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Abstract 

We study the two-color problem by Ellsberg (1961) with the modification that the 

decision maker draws twice with replacement and a different color wins in each draw. 

The 50-50 risky urn turns out to have the highest risk conceivable among all prospects 

including the ambiguous one, while all feasible color distributions are 

mean-preserving spreads to one another. We show that the well-known second-order 

sophisticated theories like MEU, CEU, and REU as well as Savage’s first-order 

theory of SEU share the same predictions in our design, for any first-order risk 

attitude. Yet, we observe that substantial numbers of subjects violate the theory 

predictions even in this simple design.  
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1. Introduction 

The Ellsberg Paradox refers to the outcome from Ellsberg’s (1961) thought 

experiments, that missing information about objective probabilities can affect 

people’s decision making in a way that is inconsistent with Savage’s (1954) 

subjective expected utility theory (SEU). Facing two urns simultaneously in 

Ellsberg’s two-color problem, one with 50 red and 50 black balls (the risky urn) and 

the other with 100 balls in an unknown combination of red and black balls (the 

ambiguous urn), most people prefer to bet on the risky urn whichever the winning 

color is. This phenomenon is often called ambiguity aversion. Many subsequent 

experimental studies confirm Ellsberg’s finding as for example surveyed in Camerer 

and Weber (1992).    

To rationalize the Ellsberg-type ambiguity aversion by extending the SEU theory, 

Gilboa and Schmeidler (1989) develop the maxmin expected utility (MEU) theory 

where the decision maker (DM) has a set of prior beliefs associated with the 

ambiguous prospect and assign the minimal SEU utility based on this set as their 

MEU utility. Given MEU, it is not a paradox anymore.
1
  

This seminal work sets off a large literature on what Ergin and Gul (2009) called 

“second-order probabilistically sophisticated” preferences. Abandoning Savage’s 

axiom of “reduction of compound lotteries”, various theories on preferences on 

second or higher order priors have been developed that are also capable of 

rationalizing the original Ellsberg paradox. Among these, the smooth ambiguity or 

Recursive Expected Utility (REU) model by Klibanoff, Marinacci, and Mukerji (2005) 

has the most operational form by assuming one utility function for each belief order in 

a space of two-stage lotteries.
2
 Recent applications of REU on studies of asset pricing 

 
1 Schmeidler (1989) develops the related Choquet Expected Utility (CEU) theory based on axioms. 

The MEU/CEU theory has been further generalized to the general multiple-prior approach. For further 

literature, see Casadesus-Masanell, Klibanoff, and Ozdenoren (2000), Eichberger and Kelsey (2009).  
2 For further two-stage approaches to ambiguity aversion, see Chew, Karni and Safra (1987), Nau 

(2006), Segal (1987, 1990), and Seo (2009) among others. 



show that it indeed enables an internally consistent calibration of ambiguity attitudes 

that fits the data and explains issues such as the equity premium puzzle.
3 

 

Given the success in the applied fields, more experimental investigations about 

the behavioral foundation of the two-stage preference theories are needed. Recently, 

Halevy (2007) has an ingenious experimental design to test the predictions of various 

two-stage preference theories for consistency, where subjects are asked to reveal their 

certainty-equivalent evaluations for gambles from the original Ellsberg urns to urns 

with objective second-order priors that have the same mean as the 50-50 urn. He 

manages to sort each of his subjects into one of the existing (second-order) preference 

theories surveyed in his paper.  

However, all previous experiments on ambiguity aversion we are aware of, 

including Halevy (2007) as well as variations like “bundling” by Halevy and 

Feltcamp (2005), share the feature that the ambiguous prospect can be associated with 

a first-order lottery that is of either lower mean or higher variance than the original 

risky prospect. Thus, they still leave enough slack for, say, a pessimistic belief of the 

maxmin first-order lottery to step in as rationalization for the paradox. One extreme 

test for robustness of the second-order preference theories’ validity is to design an 

experiment that eliminates this room for maneuvering  

This is exactly the purpose of the present paper. We construct a decision problem 

that is a simple modification of Ellsberg’s two-color problem. The risky urn contains 

5 red and 5 white balls, while the ambiguous urn contains 10 balls of an unknown 

combination of the two colors. Instead of drawing only once in the urn of the decision 

maker’s choice, we ask them to draw twice with replacement. Crucial is the rule that a 

different color wins the same amount of 50 Yuan in each different draw. In our 

experiment, red drawn first and white drawn second will ensure a payoff of 100 Yuan.  

