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Abstract

IV estimators for the semi-strong ARCH(1) model that rely on past squared resid-
uals alone as instruments do not extend to the GARCH case. E¢cient IV estimators of
the semi-strong GARCH(1,1) model require the derivative of the conditional variance
as well as both the third and fourth conditional moments to be included within the in-
strument vector. This paper proposes IV estimators for the semi-strong GARCH(1,1)
model that only rely on past residuals and past squared residuals as instruments. These
estimators are based on the autocovariances of squared residuals, as in the ARCH(1)
case described above, as well as on the covariances between past residuals and current
squared residuals. These latter covariances are nonzero if the residuals are skewed.
Jackknife GMM estimators and jackknife continuous updating estimators (CUE) elim-
inate the bias caused by many (weak) instruments. The jackknife CUE is new and
applies to cases where the optimal weighting matrix is unavailable out of a concern
over the existence of higher moments. In these cases, a robust analog to the variance-
covariance matrix determines the weighting matrix. A Monte Carlo study shows that a
CUE based on the optimal weighting matrix as well as the jackknife CUE outperforms
QMLE in �nite samples. An empirical application involving Australian Dollar and
Japanese Yen spot returns is also included.

Keywords: GARCH, GMM, instrumental variables, continuous updating, many
moments, robust estimation. JEL codes: C13, C22, C53.

1 I wish to thank Stephen Kane, Celso Brunetti, Pat Fishe, seminar participants at the 2010 International Symposium on
Forecasting, the 2010 Society for Computational Economics Conference on Computing in Economics and Finance, and the
Commodity Futures Trading Commission for helpful comments and discussions. The views expressed herein are solely those of
the author and do not re�ect o¢cial positions of the Commodity Futures Trading Commission. In addition, the usual disclaimer
applies.

2Corresponding Author: Todd Prono, Commodity Futures Trading Commission, O¢ce of the Chief Economist, 1155 21st,
N.W., Washington, DC 20581. (202) 418-5460, tprono@cftc.gov.

1



1. Introduction

Despite a plethora of alternative volatility models intended to capture certain "stylized

facts" of �nancial time series, the standard GARCH(1,1) model of Bollerslev (1986) remains

the workhorse of conditional heteroskedasticity (CH) modeling in �nancial economics. By

far, the most common estimator for this model is the quasi maximum likelihood estimator

(QMLE). Properties of this estimator are well-studied. Weiss (1986) and Lumsdaine (1996)

demonstrate that when applied to the strong GARCH(1,1) model, the QMLE is consis-

tent and asymptotically normal (CAN). Bollerslev and Wooldridge (1992), Lee and Hansen

(1994), and Escanciano (2009) generalize this result to the semi-strong GARCH(1,1) model.

In this paper, I also consider estimation of the semi-strong GARCH(1,1) model, but I do so

through the lens of generalized method of moments (GMM) estimators. I propose simple

GMM estimators constructed from: (i) the covariances between past residuals and current

squared residuals, (ii) the autocovariances between squared residuals. These estimators are

asymptotically equivalent to instrumental variables (IV) estimators where the instrument

vector is completely contained within the time t� 1 information set.
Weiss (1986), Rich, Raymond and Butler (1991), and Guo and Phillips (2001) discuss IV

estimators for the ARCH(1) model that are based on the autocovariances between squared

residuals. These estimators, however, do not extend to the GARCH(1,1) case because the

autocovariances of squared residuals alone are insu¢cient for identifying the model. I show

that the covariances between past residuals and current squared residuals are su¢cient for

identifying the GARCH(1,1) model, if the residuals are skewed. The key identifying as-

sumption for the GMM estimators in this paper, therefore, is unconditional skewness in the

residuals being modeled. Such a feature is common in many high frequency �nancial return

series to which the GARCH(1,1) model is applied.

Bollerslev and Wooldridge (1992) recognize that the "results of Chamberlain (1982),

Hansen (1982), White (1982), and Cragg (1983) can be extended to produce an instrumental

variables estimator asymptotically more e¢cient than QMLE under nonnormality" (p. 5-6)

for the GARCH(1,1) model. Skoglund (2001) studies this result in detail for the strong

GARCH(1,1) model. When applied to the semi-strong GARCH(1,1) model, however, this
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result necessitates the conditional variance function, its �rst derivative, as well as the third

and fourth conditional moments to be included within the moment conditions. In contrast,

the GMM estimators I propose require none of these features. Speci�cally, neither does the

conditional variance function enter the moment conditions nor do the dynamics of the third

and fourth moments need to be estimated. These omissions are what render my estimators

simple. Such simplicity, of course, comes at the cost of diminished e¢ciency. However, even

these simple estimators are shown to exhibit superior �nite sample performance over QMLE.

These simple GMM estimators are variance targeting estimators (VTE), since the uncon-

ditional variance is estimated in a preliminary �rst step and then plugged into the sample

covariances and autocovariances used in a second step. The estimators are shown to be CAN

under less restrictive moment existence criteria than in Weiss (1986) and Rich, Raymond,

and Butler (1991). Moreover, the �rst step variance estimate is shown to have no asymptotic

e¤ect on the second step ARCH and GARCH parameter estimates.

Since the proposed estimators are overidenti�ed, the choice of a weighting matrix for the

moment conditions is a material concern, especially for �nite sample performance. Following

Hansen (1982), the standard, optimal, choice for a weighting matrix involves the variance-

covariance matrix of the functions comprising the moment conditions. However, since the

estimators I propose de�ne moment conditions in terms of the third and possibly the fourth

moments, use of the variance-covariance matrix for these particular moment functions in-

volves moment existence criteria up to at least the sixth and possibly the eighth moment.

While not so strong as to exclude certain low ARCH, high GARCH processes encountered

in empirical applications, such criteria are nevertheless quite strong, especially for certain

�nancial data. Owing to this consideration, I propose a rank dependent correlation matrix

as a robust analog to the variance-covariance matrix for use in the weighting matrix of simple

GMM estimators for the semi-strong GARCH(1,1) model. This robust analog (i) requires

no more than fourth moment existence for consistency, and (ii) provides superior �nite sam-

ple performance over simple GMM estimators that utilize a non data dependent weighting

matrix like the identity matrix.

Because the proposed GMM estimators are IV estimators where the instrument vector

is constructed from past residuals and past squared residuals, there are many potential
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instruments. From Newey andWindmeijer (2009), the continuous updating estimator (CUE)

of Hansen, Heaton, and Yaron (1996) with an optimal weighting matrix is robust to the biases

caused by many (potentially weak) instruments; as is the jackknife GMM estimator (JGMM),

which deletes contemporaneous observations from the double sum that forms the GMM

objective function. The �nite sample properties of both of these estimators is investigated

in the context of semi-strong GARCH(1,1) model estimation. In addition, I propose the

jackknife CUE (JCUE) for cases where the optimal weighting matrix is unavailable out of

a concern over the existence of higher moments, so the robust analog is used instead. Like

the JGMM, the JCUE also removes the term responsible for the many (weak) moments bias

though, in this case, from the CUE objective function. In either the case of the JGMM or the

JCUE, consistency is demonstrated without the need for considering the variance-covariance

matrix of the moment functions. Doing so avoids the higher moment existence criteria

requisite for the optimal CUE (OCUE), thus making the JGMM and the JCUE robust

alternatives.3 Monte Carlo studies show both the OCUE and the JCUE to be more e¢cient

than QMLE in �nite samples. These e¢ciency gains relate to the number of instruments

used in constructing the respective estimators.

The remainder of this paper is organized as follows. Section 2 outlines the model�s

assumptions and states two lemmas that de�ne a set of moment conditions for identifying

the GARCH(1,1) model. From these moment conditions, Section 3 establishes simple GMM

estimators, develops their properties, and proposes a data dependent weighting matrix for the

moment conditions that does not require higher moment existence criteria for consistency.

Section 4 discusses bias-free estimation given many (potentially weak) instruments and gives

a consistency result for the JGMM and JCUE. Section 5 discusses Monte Carlo results for

the proposed estimators. Section 6 details an empirical application involving Australian

Dollar and Japanese Yen spot returns, and Section 7 concludes.

2. The Model and Implications

For the sequence fYtgt2Z, let zt be the associated �-algebra where zt�1 � zt � � � � � z.
3Throughout this paper, the OCUE refers to the CUE with an optimal weighting matrix.
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The �rst two conditional moments of Yt are parameterized as

E
�
Yt j zt�1

�
= 0; E

�
Y 2t j zt�1

�
= ht; (1)

where

ht = !0 + �0Y
2
t�1 + �0ht�1: (2)

In what follows, !0 denotes the true value, ! any one of a set of possible values, and b!
an estimate. Parallel de�nitions hold for all other parameter values. The model of (1) and

(2) describes a semi-strong GARCH(1,1) process according to De�nition 2 of Drost and

Nijman (1993). The more common strong GARCH(1,1) speci�cation where
Yt

h
1=2
t

is iid and

drawn from a known distribution nests as a special case. Consider the following additional

assumptions for the model of (1) and (2).

ASSUMPTION A1: Let �20 =
!
0

1�(�
0
+�

0
)
> 0, and de�ne �0 = (�

2
0; �0; �0)

0. �0 2 � � <3

is in the interior of �, a compact parameter space. For any � 2 �, @ � ! � W ,

@ � � � 1�@, and 0 � � � 1�@ for some constant @ > 0, where @ and W are given

a priori.

The restrictions on � ensure that ht is everywhere strictly positive. From Lumsdaine

(1996), � is strictly positive because if � = 0, then ht is completely deterministic, in which

case !0 and �0 are not separately identi�ed. Since � � 0, A1 nests the ARCH(1) model.

Implicit in A1 is the condition that �0 + �0 < 1, in which case Yt is covariance stationary

with E [Y 2t ] = �
2
0 following from Theorem 1 of Bollerslev (1986).4

The mean-adjusted form of (2) is

eht = �0eY 2t�1 + �0eht�1; (3)

where eht = ht � �20 and eY 2t = Y 2t � �20. An implication of (2) is that

eY 2t = eht +Wt; (4)

4Covariance stationarity implies additional restrictions on �, namely that f(�; �) : �+ � < 1g.
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whereWt is a martingale di¤erence sequence (MDS) by construction, with E
�
Wt j zt�1

�
= 0

and E
�
WtWt�k

�
= 0 8 k � 1. Recursively substituting eht�� into (3) for � � 1 produces

eht =
t�1P
i=0

�0�
i
0
eY 2t�1�i + �t0eh0; (5)

for some arbitrary constant eh0. Using (5) to solve (4) forward from t = 1 setting eY 20 = 0

produces

eY 2t = Wt + �0
t�1P
i=1

(�0 + �0)
i�1Wt�i + �0 (�0 + �0)

t�1 eh0; (6)

which shows that the GARCH(1,1) model relates eY 2t to a weighted sum of current and past

innovations. A similar recursion is found for the ARCH(p) model in Guo and Phillips (2001).

