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Implied volatility is assumed to quantify, under certain conditions, 

the market’s expectation of the average volatility of the underlying until 

contract expiration. Accurate assessment here is of great relevance for 

reliable option pricing and profitable trading. It has been exhaustively 

investigated using (mostly) as benchmark the ex post realised volatility 

of the underlying. Daily observations involve sequential forecasts for 

overlapping time periods since the maturity time of the option contracts 

exceeds the sampling interval of the data. However, use of these 

forecasts raises some relevant econometric problems. 

Two approaches have been used in a large number of statistical 

investigations based to some extent on the methods proposed in the 

literature of the 1980s to assess the unbiasedness and the efficiency of 

the forward exchange rate. The first (daily) estimation approach is set 

out by Canina and Figlewski (1993), Lamoureux and Lastrapes (1993) 

and Ané and Geman (1998) among others. It corrects for the statistical 

problems due to data overlapping and serial dependence in the time 

series of forecast errors using some seminal findings by Hansen (1982) 

and Hansen and Hodrick (1980, 1983). The high level of persistence of 

the relevant time series may, however, bring about additional 

estimation difficulties such as small sample bias or spurious regression 

distortions. 

The second approach, typified by the works of Neuhaus (1995), 

Christensen and Prabhala (1998) and Bahra (1998), modifies the 

sampling procedure. It discards enough data to exactly match the 

maturity time of the contract with the sampling interval. The statistical 

difficulties mentioned above disappear and model estimation is greatly 

simplified. However, cutting the number of observations reduces the 
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power of the statistical tests and the efficiency of the econometric 

estimates. Moreover, relevant but short lived phenomena of volatility 

turbulence may well be missed if, as is the case here, this procedure 

should require the use of a quarterly sampling interval.  

This paper investigates the properties of implied volatility from 

options on two short-term interest rate futures contracts traded at the 

LIFFE, the Three Month Sterling (or Short Sterling) interest rate future 

contract and the Three Month Eurodeutschmark interest rate future 

contract. They are highly liquid and play a significant role in both 

interest rate and exchange rate risk hedging. Short-term interest rate 

implied volatility is an indicator of expectations on future short-term 

interest rate behaviour and is positively correlated with uncertainty on 

future monetary and exchange rate policy measures.  

A panel data approach is proposed in order to avoid some of the 

difficulties mentioned above. Each daily volatility time series is 

indexed by the day i and the quarter t and each day left to contract 

expiration is seen as a distinct “unit” observed over the quarterly 

sample interval. Power considerations no longer apply since every daily 

observation of the sample is used in the estimation and, at the same 

time, the quarterly sampling procedure eliminates the overlapping data 

pitfalls. The highly distortive (and hard to manipulate) persistence 

properties of the daily volatility time series are appreciably attenuated. 

This type of analysis improves upon previous work in the following 

aspects. 

(i) The econometric investigation of the informational 

efficiency of implied volatilities is preceded by thorough 

examination of the statistical properties of the relevant time 
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series. Standard problems of inference, due to the 

overlapping nature of the forecasts, may well be 

compounded by additional difficulties due to the long term 

dependence nature of the data. 

(ii) The introduction of a panel data approach is justified in a 

number of respects. It is associated with the timing of the 

contract expiration cycle and is seen as a natural extension 

of previous empirical investigations with non overlapping 

data. Here too careful analysis of the time series properties 

of the pooled data determines the choice of the 

parameterization of the efficiency tests. Finally, panel data 

estimates are used as validation benchmarks for the results 

obtained with previous econometric procedures.   

(iii) Investigation is extended across contracts labelled in 

different currencies. The relative efficiency of London 

traders in dealing with both a national and a foreign interest 

rate does not seem to be homogeneous. 

Panel data estimates prove similar to those obtained using the levels 

of the overlapping time series and adjusting for the bias in the 

coefficient standard errors. An approach à la Canina and Figlewski 

(1993) thus seems to be justified. Our results differ from theirs, 

however, since our implied volatilities systematically outperform 

historical and GARCH volatility forecasts as volatility predictors.   

The analysis is organised as follows. Section 1 derives the volatility 

time series and investigates their statistical properties; section 2 

describes the financial and statistical pitfalls in analysis of the 

predictive power of implied volatility using both a standard and a 
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pooled data set; section 3 discusses the empirical findings; section 4 

concludes the paper. 

1. Preliminary statistical analysis 

End-of-day data on short-term interest rate derivatives traded in 

London, the Short Sterling, 3 Month Euromark futures and 

corresponding option contracts are provided by the LIFFE. The time 

period under investigation, from January 1, 1993 through December 31, 

1997, encompasses periods of severe financial and exchange rate 

turbulence, such as the July - August 1993 French Franc crisis, the 

December 1994 - March 1995 Mexican crisis and the onset of the Asian 

crisis in the Summer of 1997. Contract expiration follows the standard 

March, June, September and December cycle. For the sake of 

homogeneity, the auxiliary Euromark contracts introduced from June 

1994 onwards are disregarded. Each contract lasts at least nine months. 