Table 1 summarizes all possible first-order lotteries given this payoff rule, with 

iπ  
coding for the lottery with i red balls and 10-i white balls. There are exactly 11 of 
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3 See Chen, Ju, and Miao (2009), Hansen (2007), Hansen and Sargent (2008), Ju and Miao (2009). 



them. Each column lists the distribution of monetary outcome, its mean and its 

variance. For example, the urn with 4 red and 6 white balls, 4π , gives us the 

probabilities of .24, .52, and .24 to earn the prize of 0, 50, and 100 Yuan, respectively; 

with a mean of 50 Yuan and a variance of 34.64. Obviously, our modified Ellsberg 

risky prospect, 5π , has the highest variance of 35.36, while all color compositions 

yield the same mean payoff.  

Table 1: Complete List of Potential First-order Lotteries 
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Our experiment consists of three decision problems, sequentially presented to the 

subjects. We first elicit subjects’ risk attitude regarding simple lotteries using a 

modified BDM mechanism. We then let them make a decision between the risky and 

ambiguous urn in the modified Ellsberg problem, followed by a decision between the 

risky urn and one with uniformly distributed compound lottery. Both the first-order 

theory of SEU and the two-stage ones of MEU/CEU and REU turn out to have the 

same prediction that (first-order) risk-averse subjects should prefer the ambiguous and 

the uniform compound urns to the risky urn in our design!  

We ran this experiment in two different treatments, one in the classroom with 12 

out of 150 participants randomly chosen for monetary payment and another under lab 

conditions with all 75 subjects paid according to their decisions. Among the 137 (72) 

subjects in the random-pay (pay-all) treatment with consistent revelation of risk 

0π  
1π  2π  3π  

4π  5π  6π  7π  8π  9π  10π

Red 0 1 2 3 4 5 6 7 8 9 10 

White 10 9 8 7 6 5 4 3 2 1 0 

p(0) 0 .09 .16 .21 .24 .25 .24 .21 .16 .09 0 

p(50) 1 .82 .68 .58 .52 .50 .52 .58 .68 .82 1 

p(100) 0 .09 .16 .21 .24 .25 .24 .21 .16 .09 0 

mean 50 50 50 50 50 50 50 50 50 50 50 

std 0 21.21 28.28 32.40 34.64 35.36 34.64 32.40 28.28 21.21 0 
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attitude, 53 (25), 42 (25) and 42 (22) turn out to be risk averse, neutral, and seeking 

respectively. Among the risk-averse subjects, 53% (44%) prefer the risky urn over the 

ambiguous one, while 45% (36%) prefer it over the urn with objective second-order 

risk, in separate decision problems. Among the risk-seeking subjects, 55% (36%) 

prefer the ambiguous urn, while 57% (50%) prefer the urn with objective 

second-order risk, respectively. Both violate the theory predictions. With 99% 

confidence, at least 58% (40%) of non-risk-neutral subjects have violated the theory 

predictions at least once over the two main decisions.  

These findings cast serious doubt on rational preference theories as the exclusive 

explanation for decisions under uncertainty involving ambiguity and compound 

lotteries. It appears that many subjects never activated the arithmetic mode of explicit 

risk assessment, in face of ambiguity. This seems consistent with arguments from 

psychologically motivated experiments on ambiguity that probabilities involved are 

not the only factors that help shape decisions. 

Heath and Tversky (1991), for instance, attribute the ambiguity preference to the 

competence which the subjects felt towards the source of the ambiguity. Fox and 

Tversky (1995) consider the Ellsberg phenomenon an inherently comparative effect 

and state that it does not arise in an independent or separate evaluation of uncertain 

prospects (the comparative ignorance hypothesis).
4
 Psychological studies in general 

identify multiple processes (some more effortful and analytic, others automatic, 

associative, and often emotion-based) being in play for decisions under risk or 

uncertainty (Weber and Johnson, 2008).  