Moment properties for Wt are central to de�ning simple GMM estimators for (3) and are

the subject of the following two assumptions.

ASSUMPTION A2: (i) E [WtYt] = 0 6= 0 8 t. (ii) The sequence fWtYt � 0g is an L1

mixingale as de�ned in Andrews (1988) and is uniformly integrable. (iii) The sequences
�
Wt�lYt�k

	
where k; l = 1; : : : ; K and k 6= l are uniformly integrable.

Since Yt is a MDS, (4) and an application of the law of iterated expectations assuming

stationarity grants that

E
�
Y 3t
�
= E

h
eY 2t Yt

i
(7)

= E
h�
eht +Wt

�
Yt

i

= E [WtYt] :

Given A2(i), Yt is asymmetric with a stationary third moment. The process governing

the conditional third moment of Yt is restricted by A2(ii). An L
1 mixingale exhibits weak

temporal dependence in that the m-step-ahead forecast of the random variable converges (in

absolute expected value) to an unconditional mean of zero. This temporal dependence need

not decay towards zero at any particular rate and includes certain autoregressive moving

average (ARMA) and in�nite order moving average (MA) processes. Given the functional

form of (2), allowing the third moment to display similar dynamics seems natural. Moreover,
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Harvey and Siddique (1999) present empirical evidence from stock return data that the

conditional third moment follows an ARMA-style process.

Uniform integrability allows a weak LLN to apply toWtYt�0 andWt�lYt�k (See Lemma

3 in the Appendix). A su¢cient condition for this result is that the given sequence be Lp

bounded for some p > 1. According to Andrews (1988), however, "it is preferable to impose

the uniform integrability assumption rather than an Lp bounded assumption because the

former allows for more heterogeneity in the higher order moments of the rv�s" (p. 3). This

statement guides the formulation of A2(ii) and A2(iii).

ASSUMPTION A3: (i) E [W 2
t ] = �0 8 t. (ii) The sequences

�
WtWt�k

	
are uniformly

integrable. (iii) The sequence fW 2
t � �0g is an L1 mixingale and is uniformly inte-

grable.

Suppose

Yt = h
1=2
t �t; (8)

where �t is iid with a mean of zero and a unit variance. Then A3(i) is equivalent to assuming

that

(�+ 1)�20 + 2�0�0 + �
2
0 < 1; � = E

�
�4t
�
� 1; (9)

which is the necessary and su¢cient condition for establishing existence of the fourth mo-

ment of Yt according to Theorem 1 of Zadrozny (2005).
5 A3(i), of course, implies covariance

stationarity for Yt. Moreover, it imposes additional restrictions on the parameter set (�; �),

comparable to
�
(�; �) : (�+ 1)�2 + 2�� + �2 < 1

	
but of an unknown form, owing to

potential dependence in �4t . A3(ii)-(iii) permit a weak LLN to apply to the sample autoco-

variances of Y 2t . A3(iii) assumes that the same general type of process governing the third

moment (see A2ii) also governs the fourth. This assumption is supported empirically by the

results of Hansen (1994).

LEMMA 1. Let Assumptions A1 and A2(i) hold for the model of (1) and (2). Then

E
h
eY 2t Yt�1

i
= �0E [WtYt] ; (10)

5If �t is normally distributed, then this inequality follows from Theorem 2 of Bollerslev (1986) with � = 2.
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and

E
h
eY 2t Yt�(k+1)

i
= (�0 + �0)E

h
eY 2t Yt�k

i
: (11)

Proof. All proofs are stated in the Appendix.

Lemma 1 relates the covariance between Y 2t and Yt�k to the third moment of Yt.
6 Lemma

1 of Guo and Phillips (2001) establishes an analogous result for the ARCH(p) model. In

contrast to Guo and Phillips, however, the Lemma presented here is central to identi�cation

by providing the moment condition in (10) that is only a function of the data and of �0.

Separation of �0 from �0 is the direct consequence of a nonzero third moment. Skewness

in the distribution of Yt, therefore, is the key identifying assumption for the simple GMM

estimators that I discuss.

Newey and Steigerwald (1997) explore the e¤ects of skewness on the identi�cation of

CH models using the QMLE. This paper conducts a similar exploration for certain GMM

estimators. Newey and Steigerwald show that given skewness, there exist conditions under

which the standard QMLE for CH models is not identi�ed. This paper, in contrast, develops

simple GMM estimators that are not identi�ed without such skewness.

LEMMA 2. Given the model of (1) and (2), Y 2t is covariance stationary if and only if A1

and A3(i) hold. In this case,

E
h
eY 2t eY 2t�(k+1)

i
= (�0 + �0)E

h
eY 2t eY 2t�(k)

i
: (12)

Mark (1988), Bodurtha and Mark (1991), Rich, Raymond, and Butler (1991), as well

as Guo and Phillips (2001) estimate ARCH models from the autocovariances of squared

residuals. Such an approach requires these squared residuals to be covariance stationary.

Lemma 2 provides necessary and su¢cient conditions for this result and is closely related to

Theorem 3 of Hafner (2003).

(12), like (11), provide moment conditions in terms of the parameters �0 and �0. Lemma 2

shows that while su¢cient for identifying the ARCH(1) model (and, in general, the ARCH(p)

model), the autocovariances of squared residuals alone are not su¢cient for identifying the

6See (24) in the Appendix.
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GARCH(1,1) model, since these moment conditions only involve the parameters �0 and �0

jointly, not separately. Neither are these autocovariances necessary for identi�cation in the

case of either the ARCH(1) or GARCH(1,1) model, given skewed residuals and Lemma 1.

(12) does, however, provide an expanded set of moment conditions for a GMM estimator

that should improve e¢ciency in cases where the fourth moment is stationary.

3. Estimation

3.1. Notation

Partition the parameter vector � into (�; �2)
0
, where � = (�; �)0. For the sequence

of observations fYtgTt=1 from a data vector Y , let Xt�2 =
�
Yt�2; � � � ; Yt�k

�0
and Zt�2 =

�
Y 2t�2 � �2; � � � ; Y 2t�k � �2

�0
for 2 � k � K. Consider the following vector valued functions

g1;t
�
Y ; �; �2

�
=
�
Y 2t � �2

�
Yt�1 � �Y 3t ; (13)

g2;t
�
Y ; �; �2

�
=
�
Y 2t � �2

� �
Xt�2 � (� + �)Xt�1

�
;

g3;t
�
Y ; �; �2

�
=
�
Y 2t � �2

� �
Zt�2 � (� + �)Zt�1

�
;
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and the following de�nitions

gi;t
�
Y ; �; �2

�
= gi;t

�
�; �2

�
; i = 1; 2; 3;

gt
�
�; �2

�
=

�
gi;t
�
�; �2

��
; i = 1; : : : ;max (i) ; 2 � max (i) � 3;

gm;t
�
�; �2

�
= mth element of gt

�
�; �2

�
;

bg
�
�; �2

�
= T (k)�1

TP
t=k+1

gt
�
�; �2

�
; g

�
�; �2

�
= E

�
gt
�
�; �2

��
;

mt

�
�2
�
= Y 2t � �2; bm

�
�2
�
= T�1

TP
t=1

Y 2t � �2;

egt
�
�; �2

�
= gt

�
�; �2

�
+ S�2

�
�; �2

�
mt

�
�2
�
;

bS�
�
�; �2

�
=

@bg (�; �2)
@�

; S�
�
�; �2

�
= E

�
@gt (�; �

2)

@�

�
;

bS�2
�
�; �2

�
=

@bg (�; �2)
@�2

; S�2
�
�; �2

�
= E

�
@gt (�; �

2)

@�2

�
;



�
�; �2

�
=

s=(L�1)P
s=�(L�1)

E
h
gt�s

�
�; �2

�
gt
�
�; �2

�0i
; L � 1;

b

�
�; �2

�
=

s=(L�1)P
s=�(L�1)

T (k)�1
TP

t=k+s+1

gt�s
�
�; �2

�
gt
�
�; �2

�0
;

R
�
gm;t

�
�; �2

��
= rank of gm;t

�
�; �2

�
in gm;k+1

�
�; �2

�
; : : : ; gm;T

�
�; �2

�
;

b�(m;n)t;s

�
�; �2

�
= 1� 6

T (k; s)
�
T (k; s)2 � 1

�
TP

t=k+s+1

�
R
�
gm;t

�
�; �2

��
�R

�
gn;t�s

�
�; �2

���2
;

b�
�
�; �2

�
=

s=(L�1)P
s=�(L�1)

h
b�(m;n)t;s

�
�; �2

�i
;

where m;n = 1; : : : ; 2k � 1, T (k) = T � k, and T (k; s) = T � k � s.

3.2 CAN and Robust Estimators

Consider

b� = argmin
�2�

bg
�
�; b�2

�0
MTbg

�
�; b�2

�
; (14)

for some sequence of positive semi-de�nite MT , which is the familiar GMM estimator of

Hansen (1982) with b�2 plugged-in from a preliminary �rst step. Given this plug-in feature,

(14) is also a VTE similar to that studied in Engle and Mezrich (1996) as well as Francq,

Horath, and Zakoian (2009). IfMT =MT

�
e�; b�2

�
, where e� is a preliminary (and consistent)
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estimator of �0, then (14) is a two-step GMM estimator. If MT = MT

�
�; b�2

�
, then (14) is

a CUE. If max (i) = 2, then sample covariances from Lemma 1 form the moment conditions

in (14). Supplementing these moment conditions are sample autocovariances from Lemma

2, if max (i) = 3.

To see the asymptotic equivalence of (14) to an IV estimator, rede�ne (4) as

eY 2t = X
0

�1�0 +Wt; (15)

where X�1 =
�
eY 2t�1; eht�1

�0
. Next, let Z�1 2 zt�1. Since Wt is a MDS,

E
h
Z�1

�
eY 2t �X

0

�1�0

�i
= 0; (16)

which are the population moment conditions for an infeasible IV estimator of eht; where,
in this case, and throughout the ensuing discussions of potential IV estimators, infeasible

references the fact that eht�1 is not observed at time t.

