Wylomanska-, Agnieszka (2010): Measures of dependence for Ornstein-Uhlenbeck processes with tempered stable distribution. Forthcoming in:
Preview |
PDF
MPRA_paper_28535.pdf Download (139kB) | Preview |
Abstract
In this paper we investigate the dependence structure for Ornstein-Uhlenbeck processes with totally skewed tempered stable structure. They are natural extension of Ornstein-Uhlenbeck processes with stable (and Gaussian) distribution. However for the stable models the covariance is not defined therefore in order to compare the structure of dependence of Ornstein-Uhlenbeck with tempered stable and stable structure we analyze another measures of dependence defined for infinitely divisible processes such as Levy correlation cascade and codifference. We show that for analyzed processes the Levy correlation cascade goes faster to zero as in the stable case, while the codifference of the stable Ornstein-Uhlenbeck process has the same form as in the tempered case.
Item Type: | MPRA Paper |
---|---|
Original Title: | Measures of dependence for Ornstein-Uhlenbeck processes with tempered stable distribution |
English Title: | Measures of dependence for Ornstein-Uhlenbeck processes with tempered stable distribution |
Language: | English |
Keywords: | truncated Levy flight, tempered stable, Ornstein-Uhlenbeck process, structure of dependence |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods |
Item ID: | 28535 |
Depositing User: | Agnieszka Wylomanska |
Date Deposited: | 02 Feb 2011 02:19 |
Last Modified: | 28 Sep 2019 11:11 |
References: | [1] G.E.Uhlenbeck and L.S. Ornstein, Phys. Rev. 36, 823 (1930). [2] O. Vasicek, J. Fin. Econ.5, 177 (1977). [3] S. Mittnik and S.T. Rachev, Stable Paretian Models in Finance, Wiley, New York (2000). [4] A. Janicki and A. Weron, Stat. Sci. 9, 109 (1994). [5] B.W. Stuck and B. Kleiner, Bell System Technical Journal 53, 1263 (1974). [6] O. Barndorff-Nielsen and N. Shepardt, J. Roy.Statist. Soc.Ser. B 63, 1 (2001). [7] Y.S. Kim, Svetlozar. T. Rachev and M. L. Bianchi, Frank J. Fabozzi, Computing VAR and AVaR in Infinitely Divisible Distributions, Yale ICF Working Paper No. 09-07, March 2009, $http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1400965$. [8]J. Rosinski, Stoch. Proc. Appl. 117, 677 (2007). [9]G. Terdik and W. A. Woyczynski, Probab. Math. Stat. 26, 213 (2006). [10]B. Baumer and M.M. Meerschaert, Journal of Computational and Applied Mathematics 233, 2438 (2010). [11] R. N. Mantegna and H. E. Stanley, Phys. Rev. Lett. 73, 2946 (1994). [12] R. N. Mantegna and H. E. Stanley, J. Stat.Phys. 89, 469 (1997). [13] R. N. Mantegna, Physica A 318, 279 (2003). [14]I. Koponen, Phys. Rev. E 52, 1197 (1995). [15] S.Boyarchenko and S.Levendorskii, Ann. Appl. Prob. 12 (4), 1261 (2002). [16] P. Carr, H. Geman, D. Madan and M. Yor, Journal of Business 75 2, 305 (2002). [17] J. Boyarchenko and S. Z. Levendorskij, Int. J. Theor. Appl. Finance 3, 549 (2002). [18] Y.S. Kim, D. M. Chung, Svetlozar. T. Rachev and M. L. Bianchi, Prob. Math. Statist. 29 (1), 91 (2009). [19] Y.S. Kim, Svetlozar. T. Rachev, M. L. Bianchi and Frank J. Fabozzi, A New Tempered Stable Distribution and Its Application to Finance, Georg Bol, Svetlozar T. Rachev, and Reinold Wuerth (Eds.), Risk Assessment: Decisions in Banking and Finance, Physika Verlag, Springer 2007. [20] P. Hougaard, Biometrika 73, 387 (1986). [21] A.Stanislavsky, K.Weron and A.Weron, Phys. Rev. E 78 051106 (doi:10.1103/PhysRevE.78.051106). [22] B. Dubrulle,J.-Ph.Laval, Eur. Phys. J.B. 4, 143, (1998). [23] R. Jha, P.K.Kaw,D.R. Kulkarni, J.C. Parikh and A. Team, Phys. Plasmas 10, 699 (2003). [24] I.M Sokolov, A.V. Chechkin and J. Klafter, Pysica A 336, 245 (2004) [25] A.V. Chechkin, V.Yu Gonchar, J. Klafter and R. Metzler, Phys. Rev E. 72(2005) 010101. [26] M. E. Caballero, J. C. Pardo and J. L. Pérez, Prob. Math Statist. 30 (1), 1 (2010). [27] K. Burnecki, A. Misiorek, R. Weron, Loss distributions, in: Statistical Tools for Finance and Insurance, P. Cizek, W. Haerdle, R. Weron eds., Berlin, Springer, 2005. [28] I. Eliazar and J. Klafter, Physica A 376, 1 (2007). [29] M. Magdziarz, Stoch Process. Appl. 119 (10), 3416 (2009). [30] G. Samorodnitsky and M.S.Taqqu,Stable Non-Gaussian random processes.Chapman Hall, New York (1994). [31] J. Nowicka-Zagrajek and A. Wylomanska, Acta Phys. Polon. B \textbf{37} (11), 3071 (2006). [32] J. Nowicka-Zagrajek and A. Wylomanska, Stoch. Models 24 (1), 58 (2008). [33] I.M. Sokolov, W. Ebelling and B. Dybiec, Harmonic oscillator under Levy noise: Unexpected properties in the phase space, arXiv: 1010.2657v1 [34] P.J.Brockwell, R.A.Davis and Y.Yang, J.Appl.Prob. 44, 977 (2007). [35] P.J.Brockwell and T.Marquardt, Statistica Sinica 15, 477 (2005). [36] O. Onalan, International Research Journal of Finance and Economics 42, 129 (2010). [37] G. Arfken, Modified Bessel Functions, $Inu(x)$ and $Knu(x)$ in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 610 (1985). [38] S. Cambanis, C.D. Hardin Jr and A. Weron, Stoch. Process. Appl. 24, 1 (1987). [39] S. Cambanis, K. Podgorski and A. Weron, Studia Math. 115, 109 (1995). [40] A. Wylomanska, Comparison of discrete ARMA models and continuous-time CARMA processes with stable Levy motion, prerint (2010) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/28535 |