Hsu, Bhatt, Adolphs, Tranel and Camerer (2005) find that the level of ambiguity 

in choices correlates positively with activation in the areas relating the integration of 

emotional and cognitive input (the orbitofrontal cortex, OFC) and reaction to 

emotional information (the amygdala). Their data show that the amygdala and OFC 

reacted rapidly, yet the dorsal striatum (activation in this area is correlated with the 

 
4 See Chow and Sarin (2002) and Stecher, Shields and Dickhaut (2010) for more discussions on factors 

inducing ambiguity aversion. 
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expected value of actual choices and reward prediction) reacted slowly. The control 

group of patients with OFC lesions in fact did not distinguish between degrees of 

uncertainty (ambiguity and risk) and behaved consistently with SEU theory. This 

evidence suggests that, when facing ambiguity, the amygdala and OFC activate first 

and deal with missing information independent of its risk implication. In another 

study, Huettel et al. (2006) show, that activation within the lateral prefrontal cortex 

was predicted by ambiguity preference, while activation of the posterior parietal 

cortex was predicted by risk preference.
5
 

In the next section, we discuss our experimental design and derive the associated 

theoretical predictions. Section 3 discusses the data. Section 4 concludes the paper. 

2. Experimental Design, Procedure, and Theoretical Predictions 

Subjects face three simple decision problems one after another. Problem 1 is 

meant to test their (first-order) risk attitude, in a modified BDM procedure (Becker, 

DeGroot, and Marschak, 1964). On a list of 20 cases of sure payoffs that ranges from 

5 to 100 Yuan in steps of 5 Yuan, subjects have to choose either the sure payoff or the 

risky one, Choice B for every case. Choice B is the risky urn with 5 red and 5 white 

balls. Its value is decided by the following rule. A person draws twice with 

replacement. If the first draw is red and the second is white, he gets 100 Yuan; if the 

two draws are of the same color, he gets 50 Yuan; but if the two colors are in the 

order of white first and red second, he gets 0. 

Problem 2 is our main test for predictions regarding ambiguity aversion. In this 

problem, subjects have to decide between Choice B as described above and Choice C. 

Choice C is the ambiguous urn containing 10 balls in the combination of unknown 

colors of red and white. It could be any number between 0 red balls (and 10 white 

balls) to 10 red balls (and 0 white balls). The drawing and payoff rules are exactly the 

 
5 Hsu, in private communication, pointed out that the difference in implicated brain parts between Hsu 

et al. (2005) and Huettel et al. (2006) might be due to the design difference that learning might have 

occurred over repeatedly facing the same task in the latter. In this sense, our design is closer to Hsu et 

al. 
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same as with Choice B. Note, however, the novel feature from our double-drawing 

lottery design of different color winning each round ensures that the mean of the 

lottery is always 50 Yuan, independent of the color composition in the urn. 

Consequently, all compound lotteries can be ordered as mean-preserving spreads to 

one another, with Choice B being associated with the highest possible variance. Table 

1 summarizes the statistical characteristics of potential first-order lotteries in our 

design. 

Problem 3 is a test on preference over objective compound lotteries, where 

subjects are to choose between (the simple risk) Choice B and (the second-order risk) 

Choice D. Again, the drawing and winning rules are the same, but the number of red 

and white balls under Choice D is determined as follows: one ticket is drawn from a 

bag containing 11 tickets with the numbers 0 to 10 written on them. The number on 

the drawn ticket will determine the number of red balls in the urn. For example, if the 

number 3 is drawn, then there will be 3 red balls and 7 black balls in the urn. 

Procedure 

We ran two treatments that differ only in the number of subjects chosen for real 

payment after making decisions as described above. In the random-pay treatment (RP) 

conducted in classrooms, subjects were informed right after the instruction about 

Problem 1, that only three in the classroom (12/150 in total) would be randomly 

chosen to have their decisions implemented and get paid. In the pay-all treatment 

(PA), participants were recruited in the traditional manner for lab experiments. All 

subjects got paid following the implementation of their decisions after the session.
6
  

A total of 225 subjects participated. The RP treatment, conducted in October 2009, 

had four experimental sessions with a total of 150 students who voluntarily stayed for 

about a half hour after classes at Shanghai University of Finance and Economics. In 

three sessions, subjects made decisions in the sequence of Problems 1, 2 and 3, while 

in the fourth session the sequence was Problems 1, 3 and 2. The PA treatment was run 
 

6 Due to time constraints, subjects had the option to implement their decisions either one by one right 

after the session or later at the experimenter’s office with an impersonal ID card we handed out. 



with 75 students in two sessions, in November 2010. Subjects made decisions in the 

sequence of Problem 1, 2 and 3. All participants were first-year college students of 

various majors ranging from economics and management to science and language.  