PROPOSITION. Let Z�1 =

2
6664

Yt�1

Xt�2

eZt�2

3
7775, where

eZt�2 =
h
eY 2t�2; � � � ; eY 2t�k

i0
for k � 2. Then

E
h
Z�1

�
eY 2t �X

0

�1�0

�i
= g

�
�0; �

2
0

�
:

Given the consistency result of Theorem 1 below, this proposition establishes that (14)

converges to the same probability limit as an infeasible IV estimator. Enabling this conver-

gence is the fact that

Cov
�
Y 2t ; Yt�k

�
= Cov

�
ht; Yt�k

�
; Cov

�
Y 2t ; Y

2
t�k

�
= Cov

�
ht; Y

2
t�k

�
;

for k � 1, since Wt is a MDS, which allows for a restatement of (16) in terms of elements

that are observed at time t. Of course, (14) is not linear in �0 because (16) is not linear in

�0, owing to the dependence of ht�1 on �0.

The Proposition uncovers an instrument vector that permits feasible estimation of (16).
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Notice that this instrument vector omits eY 2t�1. If eY 2t�1 is included as an instrument, then
feasible estimation of (16) is no longer possible. To see this, append eY 2t�1 to the end of Z�1 as
�

Z�1 =

0
@ Z�1

eY 2t�1

1
A, and then substitute

�

Z�1 for Z�1 in (16). The �nal row of E

�
�

Z�1X
0

�1�0

�

is

�0E
h
eY 4t�1

i
+ �0E

h
eht�1eY 2t�1

i
: (17)

Expanding the left term in (17) using (4) produces

E
h
eY 4t�1

i
= E

h�
eht�1 +Wt�1

�
eY 2t�1

i

= E
h
eht�1eY 2t�1

i
+ E

h
Wt�1

eY 2t�1
i

6= E
h
eht�1eY 2t�1

i
;

in general, since E
h
Wt�1

eY 2t�1
i
6= 0. As a consequence, (17) can only be simpli�ed to

(�0 + �0)E
h
eY 4t
i
� �0E

h
Wt
eY 2t
i
;

given stationarity, which preserves the explicit dependence of (16) on the conditional variance

through the contemporaneous covariance between Wt and
eY 2t .

The move from Z�1 to
�

Z�1 represents a progression towards a more e¢cient IV estimator.

The limit to this progression is the E¢cient IV estimator analyzed by Skoglund (2001) for

the strong GARCH(1,1) model. Generalizing this estimator to the semi-strong case produces

b# = argmin
#2�

bf (#)0 �T bf (#) ;
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where # = (!; �; �)0,

bf (#) = T�1
TP
t=1

ft (#) = T
�1

TP
t=1

�
fi;t (#)

�
for i = 1; 2; 3;

fi;t (#) =
1

�t

�
@ht
@#i

�
h
1=2
t

" 
Yt

h
1=2
t

!
E
�
Y 3t j zt�1

�
� h3=2t

��
Y 2t
ht

�
� 1
�#
;

�t = h3t

 
E
�
Y 4t j zt�1

�

h2t
� 1
!
� E

�
Y 3t j zt�1

�2
;

�T =

�
T�1

P
t

ft (#) ft (#)
0

��1
:

The estimator b# depends explicitly on the conditional variance, its �rst derivative, and
on both the third and fourth conditional moments of Yt. These higher conditional moments

either have to be dealt with nonparametrically or assigned parametric forms. The former

treatment involves some misspeci�cation bias, since A2(ii) and A3(iii) are non Markovian.

The latter treatment, by involving a set of nuisance parameters, requires preliminary estima-

tors and su¤ers the usual logical inconsistency of requiring additional information from the

higher conditional moments but not estimating the associated nuisance parameters simulta-

neously with the parameters governing the conditional variance (see Meddahi and Renault

1997). As seen through the Proposition, b�, in contrast, while clearly dependent on the dy-
namics of ht, does not take the conditional variance as an explicit input. Moreover, as seen

through Lemmas 1 and 2, b� depends on the third and fourth moments of Yt only uncon-
ditionally, meaning that b� does not require estimation of higher moment dynamics beyond
the second. The lack of explicit dependence within the moment functions of (14) on (i)

the conditional variance and (ii) time-variation in the third and fourth moments renders b�
a simple estimator for the GARCH(1,1) model within the class of IV estimators discussed

above.

THEOREM 1 (Consistency). Consider the estimator in (14) for the model of (1) and

(2). Let b�2 = T�1
TP
t=1

Y 2t , and assume that MT

p! M0, a positive semi-de�nite ma-

trix and that M0g (�; �
2
0) = 0 only if � = �0. If max (i) = 2, then b� p! �0 given

Assumptions A1�A2. If max (i) = 3, then b� p! �0 given Assumptions A1�A3.
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Given A1, Theorem 1 establishes weak consistency of a simple GMM estimator for semi-

strong versions of the ARCH(1) and GARCH(1,1) models. When max (i) = 2, third moment

stationarity around a nonzero mean is necessary for this result. When max (i) = 3, fourth

moment stationarity also becomes necessary, owing to the consideration of autocovariances

between squared residuals. Since estimators for the ARCH(1) model in Theorem 4.4 of

Weiss (1986), in Rich et al. (1991), as well as in Theorems 2.1 and 3.1 of Guo and Phillips

(2001) also involve the autocovariances of squared residuals, fourth moment stationarity is

so, too, required. Through skewness, therefore, Theorem 1 shows that it is possible to (i)

extend feasible IV estimation from the ARCH(1) to the GARCH(1,1) case and (ii) do so

using a milder set of moment existence criteria than is required for the ARCH(1) case given

a symmetric distribution.

When �0 = 0, the solution to (14) is

b� =

��P
t

bUt
�0
MT

�P
t

bUt
���1�P

t

bUt
�0
MT

�P
t

bVt
�
; (18)

bUt =

0
BBB@

Y 3t
�
Y 2t � b�2

�
Xt�1

�
Y 2t � b�2

� bZt�1

1
CCCA ;

bVt =

0
BBB@

�
Y 2t � b�2

�
Yt�1

�
Y 2t � b�2

�
Xt�2

�
Y 2t � b�2

� bZt�2

1
CCCA ;

if either MT does not depend on � or MT = MT

�
e�; b�2

�
. Given the Proposition, (18) is

asymptotically equivalent to

� �
� =

��P
t

bZ�1
�
Y 2t�1 � b�2

��0
NT

�P
t

bZ�1
�
Y 2t�1 � b�2

����1�P
t

bZ�1
�
Y 2t�1 � b�2

��0
NT

�P
t

bZ�1
�
Y 2t � b�2

��

if NT
p! M0, where

� �
� is a generalized IV estimator based on the population moment con-

ditions E
h
Z�1

�
eY 2t � �0eY 2t�1

�i
= 0. In the special case of an ARCH(1) process,

�

Z�1 can

be substituted for Z�1 without a¤ecting the feasibility of the IV estimator, given the result

from (17). Such a substitution is asymptotically equivalent to appending the vector valued

function

g4;t
�
�; b�2

�
=
�
Y 2t � b�2

� ��
Y 2t�1 � b�2

�
� �

�
Y 2t � b�2

��
(19)
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to gt
�
�; b�2

�
.

The principal advantage to (18) is its computational simplicity. Simulation results in

Section 5 suggest that (14) with MT = MT

�
�; b�2

�
is the better estimator in terms of bias

and e¢ciency even in the special case of an ARCH(1) process. Moreover, evaluation of

(14) as a CUE when �0 = 0 is relative straightforward, since the parameter vector is one

dimensional. In this case, (14) can be evaluated using a grid search, which requires neither

a consistent starting value for � nor the computation of numerical derivatives of the CUE

objective function.

THEOREM 2 (Asymptotic Normality). Consider the estimator in (14) for the model

of (1) and (2), letting b�2 = T�1
TP
t=1

Y 2t . Assume (i) MT

p!M0, a positive semi-de�nite

matrix and that M0g (�; �
2
0) = 0 only if � = �0; (ii) either Assumptions A1�A2 hold

if max (i) = 2, or Assumptions A1�A3 hold if max (i) = 3; (iii) S� (�0; �
2
0)
0
M0�

S� (�0; �
2
0) is nonsingular; (iv)

p
T (k)bg (�0; �20)

d! N
�
0; 
 (�0; �

2
0)
�
. Then

p
T (k)

�
b�� �0

�
d! N

�
0; H (�0; �

2
0)
�1
S� (�0; �

2
0)
0
M0
 (�0; �

2
0)M0S� (�0; �

2
0)H (�0; �

2
0)
�1
�
;

where H (�0; �
2
0) = S� (�0; �

2
0)
0
M0 S� (�0; �

2
0).

As a VTE, (14) is a two-step estimator, since the objective function is minimized con-

ditional on a preliminary, or �rst-step, estimator b�2. In general, the variance of a �rst-step
estimator impacts the variance of the second-step (see Newey and McFadden 1994). Under

Theorem 2, this impact is seen through

e

�
�0; �

2
0

�
=

s=(L�1)P
s=�(L�1)

E
h
egt�s

�
�0; �

2
0

�
egt
�
�0; �

2
0

�0i
;

which is the variance-covariance matrix of

p
T (k)bg

�
�0; b�2

�
=
p
T (k)

�
bg
�
�0; �

2
0

�
+ S�2

�
�0; �

2
0

�
bm
�
�20
�	
; (20)

the term to which a Central Limit Theorem (CLT) is applied when deriving asymptotic

normality. The second quantity on the right-hand-side of the equality in (20) sources the
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e¤ect of b�2 on the asymptotic variance of b�. Given Lemma 4 stated in the Appendix,

however, S�2 (�0; �
2
0) = 0, which means that bg

�
�0; b�2

�
= bg (�0; �20), e
 (�0; �20) = 
 (�0; �20),

and, as a consequence, nothing is lost (asymptotically) by plugging b�2 into (14) as opposed
to �20. This result, perhaps, is not surprising given the Proposition and the demonstration

in Wooldridge (1994) p. 2695-2696 that for an instrumental variable function de�ned in

terms of some nuisance parameters, the limiting distribution of those nuisance parameters

does not a¤ect that of the parameters of interest if the nuisance parameters are consistently

estimated. This result does, however, stand in contrast to the VTE studied by Francq,

Horath, and Zakoian (2009), where the variance of b�2 does, in fact, impact the variance of
b� asymptotically.
Condition (iv) under Theorem 2 is, of course, a high level assumption. If gt (�0; �

2
0) were a

MDS (the assumption made in Sections 5 and 6), then (iv) would follow ifE
h
kgt (�0; �20)k

2
i
<

1. Other CLTs for dependent data may also prove applicable, depending on the process for
gt (�0; �

2
0). This process (be it an MDS or other) depends, in turn, on the processes governing

WtYt and W
2
t . The fact that these processes are speci�ed only generally motivates condition

(iv).

