure directed to pay the group’s fees. This share of 

income is defined by )1(21 ttt aqaqq −⋅+⋅= . We consider constant expenditure shares 

for each group costs, however, the total share is a variable given that the payment by the 

representative agent will be a weighted average of each cost share given the probability 

of association to one or to the other group. 

Let yt=f(kt) be simultaneously output and the households’ income (the government 

is absent from the analysis). Then, this income is divided in three shares: savings (st), 
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expenditures needed to be integrated in a social group (qt), and consumption (1-st-qt). 

Per capita consumption is, thus, given by )()1( tttt kfqsc ⋅−−= .  

To solve the growth model, we write the corresponding Hamiltonian function (pt 

is a shadow-price of kt), 

 

[ ] [ ]tttttttttt kkfspkfqskqs δ−⋅⋅+⋅−−=ℵ )()()1(ln),,(  (6) 

 

Computing first order conditions, 

 

)()1(

1
0 1

ttt

ts
kfqs

p
⋅−−

=�=ℵ +β  (7) 

 

11 )(
1

++ ⋅⋅−−−=− tt

t

tt pAs
k

pp βδβ  (8) 

 

0lim =
+∞→

t

t

t
t

kp β  (transversality condition) (9) 

 

From (7) and (8), it is possible to derive a difference equation concerning the 

movement of st, 

 

[ ]
δ

β
δ

−+

−⋅
⋅−+⋅−−= ++

1

)1(
1)1(1 11

t

t

tt
As

s
Aqs  (10) 

 

The steady state value of the savings rate is  

 

[ ]
A

qaqqs
)1()1(

)(1 221

βδ
β

−⋅−
−−⋅−−⋅=  (11) 

 

Note that one must assure that the values of parameters are such that 10 << s . If 

such condition is verified, two important points must be highlighted: first, for the values 

of parameters b, θ and ρ that allow for endogenous fluctuations in a , one has 

endogenous cycles characterizing the evolution over time of the long term savings rate. 

Second, equation (10) is unstable �
�

�
�
�

�
>

−+

−+
=

∂

∂ + 1
1

11

δ

δ

sA

A

s

s

t

t . This implies that the 
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equilibrium savings rate is not accomplished if one starts from a point s0 different from 

s  just by allowing the economy to evolve; nevertheless, the savings rate is a control 

variable and therefore the representative agent, knowing in anticipation the steady state 

value in (11), can follow this stable path. 

Allowing for the social group dynamics characterized in section (3) and the long 

term savings rate in (11), the remaining economic aggregates will evolve accordingly in 

the long term. The growth rate of per capita physical capital is  

 

[ ] δβδβγ −−⋅−−−⋅−−⋅= )1()1()(1 221 qaqqAk  (12) 

 

This is also the rate at which per capita consumption grows. The consumption – 

capital ratio is given by 

 

[ ] Aqaqqs
k

c
⋅−⋅−−−== 221 )(1ω  (13) 

 

When the evolution of the composition of social groups is subject to cycles, the 

same happens with the savings rate, the growth rate of capital and with the consumption 

– capital ratio, unless the cost of being part of a group is exactly the same for both 

groups (q1=q2). The illustration of the results is given in figures 5 to 7. For the same 

parameter values as in figures 3 and 4 plus the vector [A δ β q1 q2]=[2  0.02  0.7  0.03  

0.05] one observes the presence of endogenous cycles in the savings rate, in the growth 

rate of the main economic aggregates and in the consumption – capital ratio. 
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Figure 5 – Long term time trajectory of the savings rate 

 

 

Figure 6 – Long term time trajectory of the growth rate 

 

 

Figure 7 – Long term time trajectory of the consumption – capital ratio  

 

5. Final Remarks 

 

Traditionally, growth analysis focus on the trade-off between consumption and 

capital accumulation. Households income has in this case only two destinations in each 

time moment: consumption and savings. In the previous analysis we have introduced a 

third element into household decisions; part of their income is destined to build social 

relations, that is, they directly invest in a fee or any other kind of expenditures that give 

them the right to belong to a certain social group. We have considered that two social 

groups exist and that the main criterion in selecting one of the groups is, besides the 
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referred fee, the dimension of the group. Small groups imply decreasing utility, as well 

as too large groups. Individuals prefer to be members of groups with an intermediate 

number of elements because in this way they can benefit from a network effect that 

loses relevance when the number of elements becomes too high, situation where a 

conspicuous effect dominates. 

The setup allows to establish a rule of time evolution for the share of members of 

each group that is nonlinear, implying a large variety of possible long term results. 

Depending on the values of three parameters (including an intensity of choice attached 

to a discrete choice rule), fixed point stability, cycles of various periodicities and even 

chaotic motion are admissible results.  

The costs of staying with a group are the element that links the social interaction 

setup with the growth framework; this link implies that the savings rate may become 

nonlinear as well; consequently, the economy’s growth rate will exhibit a long term 

path also subject to fluctuations. The main idea enclosed in the proposed model is that 

even if one considers a standard ‘linear’ consumption – capital model, the assumption 

of complex social relations may be passed on to real economic activity, allowing to add 

a new element to the explanation of business cycles.  

 

Appendix – derivation of equation (4) 

 

Expression (3) can be rewritten in the following form: 

 

[ ])exp()exp(lnln 211 tttt bQbQbQa +−=  (A1) 

 

Similarly, for 1-at, 

  

[ ])exp()exp(ln)1ln( 212 tttt bQbQbQa +−=−  (A2) 

 

Combining (A1) and (A2), we obtain equation (A3). 

 

t

t

tt
a

a

b
QQ

−
⋅=−

1
ln

1
12  (A3) 

 

which can be presented one period ahead, 
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Subtracting (A3) to (A4), 
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Now, one replaces (1) and (2) in (A5) to obtain  
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 (A6) 

 

Replacing (A3) in (A6) and rearranging, the intended difference equation, (4), is 

finally obtained. 
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