Our instructions were done with a PowerPoint presentation. After the explanation 

of each problem, students were instructed to make their decisions right away and to 

hand them in before they got instructions for the next problem. Details of the 

instructions can be found in the appendix. 

To increase credibility, we demonstrated drawings with the urn to be used later in 

Choices B and D during instructions. Choice C urn was secretly prepared before the 

session and placed on the counter for all to see until the end. After all decision sheets 

were collected, random drawings determined subjects for real payment in each RP 

session. Then, subjects were called upon to have their decisions implemented one by 

one. They got paid in cash according to the realization of their decisions and were 

dispatched, unless they opted not to wait and would rather do so in the experimenter’s 

office later instead. Average payoff for all 87 subjects with real payment in the two 

treatments was 62.2 Yuan.
7
 

Theoretical Predictions  

Given the structure of our two-draw design, only three outcomes   

are possible from the gambles B, C and D. Let 

{0,50,100}X =

{ , 0,...,10}
i

S iπ= =

i

denote the feasible 

set of first-order lotteries under our design, where π  refers to the lottery with i red 

and (10-i) white balls in the urn. Given the rule that red wins the first draw and white 

the second, for each iπ , the probability is (10 ) /100i
i

q i= −  for either of outcomes of 

0 and 100 Yuan, and 1-2  for the outcome of 50 Yuan. Due to our symmetrical 

design, {i-red, (10-i)-white} and {(10-i)-red, i-white} urns induce stochastically 

i
q
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7 Note that 1 USD = ca. 6.8 Yuan. Regular student jobs paid about 7 Yuan per hour and average first 

jobs for fresh graduates paid below 20 Yuan per hour. As a side note, students indeed regularly 

requested to inspect the content of the ambiguous urn C after the decision implementation. 



equivalent prospects, in all aspects relevant for decision under risk. Mean for iπ  is 

the same 50 for all i. But the variance increases from i= 0 to i=5 and then 

symmetrically decreases from i=5 to i=10. In other words, a more color-balanced urn 

represents a mean-preserving spread gamble to a less balanced urn. Table 1 

summarizes the risk characteristics of all 11 elements in S. 

According to the subjective expected utility (SEU) theory by Savage (1954), 

decision makers assign subjective (first-order) probability 
C

Sπ ∈  where S denotes 

the convex hull of S and evaluate Choice C with 
C

π  together with a utility function u 

defined on the outcome space X. Note, a compound second-order lottery is a 

probability distribution ( )Sμ∈Δ with support in the space of first-order lotteries S. 

Thus, Choice D can be formally identified as . As SEU 

satisfies the axiom of reduction of compound lotteries (ROCL) in case of objective 

compound lotteries, the DM evaluates Choice D with the first-order probability 

10

0(1/11, ) ( )
D i i

Sμ π == ∈Δ

10

0
/11D i i

Sπ π
=

= ∈∑ . Since mean of
D

π is 50 and 5rvar var /11 vaD ii
π π π<=∑ , 5π is 

a mean-preserving spread to
D

π . Consequently, a risk-averse DM is to prefer D to B, 

while risk-seeking ones are to prefer B to D, in Problem 3. Similarly, as any feasible 

subjective probability in S turns out to be a strict mean-preserving contraction to 

5π unless it degenerately puts all weight on the latter, a risk-averse (-seeking) DM is 

also to prefer C to B (B to C), in Problem 2. This exactly illustrates the fundamental 

difference to Ellsberg’s design where a subjective probability can be associated with 

the ambiguity prospect that may yield higher mean or lower variance than the 

benchmark risky prospect. 

The theories of Maxmin Expected Utility (MEU) by Gilboa and Schmeidler 

(1989) and of Choquet Expected Utility (CEU) by Schmeidler (1989) attempt to 

rationalize the Ellsberg paradox by generalizing SEU into a set-valued theory, based 

on axioms. In particular, the DM could change to another “pessimistic” belief of 

9 

 



which first-order probability Sπ ∈ to use for risk assessment, depending on different 

presentation of the ambiguous case. However, due to design, the most pessimistic 

such evaluation of Choice C for a risk-averse DM is always 5π . Consequently, 

MEU/CEU predicts that the risk-averse DM prefers C to B, just like SEU does. 