Theorem 4.4 of Weiss (1986) demonstrates the CAN property of an autocovariance-based

estimator for the ARCHmodel under the condition of a �nite eighth moment for the residuals.

Theorem 2 requires this same condition if max (i) = 3 (i.e., if the autocovariances of squared

residuals are considered). If, on the other hand, max (i) = 2, this condition is replaced

by the relatively milder requirement of a �nite sixth moment. When skewness is present,

therefore, feasible IV estimators for the semi-strong ARCH(1) and GARCH(1,1) models are

CAN under relatively milder moment existence criteria than in the case of comparable IV

estimators for the ARCH(1) model given a symmetric distribution.

Of course, the rather complicated asymptotic variance formula in Theorem 2 simpli�es

to the more familiar H (�0; �
2
0)
�1
if M0 = 
(�0; �

2
0)
�1
. From Hansen (1982), this choice of

weighting matrix is optimal since it minimizes the asymptotic variance of (14). Additionally,

the proof to Theorem 2 is based on the two-step GMM estimator. For the CUE, although

the �rst order condition analogous to (30) contains an additional term, this term does not

distort the limiting distribution. Pakes and Pollard (1989) discuss this result in detail as do
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Donald and Newey (2000).

Use of the optimal weighting matrix under Theorem 2 requires at least sixth moment

stationarity. Such an assumption may prove overly restrictive, especially for certain �nancial

data. A key question, therefore, is what weighting matrix to choose in the context of Theorem

1, so that b� is consistent under, at most, fourth moment stationarity. One option, of course,
is to use a non data dependent weighting matrix like the identity matrix. Skoglund (2001),

however, reports that the identity matrix used in the E¢cient IV estimator for the strong

GARCH(1,1) model results in quite poor �nite sample performance. This result is also

found (though not reported here) in Monte Carlo studies of (14). Alternatively, one can

consider using a robust analog to b

�
b�
�
when constructing the weighting matrix. One such

alternative is b�
�
b�
�
. The matrix

h
b�(m;n)t;s

�
b�
�i
is Spearman�s (1904) correlation matrix for

the vector valued functions gt

�
b�
�
and gt�s

�
b�
�
. The matrix b�

�
b�
�
, therefore, re�ects rank

dependent measures of contemporaneous and lagged association between the sequences of

vector valued functions that comprise the moment conditions. The following lemma is useful

for establishing consistency of b�
�
b�
�
.

LEMMA 5. Let at;s (�) =
�
R
�
gm;t (�)

�
�R

�
gn;t�s (�)

�	2
. For a �t ! 0, de�ne �t;s (�) =

sup
k���

0
k��t

at;s (�)� at;s (�0)
. Assume that E

�
�t;s (�)

�
< 1. Then for b� p! �0,

b�(m;n)t;s

�
b�
�
� b�(m;n)t;s (�0)

p! 0.

Consistency of b�(m;n)t;s

�
b�
�
8m;n follows from Lemma 5 and selected results in Schmid and

Schmidt (2007).7 Conditions for consistency involve the copula for gm;t (�0) and gn;t�s (�0)

(speci�cally, existence and continuity of its partial derivatives), but do not explicitly impose

higher moment existence criteria on either. It is in this sense, therefore, that b�
�
b�
�
can be

thought of as robust.

For simple GMM estimators based only on Theorem 1, standard errors can be computed

via the parametric bootstrap. Suppose that the data generating process for Yt is characterized

by (1), (2), and (8), where E
�
�t j zt�1

�
= 0, E

�
�2t j zt�1

�
= 1, and the higher moments

of �t follow L
th order Markov processes with a �nite L << T . Use (14) to obtain bht. Let

7These results are Theorem 5 and the fact that lim
n!1

p
n
�
b�1;n � b�S;n

	
= 0, where b�S;n relates to

b�(m;n)t;s (�0).
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b�t = Yt=
q
bht, and apply the nonoverlapping block bootstrap method of Carlstein (1986) to

these standardized residuals to obtain the bootstrap sampleb��t . Use these bootstrap residuals
to construct the series bY �t =

q
bh�tb��t , where bh�t depends on the parameter estimates from the

original data sample. Estimate the model of (1) and (2) on bY �t , making sure to center the
bootstrap moment conditions with the original parameter estimates as suggested in Hall and

Horowitz (1996). Repetition of this procedure permits the calculation of bootstrap standard

errors for b� that are robust to higher moment dynamics in �t. This same procedure can
also be used to bootstrap the GMM objective function as discussed in Brown and Newey

(2002) for a non-parametric test of the overidentifying restrictions that speaks to the �t of

the GARCH(1,1) model to the given data under study.

4. Many (Weak) Moments Bias Correction

For the estimator in (14), k (the number of lags, which corresponds to the number

of instruments) needs to be speci�ed. Standard GMM asymptotics point to e¢ciency

gains from increasing k. Work by Stock and Wright (2000), Newey and Smith (2004),

Han and Phillips (2006), and Newey and Windmeijer (2009) discuss the biases of GMM

estimators when the instrument vector is large, (possibly) inclusive of (many) weak in-

struments, and allowed to grow with the sample size. To see how these biases relate

to k, suppose that there exists a �nite L such that E
�
gt (�) j zt�L

�
is constant.8 Let

s� = fS : s � t+ L or s � t� L; s = 1; : : : ; Tg. Then, the expectation of the GMM objec-

8gt (�) can be thought of as a vector of residuals. The requirement is satisi�ed if these residuals follow an
MA process of order L� 1.
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tive function bg (�)0MTbg (�) for a nonrandom weighting matrix MT is

E
�
bg (�)0MTbg (�)

�
= T (k)�2E

"
P
t6=s

gt (�)
0

MTgs (�) +
P
t

gt (�)
0

MTgt (�)

#

= T (k)�2E

"
P
t2s�

gt (�)
0

MTgs� (�) +
s=(L�1)P
s=�(L�1)

P
t

gt (�)
0

MTgt�s (�)

#

=

�
1� L

T (k)

�
g (�)0MTg (�) + T (k)

�1
s=(L�1)P
s=�(L�1)

E
h
gt (�)

0

MTgt�s (�)
i

=

�
1� L

T (k)

�
g (�)0MTg (�) + T (k)

�1 tr

 
MT

s=(L�1)P
s=�(L�1)

E
h
gt�s (�) gt (�)

0

i!
;

which is an adaptation of (2) in Newey and Windmeijer (2009) to dependent time series

data.9

In the language of Newey and Windmeijer (2009),
�
1� L

T (k)

�
g (�)0MTg (�) is a "signal"

term minimized at �0. The second term is a "noise" term that is, generally, not minimized

at �0 if
@gt(�)

@�
is correlated with gt (�) and is increasing in k.

10 If k is increasing with T , this

bias term need not even vanish asymptotically (see Han and Phillips 2006).11

Suppose that MT = 
(�)
�1. In this case, the "noise" term

T (k)�1 tr

 
MT

s=(L�1)P
s=�(L�1)

E
h
gt�s (�) gt (�)

0

i!
=
m (k)

T (k)
; m (k) = 2k � 1;

9This expansion is also valid under a random MT because estimation of MT does not e¤ect the limiting
distribution.
10This "noise" or bias term is analogous to the higher order bias term BG in Newey and Smith (2004).
11Under Theorem 1, however, k is treated as �xed so that (14) is consistent.
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which is no longer a function of �. For the estimator in (14),

bg
�
�; b�2

�0
MTbg

�
�; b�2

�
= T (k)�2 f

P
t6=s

gt
�
�; b�2

�
MTgs

�
�; b�2

�
+
P
t

gt
�
�; b�2

�
MTgt

�
�; b�2

�
g

= T (k)�2
P
t2s�

gt
�
�; b�2

�0
MTgs�

�
�; b�2

�

+T (k)�2
s=(L�1)P
s=�(L�1)

P
t

gt
�
�; b�2

�
MTgt�s

�
�; b�2

�

= T (k)�2
P
t2s�

gt
�
�; b�2

�0
MTgs�

�
�; b�2

�

+T (k)�1 tr

 
MT

(
s=(L�1)P
s=�(L�1)

T (k)�1
P
t

gt�s
�
�; b�2

�
gt
�
�; b�2

�0
)!

If MT =
b

�
�; b�2

��1
, the feasible version of 


�
�; b�2

��1
, then

bg
�
�; b�2

�0
MTbg

�
�; b�2

�
= T (k)�2

P
t2s�

gt
�
�; b�2

�0
MTgs�

�
�; b�2

�
+
m (k)

T (k)
;

which shows that (14) is robust to many (potentially weak) instruments if it is speci�ed as

the OCUE. If, on the other hand, either (i) MT =
b�
�
�; b�2

��1
, in which case b� is a robust

CUE, (ii) MT =
b

�
e�; b�2

��1
, in which case b� is the optimal two-step GMM estimator, or

(iii) MT =
b�
�
e�; b�2

��1
, in which case b� is a robust two-step GMM estimator, (14) will be

biased. The expansion of bg
�
�; b�2

�0
MTbg

�
�; b�2

�
o¤ers a way to correct for this bias. Namely,

consider the alternative estimator

^

� = argmin
�2�

^

Q
�
�; b�2

�
; (21)

where

^

Q
�
�; b�2

�
= T (k)�2

P
t2s�

gt
�
�; b�2

�0
MTgs�

�
�; b�2

�
(22)

= bQ
�
�; b�2

�
� T (k)�1 tr

 
MT

(
s=(L�1)P
s=�(L�1)

T (k)�1
P
t

gt�s
�
�; b�2

�
gt
�
�; b�2

�0
)!

;

and bQ
�
�; b�2

�
= bg

�
�; b�2

�0
MTbg

�
�; b�2

�
. Depending on the choice of MT , (21) will be referred
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to, generally, as either as a JGMM or a JCUE because, as seen through (22), it leaves out

contemporaneous and certain lagged observations from either the GMM or CUE objective

function.
^

� is consistent given the following corollary.

COROLLARY (Consistency). Consider the estimator in (21) for the model of (1) and

(2). Let b�2 = T�1
TP
t=1

Y 2t , and assume that (i) MT

p! M0, a positive semi-de�nite

matrix, (ii) M0g (�; �
2
0) = 0 only if � = �0, (iii) L = 1. If max (i) = 2, then

^

�
p! �0

given Assumptions A1�A2. If max (i) = 3, then
^

�
p! �0 given Assumptions A1�A3.

With L = 1, (21) is the Jackknife GMM estimator of Newey and Windmeijer (2009). A

straightforward way of demonstrating consistency of this estimator is by examining the sec-

ond equality in (22), in which case, conditions under Theorem 2 are su¢cient. By involving

the variance-covariance matrix of the moment conditions through the bias correction term,

however, such a demonstration involves precisely those higher moment existence criteria that

I am looking to avoid when specifying (21). The Corollary, therefore, bases consistency on

the �rst equality in (22) and shows that the conditions under Theorem 1 are su¢cient.12 As a

result, if either MT =
b�
�
�; b�2

��1
or MT =

b�
�
e�; b�2

��1
,
^

� is robust in the dual sense that it

(i) requires the same moment existence criteria as Theorem 1, and (ii) is free of many (weak)

moments bias. Following from Newey and Windmeijer (2009) p. 702,
^

� is asymptotically

normal if L = 1.

If �0 = 0 and either MT is nonrandom or MT =MT

�
e�; b�2

�
, then the solution to (21) is

^
� =

�P
t2s�

bU 0tMT
bUs�
��1 P

t2s�

bU 0tMT
bVs� ;

which is JIVE2 from Angrist, Imbens, and Krueger (1999) if L = 1.

5. Monte Carlo

Consider the data generating process in (1), (2), and (8), where �t is the negative of a

standardized Gamma(2,1) random variable. The skewness and kurtosis of �t is �2=
p
2 and

12This result assumes, of course, that MT is not constructed from 

�
�; b�2

�
.
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6, respectively. Values for �0 of (1:0; 0:15; 0:75)
0

, (1:0; 0:10; 0:85)
0

, and (1:0; 0:05; 0:94)
0

are considered. These values together with the distributional assumption for �t support a

�nite fourth moment for Yt according to (9). All simulations are conducted with 5,000 obser-

vations across 500 trials. In each simulation, the �rst 200 observations are dropped to avoid

initialization e¤ects. Starting values for � in each simulation trial are the true parameter

values. Summary statistics for the simulations include the median bias, decile range (de�ned

as the di¤erence between the 90th and the 10th percentiles), standard deviation, and median

absolute error (measured with respect to the true parameter value) of the given parameter

estimates. The median bias, decile range, and median absolute error are robust measures of

central tendency, dispersion, and accuracy, respectively, reported out of a concern over the

existence of higher moments. The standard deviation, while not a robust measure, provides

an indication of outliers.

Table 1 summarizes the results for (14) and (21), benchmarking them against the QMLE.

The forms of (14) and (21) considered: (i) utilize the method of moments plug-in estimator

b�2 = T�1
P
t

Y 2t , (ii) rely on moments either up to the third or up to the fourth (i.e., set

max (i) = 2 or 3), (iii) use the inverse of Spearman�s correlation matrix as the data dependent

weighting matrix, (iv) set k = 20 and L = 1.13

For estimating �0 and �0, GMM tends to be associated with the highest bias. JCUE3 has

the lowest bias, most comparable to QMLE. CUE3, however, also tends to be associated with

low bias. JGMM3 improves upon the bias relative to GMM3 for both b� and b�. The same can
be said for JGMM2 relative to GMM2 for b�, with mixed results (in terms of bias reduction)
evidenced for b�. JCUE3 records less bias than CUE3 for both b� and b�. JCUE2 records less
bias than CUE2 for b� but mixed results (in terms of bias reduction) for b�. In some cases,
movements from max (i) = 2 to max (i) = 3 are associated with sizable reductions in bias.

This result is particularly relevant for non-jackknifed estimators, although it also holds for b�
under the jackknifed CUE. Though not reported here, the bias of non jackknifed estimators

for b� tends to increase with k. The level of this bias is most noticeable for high values of �0.
13In some of the simulations, an alternative rank dependent correlation matrix based on Kendall�s (1938)

tau was also tried. The results were very similar to those based on Spearman�s measure. Since Spearman�s
measure requires much less computation time, it was favored.
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In terms of dispersion, GMM tends to also record the highest values. However, in limited

instances, the JGMM and CUE estimates can be even more dispersed (see, for instance,

JGMM2 and CUE2 relative to GMM2 for the estimates of �0 = 0:94). JCUE3 records the

lowest parameter dispersion most comparable to QMLE in terms of magnitude. CUE3 also

supports relatively low levels of parameter dispersion. JGMM3 is more e¢cient than GMM3

measured either in terms of decile range or median absolute error. The same is mostly true

for both JCUE2 and JCUE3 relative to CUE2 and CUE3, with the di¤erences being more

noticeable for b�. JGMM2 is more e¢cient than GMM2 for b�, with mixed results appearing
for b�. In general, movements from max (i) = 2 to max (i) = 3 are associated with large

drops in parameter dispersion (i.e., increases in e¢ciency).

The results from Table 1 show JCUE3 to be a more e¢cient estimator of �0 but a less

e¢cient estimator of �0 when compared to QMLE. Figure 1 compares the e¢ciency of JCUE3

relative to QMLE (for both b� and b�) for various lag lengths out to k = 40. As is evidenced,
b� remains more e¢cient under JCUE3 as opposed to QMLE for all lag lengths considered.
Moreover, the e¢ciency of b� under JCUE3 is seen to approach that of QMLE as k ! 40.

These results show that JCUE3 can be more e¢cient than QMLE given a su¢cient number

of instruments (still small relative to the sample size).

Of the parameter values considered, �0 = (1:0; 0:05; 0:94)
0

is the most likely to support

a �nite eighth moment.14 Figure 2, therefore, compares the e¢ciency of JCUE3, OCUE3,

and QMLE for lags lengths out to k = 40. Similar to Figure 1, b� remains more e¢ciently
estimated under JCUE3 than under QMLE for all lag lengths considered. Interestingly,

at low levels of k, b� is less e¢ciently estimated under OCUE3 than under either JCUE3
or QMLE. As k increases, however, the performance of b� under OCUE3 converges to that
of JCUE3, therefore passing that of QMLE. In terms of b�, OCUE3 is more e¢cient than
JCUE3 for all lag lengths considered. At low levels of k, QMLE is more e¢cient than

both. However, as k ! 40, the performance of b� under JCUE3 approaches that under
QMLE, while the performance of b� under OCUE3 betters that of QMLE. Therefore, both
14If �t � N (0; 1), then these values would support a �nite eighth moment according to Figure 2 of

Bollerslev (1986). In general, for covariance stationary GARCH(1,1) processes, the magnitude of �0 is a
principal constraint on the existence of higher moments.
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JCUE3 and OCUE3 can be more e¢cient than QMLE, again given a su¢cient number of

instruments. In addition, the results for OCUE3 support the claim that while strong, the

moment existence criteria of Theorem 2 are not so strong as to exclude all GARCH(1,1)

processes of empirical relevance.

Table 2 summarizes simulation results for the JCUE3, JGMM3, and CUE3 (again, bench-

marked against the QMLE) in the case where �t is the negative of a standardized Gamma(1,1)

random variable with skewness of �2 and kurtosis of 12. JCUE3 remains the most e¢cient
moments estimator, more e¢cient than QMLE in estimating �0 and closest to QMLE, in

terms of both bias and e¢ciency, in estimating �0. CUE3 no longer dominates JGMM3 in

terms of dispersion as it does in Table 1. To the contrary, b� and b� tend to be less dispersed
under JGMM3 (very noticeably so for b� when �0 = 0:85 and �0 = 0:94). JGMM3, how-

ever, displays signi�cantly higher bias in b� under both �0 = 0:15 and �0 = 0:10 when �t

is the negative of a standardized Gamma(1,1) as opposed to the negative of a standardized

Gamma(2,1).

The Ratio statistics in Table 2 show that dispersion tends to increase when moving to

an increasingly skewed, fatter-tailed distribution for the standardized residuals. Exceptions

to this tendency occur only for the moments estimators, only for b�, and most consistently
for JGMM3. Speci�cally for JGMM3, the Ratio statistic for both the Decile Range and SD

of b� is less than one for all the cases considered. This result, perhaps, is not so surprising
given that skewness is what identi�es �0.

Of all the proposed moments estimators, JCUE3 and OCUE3 have the smallest biases and

are the most e¢cient. In general, the smallest biases are achieved using the class of estimators

that are robust to many (potentially weak) instruments (i.e., JCUE, JGMM, and OCUE).

The worst performing estimators both in terms of bias and in terms of e¢ciency are the

two-step GMM estimators. Fourth moment based estimators (i.e., those with max (i) = 3)

tend to outperform third moment based estimators (i.e., those with max (i) = 2) in terms of

bias and e¢ciency by wide margins. For the subclass of estimators with max (i) = 2, JCUE2

records the smallest bias and is the most e¢cient followed, for the most part, by JGMM2.

24



6. FX Spot Returns

Let Si;t be the spot rate of foreign currency i measured in US Dollars, where i = Aus-

tralian Dollars (AUD) or Japanese Yen (JPY). Each spot series is measured daily from

1/1/90 - 12/31/09 and is obtained from Bloomberg. Consider the spot return de�ned as

Yi;t = log
�
Si;t=Si;t�1

�
. This section �ts the GARCH(1,1) model of (1) and (2) to

�
Yi;t
	T
t=1
.15

Engle and Gonzalez-Rivera (1999) as well as Hansen and Lunde (2005) employ similar speci-

�cations to British Pound and Deutsche Mark exchange rate series, respectively. Hansen and

Lunde (2005) �nd no evidence that the simple GARCH(1,1) speci�cation is outperformed

by more complicated volatility models in their study of exchange rates. Their work guides

the selection of �nancial data analyzed here.

For the AUD series, skewness is�0:33; and kurtosis is 15:05. For the JPY series, skewness
is 0:43, and kurtosis is 8:34. Both series appear decidedly non-normal with the requisite

distributional asymmetry required under A2. Table 3 reports the estimation results for

JCUE3, OCUE3, and QMLE. Both JCUE3 and OCUE3 utilize an, admittedly, arbitrary lag

length of 40 in the speci�cation of their instrument vector. They, additionally, setmax (i) = 3

and L = 1. From the discussion in section 5, an application of OCUE3 is limited to high

GARCH-, low ARCH-type processes. The QMLE estimates imply that such processes are

appropriate characterizations of both spot return series. Starting values for JCUE3 and

OCUE3 are the QMLE estimates.