Moreover, since MEU/CEU merely extends SEU under ambiguity, its prediction for 

Problem 3 is the same as SEU’s, too. 

Under the model of Recursive Expected Utility (REU) for decisions under 

second-order uncertainty by KMM (2005) that has found wide use in applied fields, 

the preference of a rational DM under risk or uncertainty is characterized by two 

different expected utility functions. For any first-order lottery Sπ ∈ , the DM may use 

a von-Neumann-Morgenstern utility index to calculate its certainty equivalent 

. Then, for each second-order lottery

u

( ) ( )
x

C u xπ π=∑ x ( )Sμ∈Δ , the DM may use 

another utility index to calculate the ultimate expected utility as  )(⋅v

 
supp

( ) ( ) ( )U V cππ μ
μ μ π

∈
=∑  

For our problem, the certainty equivalent value of first-order gamble 
i

π  is 

calculated as . Under the assumption of concavity 

and monotonicity of , which also implies first-order risk aversion for the DM, 

and given the ranking of the variance in S, we derive the following ranking of 

associated certainty equivalents. 

[ (0) (100)] (1 2 ) (50)
i i i

C q u u q u= + + −

)(⋅u

  and 543210 CCCCCC >>>>> ii CC −= 10 for i = 0, 1, 2, 3 or 4. 

 If  is concave and monotone, and the decision maker evaluates a bet on the 

bundle from the ambiguous urn using an arbitrary prior 

)(⋅v

( )Sμ∈Δ , expected value of 

Choice C is 
10

0
( ) ( ) ( )

ii
U v C

i
μ μ π

=
= ⋅∑ . Since for all , we have 5( )( )

i
v C v C> 5i ≠

10 
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B  
10

5

0

( ) ( ) ( ) ( ) ( )i i

i

U v C v C Uμ μ π
=

= ⋅ > =∑

For Choice D, μ  is the special case of the uniform distribution on S. As a result, a 

REU decision maker who has risk averse utility functions )(⋅v  and  will rank 

the three choices as follows, U(D)>U(B) and U(C)>U(B).

)(⋅u

8
 In summary, we have our 

following theoretical prediction to test. 

Hypothesis According to the theories of SEU, MEU/CEU, and REU, risk-averse 

individuals (CE<50 in Problem 1) are to choose C over B in Problem 2 and D over B 

in Problem 3, while risk-seeking individuals (CE>50 in Problem 1) are to choose B 

over C or D in both Problem 2 and 3.
9
 

Note that any decision in Problems 2 and 3 by a Problem-1 risk-neutral individual is 

trivially consistent with the theory prediction. And the theories predict that people 

with non-neutral risk attitudes should have a strict preference among the two choices 

in both Problems 2 and 3, which makes it redundant to provide the option of 

indifference between the two choices in Problems 2 and 3 in the design. 

 

3. Experimental Results 

 Problem 1 elicits individuals’ risk attitude. The certainty equivalent value 

(thereafter CE) of the risky lottery (Choice B) in our experiment is defined as the 

lowest value, at which one starts to prefer sure payoff to the lottery. The majority of 

subjects revealed monotone behavior of switching from B to A with increasing sure 

payoffs. Only 13 out of 150 subjects (8.6%) in the random-pay treatment and 3 out of 

75 subjects (4%) in the pay-all treatment switched back from A to B,
10

 which are 

                                                        
8 In fact, v only needs to be monotone for this result to be correct, due to the special structure of our 

gamble design. Note, if ( )Sμ∈Δ is allowed, then Jensen’s inequality is needed to prove the claim, 

which requires v to be convex. 

9 In fact, the same can be proved for the so-called Recursive Non-Expected Utility (RNEU) by Segal 

(1987, 1990). For the sake of brevity, we elect to not discuss its tedious proof here. 

10 Note that the t-test yields p-value of 0.1004 indicating no significant difference. The 90% confidence 
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deemed anomaly and excluded from our data analysis. Subsequent analysis only uses 

the remaining samples of 137 subjects in RP and of 72 subjects in PA, respectively.  