From Table 3, the JCUE3 estimates are closer to the QMLE estimates than are the

OCUE3 estimates. The JCUE3 estimates imply a less persistent volatility process than

either the QMLE or OCUE3 estimates. The standard errors for the OCUE3 estimates are

larger than their QMLE counterparts, particularly so for b�. The b� standard errors are more
comparable. The higher standard errors under OCUE3 may relate to the fact that b� + b� is
close to one.

To investigate the e¤ects of lag length on JCUE3 and OCUE3, each were �t to the two

spot return series for k = 20; : : : ; 40. For each k,
b�j � b�QMLE

, where j = JCUE3 or

15Preliminary investigations �t, among other speci�cations, ARMA(1,1) �lters to both series. For the JPY
series, this �lter was insigni�cant. For the AUD series, it proved signi�cant; however, its removal had no
meaningful impact on the GARCH estimates.
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OCUE3, was calculated. Plots of these Euclidean norms against k are shown in Figures

3 and 4, where the JCUE3 (OCUE3) estimates corresponding to the minimum value of

these norms are reported. Apparent from Figure 3,
b�JCUE3 � b�QMLE

 tends to vary less
and be of a smaller magnitude than

b�OCUE3 � b�QMLE

 with lag length, especially at low
levels of k. The same observation seems generally true in Figure 4, with three notable

exceptions for
b�JCUE3 � b�QMLE

 occurring at k = 25; 26; 34. Apparent from both �gures,

b�JCUE3 ! b�QMLE and
b�OCUE3 ! b�QMLE as k increases. However, in all cases considered,

min
k2K

b�j � b�QMLE

 occurs in the interior of possible lag lengths considered, suggesting that
there exists an "optimal" k for both JCUE3 and OCUE3.

7. Conclusion

The main contribution of this paper is to provide simple GMM estimators for the semi-

strong GARCH(1,1) model with a straightforward IV interpretation. In this case, the in-

strument vector is populated by past residuals and past squared residuals. The resulting

moment conditions are stated entirely in terms of covariates observed at time t � 1. While
these simple estimators rely on skewness for identi�cation, they do not require treatment

of the third and fourth conditional moments. These estimators (can) involve many (po-

tentially weak) instruments, the bias from which can be eliminated by using either a CUE

with the optimal weighting matrix (and all the accompanying moment existence criteria it

requires) or a jackknife CUE (GMM) with a robust weighting matrix based on, for example,

the inverse of Spearman�s correlation matrix for the vector valued functions comprising the

moment conditions of the given estimator. Versions of the optimal CUE and jackknife CUE

are shown to outperform QMLE in �nite samples.

Applications in empirical asset pricing involve GARCH assumptions within the GMM

paradigm and are, therefore, amendable to the estimators that I propose. For instance,

Mark (1988) and Bodurtha and Mark (1991) consider versions of the conditional CAPM

that parameterize market betas as ARCH(1) processes. The moment conditions from the

simple GMM estimators I propose can easily be appended to the moment conditions of

these models to allow the market betas to display GARCH properties without the need for

specifying the entire conditional distribution of asset returns.
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The results of several Monte Carlo and theoretical studies are broadly consistent with

those presented in this paper. Hansen, Heaton, and Yaron (1996) �nd, through simulation

experiments, that the CUE has smaller bias than the GMM estimator. Newey and Smith

(2004) show that the class of generalized empirical likelihood (GEL) estimators, of which

the CUE is a member, has lower asymptotic bias than the GMM estimator when there are

several instruments and zero third moments. Newey and Windmeijer (2009) show that the

jackknife GMM estimator is less biased than the two-step GMM estimator but that the CUE

is more e¢cient than the jackknife GMM estimator under many (weak) moments. For the

semi-strong GARCH(1,1) model, the Monte Carlo results I present show that the CUE has

smaller bias than the GMM estimator and is more e¢cient in the presence of a nonzero third

moment regardless of whether the weighting matrix is optimal, but for both the CUE and

GMM estimators using a non-optimal weighting matrix, the associated biases grow with the

size of the instrument vector. JCUE and JGMM estimators �x this problem, with JCUE

proving more e¢cient than JGMM and both proving less e¢cient than the OCUE.

The estimators proposed in this paper are IV estimators with (potentially) many instru-

ments. Methods for selecting the number of instruments for use in these estimators like those

proposed by Donald, Imbens, and Newey (2008) are, therefore, of interest, especially given

the results from Section 6. Future research may look to relax the symmetry assumption in

Donald, Imbens, and Newey (2008) and de�ne criteria that are not (necessarily) dependent

upon the variance-covariance matrix of the moment conditions.
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Appendix

PROOF OF LEMMA 1: Recall that both Yt andWt are MDS. Then, applications of the
law of iterated expectations, the result from (7), and A2(i) grant that

E
h
eY 2t Yt�1

i
= E

h�
eht +Wt

�
Yt�1

i
(23)

= E
h�
�0
eY 2t�1 + �0eht�1

�
Yt�1

i

= �0E [WtYt]

and that

E
h
eY 2t Yt�2

i
= E

h
ehtYt�2

i

= �0E
h
eY 2t�1Yt�2

i
+ �0E

h
eht�1Yt�2

i

= (�0 + �0)E
h
eY 2t�1Yt�2

i
:

Since application of the same expansion in (23) to E
h
eY 2t�1Yt�2

i
reveals that

E
h
eY 2t�1Yt�2

i
= �0E [WtYt] ;

it follows that
E
h
eY 2t Yt�2

i
= �0 (�0 + �0)E [WtYt] :

Repeated applications of recursive substitution into E
h
eY 2t Yt�k

i
demonstrates, in gen-

eral, that

E
h
eY 2t Yt�k

i
= �0 (�0 + �0)

k�1E [WtYt] : (24)

Solving (24) for k = k + 1 and comparing the result to E
h
eY 2t Yt�k

i
produces (11).�

PROOF OF LEMMA 2: From (4) follows that

E
h
eY 4t
i
= E

��
eht +Wt

�2�
= E

h
eh2t
i
+ E

�
W 2
t

�
:

Given (3),

E
h
eh2t
i
= (�0 + �0)

2E
h
eh2t�1

i
+ �20�0: (25)

28



Recursive substitution into (25) produces

E
h
eh2t
i
=
�
1 + (�0 + �0)

2 + � � �+ (�0 + �0)2(��1)
�
�20�0 + (�0 + �0)

2�E
h
eh2t��

i

for � � 1. It is well known that (�0 + �0)2� ! 0 as � !1 if and only if �0 + �0 < 1.

Therefore, E
h
eh2t
i
!
�

�2
0

1�(�
0
+�

0
)2

�
�0 as � !1 if and only if A1 holds. Let E

h
eh2t
i
=

�0. For k = 1,

E
h
eY 2t eY 2t�1

i
= E

h
E
h
eY 2t eY 2t�1 j zt�1

ii

= E
h�
�0eY 2t�1 + �0eht�1

�
eY 2t�1

i

= �0�0 + (�0 + �0)�0

For k � 2,

E
h
eht j zt�k

i
= �0E

h
eY 2t�1 j zt�k

i
+ �0E

h
eht�1 j zt�k

i

= (�0 + �0)E
h
eht�1 j zt�k

i

= (�0 + �0)
2E
h
eht�2 j zt�k

i

...

= (�0 + �0)
��1E

�
ht�(k�1) j zt�k

�

= (�0 + �0)
��1
�
�0Y

2
t�k + �0ht�k

�

and, therefore,

E
h
eY 2t eY 2t�k

i
= E

h
E
h
eY 2t eY 2t�k j zt�k

ii
(26)

= E
h
E
h
eht j zt�k

i
eY 2t�k

i

= (�0 + �0)
k�1 [�0�0 + (�0 + �0)�0] :

Given (26), E
h
eY 2t eY 2t�k

i
! 0 as k !1. Solving (26) for k = k+ 1 and comparing the

result to E
h
eY 2t eY 2t�k

i
grants (12).�
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PROOF OF THE PROPOSITION: From (16),

E
h
eY 2t Z�1

i
=

2
6664

E
h
eY 2t Yt�1

i

E
h
eY 2t Xt�2

i

E
h
eY 2t eZt�2

i

3
7775 ;

and

E
h
Z�1X

0

�1�0

i
=

2
6664

�0E
h
eY 2t�1Yt�1

i
+ �0E

h
eht�1Yt�1

i

�0E
h
eY 2t�1Xt�2

i
+ �0E

h
eht�1Xt�2

i

�0E
h
eY 2t�1 eZt�2

i
+ �0E

h
eht�1 eZt�2

i

3
7775 :

E
h
eY 2t�1Yt�1

i
= E [Y 3t ] by (7) and A2(i). Since Wt is a MDS,

E
h
eY 2t�1Xt�2

i
= E

h
eht�1Xt�2

i
= E

h
eY 2t Xt�1

i

by the law of iterated expectations and by Lemma 1. Similarly,

E
h
eY 2t�1 eZt�2

i
= E

h
eht�1Zt�2

i
= E

h
eY 2t eZt�1

i

by the law of iterated expectations and by Lemma 2. Therefore,

E
h
Z�1X

0

�1�0

i
=

2
6664

�0E [Y
3
t ]

(�0 + �0)E
h
eY 2t Xt�1

i

(�0 + �0)E
h
eY 2t eZt�1

i

3
7775 ;

and E
h
Z�1

�
eY 2t �X

0

�1�0

�i
= g (�0; �

2
0).�

LEMMA 3. Given Assumptions A1�A3, the following conditions hold:

CONDITION C1: T�1
TP
t=1

Yt
p! 0

CONDITION C2: T�1
TP
t=1

Y 2t
p! �20
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CONDITION C3: T�1
TP
t=1

Wt

p! 0

CONDITION C4: T�1
TP
t=1

WtYt
p! 0

CONDITION C5: (T �max (k; l))�1
TP

t=max(k;l)+1

Wt�lYt�k
p! 0 8 k 6= l

CONDITION C6: (T � k)�1
TP

t=k+1

WtWt�k

p! 0 8 k � 1

CONDITION C7: T�1
TP
t=1

W 2
t

p! �0

CONDITION C8: For a constant C where 0 < C < 1 and a MDS fZtg that is uniformly
integrable, T�1

TP
t=1

CtZt
p! 0.

PROOF OF LEMMA 3: Since Yt is covariance stationary with a mean of zero, C1 follows

by the LLN. Given Lemma 2, Y 2t is covariance stationary with E
h
eY 2t eY 2t�k

i
! 0 as k !