The average certainty equivalent value for the RP treatment (PA treatment) is 46.3 

(49.65) with standard deviation of 16.1 (11.11). We have 38.68% (34.72%) of the 

subjects with CE<50, 30.66% (34.72%) with CE=50 and 30.66% (30.56%) with 

CE>50, which correspond to the attitudes of risk aversion, risk neutrality and risk 

seeking respectively.
11

 Wilcoxon signed-rank test reveals no significant difference 

between RP and PA regarding subject risk attitudes (p=0.2867). Figure B1 in the 

appendix shows the distributions of subjects’ CE values. 

 As a methodological note, most experiments on the Ellsberg paradox use the 

standard BDM mechanism in which the subject is asked to state a minimum 

certainty-equivalent selling price to give up the lottery he has been endowed with.
12

 

This auction procedure provides a formal incentive for the subject to truthfully reveal 

their CE of the lottery. However, in its original form it appears hard for some subjects 

to comprehend. In a pilot study where subjects were to make binary decisions first and 

to reveal a BDM price for each of their choices second, 26 out of 89 subjects (29.2%) 

displayed inconsistent evaluations.
13

 Thus, we choose to use a modified version of the 

BDM mechanism to elicit subjects’ first-order risk attitude. First, instead of asking 

subjects to reveal a single selling price, we ask them to make 20 simple binary 

decisions, where a randomizing device
14

 determines which of them is realized.
15 

In 

 
interval of the binomial proportion test is [.074, .151] for 13/150 in RP, and [.011, .100] for 3/75 in PA. 

Thus, neither sample rejects with 10% significance the hypothesis that q [100. ,074.] ג be the expected 

ratio of inconsistency. 

11 For comparison, Halevy (2007) uses the standard BDM mechanism. In a sample of 105 subjects, 

31.7%, 30.5%, and 38.5% of people are risk averse, neutral, and seeking, respectively.  

12 See summary in Stecher, Shields and Dickhaut (2010) for example. 

13 More specifically, aside from Problem 2 and 3 binary decisions as in this paper, subjects in the pilot 

faced another choice between urn B and an urn with equal likelihood of either 3 or 7 red balls. After the 

binary decision is made, the subject has to announce their selling price for their preferred prospect.  

14 To quote Harrison and Rustrom (2008), “For the instrument to elicit truthful responses, the 

experimenter must ensure that the subject realizes that the choice of a buying price does not depend on 

the stated selling price. If there is reason to suspect that subjects do not understand this independence, 

the use of physical randomizing devices (e.g., die or bingo cages) may mitigate such strategic 

thinking.” And the 29.2% inconsistency rate encountered in the mentioned pilot using the original 



addition, the binary decision in our modified BDM is similar in shape to the 

subsequent parts of the experiments, which facilitates the comparison to ambiguity 

attitudes.
16
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Figure 1: Distribution of Choice Profiles 

Figure 1 summarizes the distribution of individual behavior in both Problem 2 and 3 

decisions, separately grouped for different risk attitudes. Each subject’s behavior is 

characterized by one of the four types of choice combination BB, BD, CB and CD, 

which they made in Problem 2 and Problem 3 respectively. Simple regression reveals 

that orders of Problem 2 and 3 have no significant effect on decisions, so that we can 

pool data from all sessions within each treatment.
17

 Moreover, the chi-square 

goodness-of-fit test yields p-values of 0.7739 (0.3449), 0.4298 (0.2035) and 0.062 

(0.1529), for the risk-averse, -neutral and -seeking samples in RP (PA), which reject 

the null hypotheses of pure behavior randomization in any case. 

Table 2 summarizes all relevant cases of violations against the theoretical 

Hypothesis, along with the lower bounds of their 99% and 95% binomial proportion 

                                                                                                                                                               
BDM fittingly echoes this reasoning. 

15 Sapienza, Zingales and Maestripieri (2009) use a similarly modified BDM method, which they 

consider an adaptation from the mechanism used in Holt and Laury (2002). 

16 Weber and Johnson (2008) argue that, when measuring levels of risk taking with the objective of 

predicting risk taking in other situations, it is important to use a decision task that is as similar as 

possible to the situation for which behavior is being predicted. 