1 (see 26). C2 then also follows from the LLN, as does C3, given E
�
Wt j zt�1

�
= 0,

E
�
WtWt�k

�
= 0, and A3(i). Given A2(i)-(ii), C4 follows from Theorem 1 of Andrews

(1988). Since Wt�lYt�k and WtWt�k are both MDS, Theorem 1 of Andrews (1988)

applies to each to establish C5 and C6, respectively, given A2(iii) and A3(ii). A3(i)

and A3(iii) allow C7 to follow from Theorem 1 of Andrews (1988). Lastly, since fZtg
is uniformly integrable, 9 a c > 0 for every � > 0 such that

E [jZtj � I (jZtj � c)] < �;

where I (jZtj � c) = 1 if jZtj � c and 0 otherwise. Let Xt = C
tZt. Then

jXtj =
��Ct
�� jZtj < jZtj ;

and

jXtj � I (jXtj � c) � jZtj � I (jZtj � c) :
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As a consequence,

E [jXtj � I (jXtj � c)] < �;

and fXtg is uniformly integrable. Theorem 1 of Andrews (1988) then establishes C8.

PROOF OF THEOREM 1: By C1 and C2,

p lim

�
T (k)�1

P
t

g1;t
�
�; b�2

��
= p lim

�
T (k)�1

P
t

Y 2t Yt�1

�
��p lim

�
T (k)�1

P
t

Y 3t

�
:

Given (6),

T (k)�1
P
t

Y 2t Yt�1 = T (k)�1
P
t

�
Wt + �0

t�1P
i=1

(�0 + �0)
i�1Wt�i + �0 (�0 + �0)

t�1 eh0 + �20
�
Yt�1

= �0T (k)
�1P

t

t�1P
i=1

(�0 + �0)
i�1Wt�iYt�1 + (3 additional terms) ;

where the probability limit for each of these three additional terms is zero given C1,

C5, and C8, respectively. Since

T (k)�1
P
t

t�1X

i=1

(�0 + �0)
i�1Wt�iYt�1 = T (k)�1

P
t

Wt�1Yt�1 + (�0 + �0)T (k)
�1P

t

Wt�2Yt�1

+(�0 + �0)
2 T (k)�1

P
t

Wt�3Yt�1 + � � �+ op (1) ;

for which p lim

�
T (k)�1

P
t

t�1P
i=1

(�0 + �0)
i�1Wt�iYt�1

�
= 0 by C4 and C5,

p lim

�
T (k)�1

P
t

Y 2t Yt�1

�
= �00:

Moreover, since T (k)�1
P
t

Y 3t = T (k)�1
P
t

Y 2t Yt, similar expansions to those given

above reveal that

p lim

�
T (k)�1

P
t

Y 3t

�
= p lim

�
T (k)�1

P
t

WtYt

�
= 0

32



by C4, with the end result being that

p lim

�
T (k)�1

P
t

g1;t
�
�; b�2

��
= (�0 � �) 0 (27)

= E
�
g1;t
�
�; �20

��
:

Next, de�ne the lth element of the vector g2;t
�
�; b�2

�
for l = 1; : : : ; K � 1 as

g
(l)
2;t

�
�; b�2

�
=
�
Y 2t � b�2

� �
Yt�(l+1) � (� + �)Yt�l

�
:

p lim

�
T (k)�1

P
t

g
(l)
2;t

�
�; b�2

��
= p lim

�
T (k)�1

P
t

Y 2t Yt�(l+1)

�
�(� + �) p lim

�
T (k)�1

P
t

Y 2t Yt�l

�

by C1 and C2. Given (6),

T (k)�1
P
t

Y 2t Yt�(l+1) = �0T (k)
�1P

t

t�1P
i=1

(�0 + �0)
i�1Wt�iYt�(l+1) + (3 additional terms)

= �0 (�0 + �0)
l T (k)�1

P
t

Wt�(l+1)Yt�(l+1)

+�0T (k)
�1P

t

P
i6=l+1

(�0 + �0)
i�1Wt�iYt�(l+1) + (3 additional terms) :

The three additional terms each have probability limits equal to zero given C1, C5,

and C8. Therefore, p lim

�
T (k)�1

P
t

Y 2t Yt�(l+1)

�
= �0 (�0 + �0)

l 0, and

p lim

�
T (k)�1

P
t

g
(l)
2;t

�
�; b�2

��
= �0 [(�0 + �0)� (� + �)] (�0 + �0)l�1 0 (28)

= E
h
g
(l)
2;t

�
�; �20

�i
:

Similarly de�ning the lth element of the vector g3;t
�
�; b�2

�
as

g
(l)
3;t

�
�; b�2

�
=
�
Y 2t � b�2

� �
Yt�(l+1) � b�2

�
� (� + �)

�
Y 2t � b�2

� �
Yt�l � b�2

�

33



and considering the p lim

�
T (k)�1

P
t

g
(l)
3;t

�
�; b�2

��
, given (6),

T (k)�1
P
t

Y 2t Y
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t�l =
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�20
�2
+ �0T (k)

�1P
t

t�1P
i=1

(�0 + �0)
i�1Wt�iWt�l

+�20T (k)
�1P
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�
t�1P
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(�0 + �0)
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!

+(6 additional terms)

=
�
�20
�2
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"
(�0 + �0)

l�1P
t

W 2
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P
t

P
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(�0 + �0)
i�1Wt�iWt�l

#

+�20T (k)
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"
P
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P
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(�0 + �0)
(i+j)�2Wt�iWt�l�j +

P
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t�1P
j=l

(�0 + �0)
2j�lW 2
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#

+(6 additional terms) :

C3, C6, and C8 are used to show that the probability limits of the 6 additional terms are

each zero. p lim

�
T (k)�1

P
t

W 2
t�l

�
= �0, given C7. From C6, it follows that

p lim

 
T (k)�1

P
t

P
i6=l

(�0 + �0)
i�1Wt�iWt�l

!
= 0
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t
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T (k)�1
P
t

t�1P
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By C7,

p lim

 
T (k)�1

P
t

t�1P
j=l

(�0 + �0)
2j�lW 2
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!
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l �0
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1 + (�0 + �0)

2 + (�0 + �0)
4 + � � �

�

= (�0 + �0)
l �0
1� (�0 + �0)2

;

and

p lim

�
T (k)�1

P
t

Y 2t Y
2
t�l

�
=
�
�20
�2
+ (�0 + �0)

l�1 (�0�0 + (�0 + �0) �0) ;

where �0 = E
h
eh2t
i
from Lemma 2. Therefore,

p lim

�
T (k)�1

P
t

g3;t
�
�; b�2

��
= ((�0 + �0)� (� + �))� (29)

(�0 + �0)
l�1 (�0�0 + (�0 + �0) �0)

= E
�
g3;t
�
�; �20

��
:

For max (i) = 2, (27) and (28) establish bg
�
�; b�2

� p! g (�; �20). For max (i) = 3, (27)�

(29) establish the same result. Under either speci�cation, letQ (�; �20) = g (�; �
2
0)

0

M0g (�; �
2
0),

and bQ
�
�; b�2

�
= bg

�
�; b�2

�0
MTbg

�
�; b�2

�
. Then bQ

�
�; b�2

� p! Q (�; �20) by continuity of

multiplication. For max (i) = 2, (27) and (28) establish that the only � 2 � satisfying
g (�; �20) = 0 is � = �0, since 0 6= 0 and �0+ �0 is strictly positive. As a consequence,
Q (�; �20) is uniquely minimized at � = �0. A parallel result holds for max (i) = 3,

given the aforementioned conditions plus (29) and the fact that �0�0 + (�0 + �0) �0 is

strictly positive.�

LEMMA 4: bS�
�
b�; b�2

�
p! S� (�0; �

2
0), and bS�2

�
�0; b�2

� p! S�2 (�0; �
2
0) = 0 given (i) As-

sumptions A1 and A2, if max (i) = 2 or (ii) Assumptions A1�A3, if max (i) = 3.

PROOF OF LEMMA 4: De�ne bs�;ij
�
b�; b�2

�
as the element in the ith row and jth column
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of bS�
�
b�; b�2

�
. Let

� �

Zt�2 =
�
Y 2t�2 � � �Y 2t�k

�0
for k � 2, and � be a (k � 1)-vector of ones.

For max (i) = 3,
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and
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The following results follow from the proof to Theorem 1.

RESULT R1:
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�
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�
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��
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P
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Y 2t Yt
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P
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�
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�
.
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RESULT R3:
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�
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��
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P
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�
.

Given R1�R3, bs�;ij
�
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�
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0) 8 i; j. Next, p lim
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= 0 both by C1. Finally, p lim
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�
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��
= 0 by C2.�

PROOF OF THEOREM 2: Let MT =MT

�
e�; b�2

�
. Then the �rst order condition from

(14) is
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where the second equality follows from Lemma 4. The conclusion follows from the

Slutzky Theorem.�

PROOF OF LEMMA 5: From the de�nition of b�(m;n)t;s (�),
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By the consistency of b� established under Theorem 1, 9 a �t ! 0 such that
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�t. By the triangle inequality,
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Finally, by aWLLN, T (k; s)�1
P
t
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, which establishes the result.�
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From the proof to Theorem 1, bg
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Q (�; �20), which has a unique minimum at � = �0 given Theorem 1.�
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TABLE 1

True Theta

(1.0, 0.15, 0.75) (1.0, 0.10, 0.85) (1.0, 0.05, 0.94)

Med Dec Med Dec Med Dec

Para. Est. Bias Rge SD MDAE Bias Rge SD MDAE Bias Rge SD MDAE

Var QMLE -0.005 0.242 0.094 0.063 -0.008 0.283 0.111 0.074 -0.022 0.581 0.309 0.156

MM -0.018 0.235 0.100 0.060 -0.022 0.289 0.129 0.076 -0.066 0.501 0.272 0.148

Alpha QMLE -0.001 0.054 0.021 0.013 0.000 0.039 0.015 0.010 0.000 0.022 0.008 0.005

JCUE2 -0.016 0.091 0.042 0.028 -0.009 0.067 0.031 0.020 0.000 0.048 0.022 0.011

JCUE3 -0.001 0.029 0.027 0.006 0.000 0.014 0.011 0.002 0.000 0.004 0.005 0.001

JGMM2 -0.017 0.109 0.046 0.032 -0.011 0.082 0.035 0.025 0.001 0.067 0.029 0.016

JGMM3 -0.015 0.090 0.043 0.027 -0.006 0.070 0.034 0.016 -0.001 0.039 0.019 0.005

CUE2 -0.011 0.109 0.050 0.027 -0.005 0.084 0.043 0.019 -0.004 0.081 0.033 0.018

CUE3 -0.006 0.040 0.036 0.009 -0.002 0.024 0.026 0.003 -0.001 0.005 0.007 0.001

GMM2 -0.013 0.112 0.051 0.031 -0.009 0.094 0.041 0.025 -0.007 0.083 0.032 0.021

GMM3 -0.016 0.113 0.053 0.031 -0.012 0.093 0.042 0.026 -0.010 0.071 0.027 0.019

Beta QMLE 0.000 0.081 0.033 0.020 0.000 0.056 0.022 0.013 -0.001 0.023 0.009 0.006

JCUE2 0.010 0.173 0.076 0.043 0.009 0.137 0.061 0.036 -0.008 0.144 0.154 0.031

JCUE3 0.000 0.104 0.058 0.022 0.000 0.063 0.036 0.015 0.000 0.035 0.022 0.009

JGMM2 0.011 0.198 0.093 0.053 0.010 0.167 0.077 0.047 -0.030 0.386 0.235 0.043

JGMM3 0.011 0.158 0.077 0.040 0.006 0.114 0.059 0.029 0.002 0.068 0.035 0.015

CUE2 -0.040 0.227 0.110 0.051 -0.051 0.211 0.147 0.053 -0.115 0.833 0.325 0.115

CUE3 -0.024 0.152 0.095 0.031 -0.020 0.130 0.090 0.022 -0.014 0.054 0.086 0.015

GMM2 -0.053 0.242 0.106 0.061 -0.075 0.272 0.120 0.075 -0.214 0.618 0.247 0.214

GMM3 -0.031 0.217 0.099 0.044 -0.026 0.144 0.081 0.035 -0.025 0.108 0.059 0.031

Notes: Simulations are conducted using 5,000 observations across 500 trials. The true parameter vector
theta = (Var, Alpha, Beta), where Var is the unconditional variance. QMLE is the quasi-maximum likelihood
estimator. MM is the method of moments estimator. (J)CUE2(3) is the (jackknife) continuous updating
estimator with max(i) = 2(3). (J)GMM2(3) is the (jackknife) two-step generalized method of moments estimator
with max(i) = 2(3). For all (J)CUE and (J)GMM estimators: (a) the weighting matrix is the inverse of
Spearman�s correlation matrix; (b) k = 20; (c) L = 1. Med. Bias is the median bias, SD the standard deviation,
and MDAE the median absolute error of the estimates. Dec Rge is the decile range of the estimates, measured
as the di¤erence between the 90th and the 10th percentiles.
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FIGURE 1

Notes: Simulations are conducted using 5,000 observations across 500 trials. The true parameter vector is
(1, 0.10, 0.85), where alpha = 0.10 and beta = 0.85. QMLE is the quasi-maximum likelihood estimator. JCUE
is the jackknife continuous updating estimator with: (a) max(i) = 3; (b) the weighting matrix as the inverse
of Spearman�s correlation matrix; (c) k = the number of lags; (d) L = 1. Dec Rge is the decile range of the
estimates, measured as the di¤erence between the 90th and the 10th percentiles. MDAE is the median absolute
error of the estimates.
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FIGURE 2

Notes: Simulations are conducted using 5,000 observations across 500 trials. The true parameter vector is
(1, 0.05, 0.94), where alpha = 0.05 and beta = 0.94. QMLE is the quasi-maximum likelihood estimator. JCUE
is the jackknife continuous updating estimator. OCUE is the optimal continuous updating estimator. For both
the JCUE and OCUE: (a) max(i) = 3; (b) k = the number of lags; (d) L = 1. For the JCUE, the weighting
matrix is the inverse of Spearman�s correlation matrix. For the OCUE, the weighting matrix is the inverse of
the variance-covariance matrix. Dec Rge is the decile range of the estimates, measured as the di¤erence between
the 90th and the 10th percentiles. MDAE is the median absolute error of the estimates.
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TABLE 2

True Theta

(1.0, 0.15, 0.75) (1.0, 0.10, 0.85) (1.0, 0.05, 0.94)

Med Dec Med Dec Med Dec

Para. Est. Bias Rge SD MDAE Bias Rge SD MDAE Bias Rge SD MDAE

Var QMLE -0.006 0.326 0.130 0.088 -0.005 0.388 0.158 0.103 -0.036 0.844 1.155 0.208

-Ratio 1.338 1.375 1.348 1.333 1.396 1.284 1.404 3.278 1.281

MM -0.032 0.314 0.132 0.084 -0.043 0.358 0.150 0.093 -0.090 0.619 0.332 0.174

-Ratio 1.338 1.329 1.413 1.238 1.163 1.229 1.236 1.223 1.178

Alpha QMLE -0.002 0.066 0.026 0.017 -0.001 0.047 0.019 0.012 0.000 0.024 0.009 0.006

-Ratio 1.225 1.242 1.316 1.218 1.200 1.275 1.109 1.153 1.191

JCUE3 -0.003 0.040 0.022 0.007 0.000 0.019 0.012 0.003 0.000 0.006 0.009 0.001

-Ratio 1.344 0.836 1.228 1.393 1.135 1.213 1.670 1.781 1.170

JGMM3 -0.026 0.089 0.041 0.033 -0.017 0.068 0.033 0.022 -0.004 0.038 0.016 0.009

-Ratio 0.987 0.950 1.220 0.975 0.953 1.391 0.979 0.821 1.770

CUE3 -0.011 0.052 0.030 0.013 -0.005 0.042 0.041 0.008 -0.002 0.028 0.033 0.003

-Ratio 1.288 0.847 1.560 1.795 1.545 2.278 5.172 4.828 2.689

Beta QMLE -0.001 0.096 0.039 0.023 0.000 0.064 0.025 0.014 -0.002 0.027 0.011 0.007

-Ratio 1.183 1.182 1.134 1.138 1.168 1.102 1.158 1.129 1.056

JCUE3 0.001 0.121 0.061 0.025 0.000 0.074 0.056 0.016 0.000 0.046 0.074 0.010

-Ratio 1.164 1.049 1.164 1.172 1.556 1.097 1.291 3.312 1.097

JGMM3 0.018 0.195 0.089 0.047 0.012 0.123 0.074 0.031 0.003 0.080 0.042 0.018

-Ratio 1.231 1.161 1.181 1.077 1.248 1.089 1.181 1.221 1.263

CUE3 -0.037 0.187 0.104 0.041 -0.043 0.220 0.120 0.043 -0.030 0.320 0.147 0.031

-Ratio 1.231 1.101 1.325 1.688 1.325 1.996 5.956 1.721 2.035

Notes: Simulations are conducted using 5,000 observations across 500 trials. The true parameter vector
theta = (Var, Alpha, Beta), where Var is the unconditional variance. QMLE is the quasi-maximum likelihood
estimator. MM is the method of moments estimator. (J)CUE3 is the (jackknife) continuous updating estimator
with max(i) = 3. JGMM3 is the jackknife two-step generalized method of moments estimator, also with max(i)
= 3. For the (J)CUE and JGMM estimators: (a) the weighting matrix is the inverse of Spearman�s correlation
matrix; (b) k = 20; (c) L = 1. Ratio is the given measure of dispersion (error) for the estimator immediately
above it in this table divided by the corresponding measure of dispersion (error) from Table 1. Med. Bias is
the median bias, SD the standard deviation, and MDAE the median absolute error of the estimates. Dec Rge
is the decile range of the estimates, measured as the di¤erence between the 90th and the 10th percentiles.
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TABLE 3

Currency Para. JCUE3 OCUE3 QMLE

k 40 40

Var 0.5579 0.5579 0.4957

Alpha 0.050 0.0890 0.0532

AUD (0.0648) (0.0088)

Beta 0.922 0.9081 0.9382

(0.0211) (0.0101)

Sum 0.9726 0.9971 0.9914

k 40 40

Var 0.4963 0.4963 0.5057

Alpha 0.049 0.0901 0.0486

JPY (0.0448) (0.0095)

Beta 0.916 0.8864 0.9361

(0.0147) (0.0123)

Sum 0.9650 0.9764 0.9848

Notes: GARCH(1,1) models are �t to Australian Dollar (AUD) and Japanese Yen (JPY) spot returns,
where the spot rates are measured in terms of US Dollars. The time period for each series is daily from 1/1/90
- 12/31/09. JCUE3 and OCUE3 are the jackknife CUE and optimal CUE, where the former uses the inverse
of Spearman�s correlation matrix as it�s weighting matrix, while the latter uses the inverse of the variance-
covariance matrix. Both JCUE3 and OCUE3 set max(i) = 3 and L = 1. K is the number of lags used in the
given estimator (if applicable). Var is the unconditional variance estimate for the given spot return. Alpha is
the ARCH estimate, while Beta is the GARCH estimate. Sum is the sum of the Alpha and Beta estimates.
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FIGURE 3

Notes: GARCH(1,1) models are �t to the Australian Dollar (AUD) spot return series using the jackknife
CUE (JCUE) and optimal CUE (OCUE) with lag lengths from k = 20, . . ., 40. The AUD spot return series
is measured daily from 1/1/90 - 12/31/09. The Euclidean norm of the di¤erence between the JCUE (OCUE)
and QMLE estimates for Alpha and Beta are plotted against the lag lengths. The JCUE (OCUE) estimates
closest to the QMLE estimates are shown. The weighting matrix for the JCUE is the inverse of Spearman�s
correlation matrix, while the weighting matrix for OCUE is the inverse of the variance-covariance matrix. For
both the JCUE and OCUE, max(i) = 3 and L = 1. For OCUE3, k = 20, 38, and 39 are excluded because they
produce point estimates that violate covariance stationarity.
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FIGURE 4

Notes: GARCH(1,1) models are �t to the Japanese Yen (JPY) spot return series using the jackknife CUE
(JCUE) and optimal CUE (OCUE) with lag lengths from k = 20, . . ., 40. The JPY spot return series is
measured daily from 1/1/90 - 12/31/09. The Euclidean norm of the di¤erence between the JCUE (OCUE) and
QMLE estimates for Alpha and Beta are plotted against the lag lengths. The JCUE (OCUE) estimates closest
to the QMLE estimates are shown. The weighting matrix for the JCUE is the inverse of Spearman�s correlation
matrix, while the weighting matrix for OCUE is the inverse of the variance-covariance matrix. For both the
JCUE and OCUE, max(i) = 3 and L = 1. For JCUE3, k = 23 is excluded because it produces point estimates
that likely violate fourth moment stationarity.
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