17 See Table B1 in Appendix B. 
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confidence intervals.  

Table 2: Violations to Hypothesis and Confidence Intervals 

 Sample size Problem 2 Problem 3 
Problems 

2&3 

Random-pay

risk averse 

53 52.83% [28]

(.3466/.3864)

45.28% [24] 

(.2786/.3156)

71.7% [38] 

(.5339/.5765) 

     

Random-pay

risk seeking 

42 54.76% [23]

(.3423/.3867)

57.14% [24] 

(.3644/4096) 

71.43% [30] 

(.5062/.5542) 

     

Random-pay

combined 

95 53.68% [51]

(.4008/.4315)

50.53% [48] 

(.3705/.4007)

71.58% [68] 

(.5825/.6140) 

     

Pay-all  

risk averse 

25 44% [11] 

(.1974/.2440)

36% [9] 

(.1399/.1797)

60% [15] 

(.3298/.3867) 

     

Pay-all  

risk seeking  

22 40.91% [9] 

(.1618/.2071)

50% [11] 

(.2293/.2822)

59.09% [13] 

(.3046/.3635) 

     

Pay-all  

combined 

47 42.55% [20]

(.2451/.2826)

42.55% [20] 

(.2451/.2826)

59.57% [28] 

(.3989/.4427) 

Note: Numbers in parentheses (-/-) refer to lower bounds of 99% and 95% confidence intervals. 

Numbers in [-] refer to size of violation observations. Under risk aversion, violation refers to 

choices of B in Problem 2 or 3, and to non-CD choice profiles under Problems 2&3. Under risk 

seeking, violation refers to choices of C in Problem 2 or D in Problem 3, and to non-BB under 

Problems 2&3. 

We consistently observe at least 40% violations in all but one situation (36%). 

The Pay-all treatment seems to induce slightly lower numbers of violations than the 

Random-pay treatment does, across the board. Yet, the Wilcoxon signed-rank test 

reveals no significant difference between the treatments, with p=0.4696 (p=0.4416), 

p=0.7789 (p=0.8200), and p=0.2963 (p=0.5886) for risk-averse, -neutral and –seeking 

subjects in Problem 2 (Problem 3), respectively.  

Note the boundaries [y, z] of any (100-x)% confidence interval can be interpreted 

as implying that a hypothetical parameter within [y, z] cannot be statistically rejected 

to the significance level of x%, while it can be rejected outside of [y, z] to the level of 

x%. Consequently, we conclude that our data cannot reject at the 5% significance 
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level that at least 38.64% (24.4%) risk-averse and 38.67% (20.71%) risk-seeking 

subjects would regularly violate the theoretical prediction in Problem 2 under the RP 

(PA) treatment. The situation does not change much if subjects face Problem 3 where 

the ambiguous choice C of Problem 2 is replaced by choice D with objective 

second-order risk. With 95% confidence, we expect at least 31.56% (17.97%) of 

risk-averse and 40.96% (28.22%) of risk-seeking people to behave in violation of the 

prediction of second-order preference theories under risk, in treatment RP (PA). 

Moreover, among the revealed non-risk-neutral people, we expect with 95% 

confidence that at least 61.4% (44.27%) would violate the theory predictions at least 

once after facing both Problems 2 and 3 in RP (PA). 

In summary, our data reject the theoretical predictions of the Hypothesis and 

suggest that a substantial share of people regularly behave in a way that is inconsistent 

with all preference theories. 

4. Concluding Discussion 

Ambiguity aversion has often been rationalized with second-order 

probabilistic sophistication approaches of rational preference theory. Our results 

cast serious doubt on their universal applicability. Even in fairly simple decision 

problems as our Problems 2 and 3, there is a substantial share of individuals 

whose behavior cannot be explained with any existing (second-order) economic 

preference theory. 

Recent neuroimaging studies like Hsu et al. (2005) and Huettel et al. (2006) 

compare brain activation of people who choose between ambiguous vs. risky 

options and suggest that these two types of decision making follow different 

brain mechanisms and processing paths. Our findings suggest that this 

dichotomy in brain activity may be triggered for a sizeable share of people even 

when ambiguity is completely dissociated from higher risk as in Problem 2 here. 
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Appendix A: Instructions (Slides translated from Chinese original) 

[Slide 1]  Problem 1: Making a choice between option A and urn B 

 

♦ Urn B contains 5 red balls and 5 white balls.  

 

 

 

♦ Payoff rule for urn B: Two balls are to be drawn from urn B with replacement. 

You get 50 Yuan if the first ball drawn is red and nothing if it is white. 

Conversely, you get 50 Yuan if the second ball drawn is a white and nothing if it 

is red. You get paid the sum of money earned in the two draws. 

B 

 

 

 

 

[Slide 2] Decision sheet for Problem 1 

Make a choice by checking either option A or urn B in each row 

Situation Payoff of Option A Option A Urn B 

1  5 Yuan   

2  10 Yuan   

3  15 Yuan   

… …   

9  45 Yuan   

10  50 Yuan   

…  …   

19  95 Yuan   

20  100 Yuan   
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[Slide 3] Rules for session ending implementation of decisions 

 

♦ [used in the RP treatment] Because of the time constraint, at the end of the 

experiment, we will randomly choose 3 students for real monetary payment. 

Every selected student will draw one of the three cards numbered 1, 2 3, which 

represent three decision problems in today’s experiment. We will pay you 

depending on the realization of your decision in that problem. 

 

[used in the PA treatment] In the end of the experiment, you will be paid based 

on the realization of your choices. You draw one of the three cards numbered 1, 2 

3, which represent three decision problems in today’s experiment. We will pay 

you depending on the realization of your decision in that problem. 

 

♦ For example, one draws a card of number 1 and would realize his payoffs from 

Problem 1. He is asked to draw one of the twenty cards representing 20 situations 

of option A, and he draws number 1. If his choice in situation 1 is “urn B”, then 

we will let him draw balls from urn B to realize his payoffs. If his choice in 

situation 1 is A, then we will pay him 5 Yuan immediately. 

 

[Slide 4] Problem 2: Make a choice between urn B and urn C 

♦ Urn C contains a mixture of 10 red and white balls. The number of red and white 

balls is unknown; it could be any number between 0 red balls (and 10 white balls) 

to 10 red balls (and 0 white balls). 

♦ Payoff rule for urn C: same as Payoff rule for urn B. 

 

[Slide 5] Decision sheet for Problem 2  
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Question: If you are asked to make a choice between urn B and urn C, which urn will 

you choose? 

 

 □Urn B                □Urn C 

 

CB



[Slide 6] Problem 3: Make a choice between urn B and urn D 

♦ Urn D contains a mixture of 10 red and white balls. The number of red and white 

balls is determined as follows: one ticket is drawn from a bag containing 11 

tickets with the numbers 0 to 10 written on them. The number written on the 

drawn ticket will determine the number of red balls in the urn. For example, if the 

number 3 is drawn, then there will be 3 red balls and 7 black balls in the urn. 

♦ Payoff rule for urn D: same as Payoff rule for urn B. 

 

[Slide 7] Decision sheet for Problem 3 
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Question: If you are asked to make a choice between urn B and urn D, which urn will 

you choose? 

 

□Urn B                □Urn D 

 

Gender       □Male                □Female 

 

DB 

21 3 4 0

Draw the number of red balls in urn D  

6 7 8 9 5

10



Appendix B: Further Data  
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Figure B1: Distribution of Certainty Equivalent Value in Problem 1   

On the order effect of Games 2 and 3 in random-pay treatment 

Whether the placement of Problem 2 and Problem 3 affects decisions is a justified 

concern. To control for this, in the random-pay treatment, we collected 100 

observations in the sequence of Problems 1, 2 and 3 and 37 observations in the 

sequence of Problems 1, 3 and 2, for reserved order between Problems 2 and 3.  

Logistic regressions reported in Table B1 confirm that no order effect is found, as 

the coefficients of the variable Order prove to be insignificant for both Problem 2 and 

3 decisions. Interestingly, Problem 1 CE level also has no effect on Problem 2 and 3 

behavior. There is, however, a significant gender effect in the Problem 3 decision, 

where females tend to choose B less frequently than D.  

Table B1: Binary logit model of Choice B in Problem 2 and Problem 3 

 Choice B in 

Problem 2 

Choice B in 

Problem 3 

Order -0.08  (0.387) 0.184 (0.398) 

CE -0.018 (0.055) -0.051 (0.057) 

Female 0.042 (0.353) -0.708* (0.360) 

Constant 0.304 (0.660) 0.502 (0.677) 

Observation 135 135 

R square 0.0009 0.0253 

* Significant at 10% level 
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