One trading week before expiration the series switches into the next 

contract in order to minimise contract expiration biases. Continuous 

time series of futures prices, option prices and corresponding at-the-

money implied volatilities quoted by the LIFFE are thus obtained.
     

 

Options are margined and, since the buyer is not required to pay a 

premium up-front, discounting of the option price is dispensed with. 

The value of a call is provided by a simplified version of Black’s 

(1976) European style options formula 

 

C F N d K N dt t t= −( ) ( )1 2                                                                  (1) 
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where Ft  is the futures price, Kt is the strike price, σt  is the 

volatility of the underlying, T is the option’s time to maturity and N(.) 

denotes the standard normal distribution function.
1
 As usual in the case 

of interest futures option pricing the underlying instrument is the 

percentage interest rate it that is implied by the futures price Ft , where 

100- it  = Ft, rather than the futures price itself.
2
 Estimates of implied 

standard deviations with different time to expiration are drawn up with 

the help of a close screening of the maturity of the option contact.
3
 

Short term options, with a time to maturity (tenor) between zero (in 

reality 6 trading days) and three months (a 63 trading-day interval) are 

used to build the implied volatility time series. 

Realised future volatility σ Tt ,  is reproduced as follows  
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where R i it t t= −log( ).1 252 , 252 is the number of trading days per 

year and T-t is the time left to the option expiration. We label Rt , the 

daily logarithmic relative implied interest rate change, the “return” of 

the underlying contract. Following suggestions by Jorion (1995) and 

Figlewski (1997), the mean of Rt  is dropped from the standard error 

estimation. For each option contract the implied standard deviation will 

be matched with the sequence of future realised standard deviations of 
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the return of the underlying contract until option expiration in various 

option pricing efficiency tests. 

Following Lamoureux and Lastrapes (1993), Day and Lewis (1993) 

and Guo (1996), among others, the relative accuracy of implied 

volatility is assessed using as benchmark alternative volatility forecast 

proxies. Historical volatility σH,t  is the annualised standard deviation of 

the logarithmic interest rate changes of the previous 60 trading days and 

is computed as follows 
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                                                                          (3) 

 

where N=60. (We have tested 90 or 120 trading day time spans with no 

significant improvement in forecasting accuracy.)  

GARCH forecasts of daily variance  are transformed into forecasts 

of the average daily standard deviation over the remaining life of the 

corresponding option using the approach set forth by Lamoureux and 

Lastrapes (1993). On day t a GARCH(1,1) model of the conditional 

variance of the return of the underlying is specified as 

 

R

h h

t t
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By recursive substitution of the one period ahead variance forecast 

�
,ht t+1

2
 the k period ahead prediction can be constructed for any k, where 
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If T-t is the number of days left in the life of the option contract at time 

t, a GARCH forecast that is comparable to its implied standard 

deviation reads as 
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                                                                      (6) 

 

The GARCH model is estimated at time t using data from the previous 

126 trading days (6 months); on the following day the data set is shifted 

forward by one time period, using a rolling estimation procedure. The 

GARCH model is thus reestimated for every period of the sample and 

provides forecasts that are assumed to include information available to 

traders at the time the forecasts are derived. The estimation has been 

repeated using a 252 trading days window (12 months) with no 

significant change in the results. In the same way an AR(1) conditional 

mean parameterisation of Rt does not seem to alter the nature of the σG,t 

time series.  

Before estimating the realised, historical and GARCH volatility time 

series, we have to adjust implied interest rates for the effects of futures 

contracts expiration dates. As pointed out by Amin and Ng (1997) 

switching from one expiring contract to the successive one introduces a 

potential spurious shock to the interest rate (and brings about a spurious 

increase in Rt

2
). Indeed, with an upward (downward) sloping yield 

curve, we should have a spurious increase (decrease) in interest rate the 
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day which follows the change of contract. Those Rt  estimates whose 

large absolute values are due to contract shifts at time t are replaced by 

( )R Rt t+ −+1 1 2 , the average of the adjoining returns. In this way we 

avoid the “ghost effects” that tend to bias volatility averages such as 

historical or realised volatilities.
4
   

 

Table 1 

                                                                       Descriptive Statistics 

 
                  Short Sterling                            Euromark 

 

 
  σt   σt,T   σH,t  σG,t   ISDt     σt  σt,T    σH,t     σG,t  ISDt  

 Mean 8.2157 10.835 12.371 12.233 12.215 7.9995 10.514  15.358 15.668 14.005 

 S.D. 9.2517 3.6385 3.4433 3.5346  4.1028 8.1829 3.1987 6.7037 6.3196  2.8601 

  Sk. 2.4102 0.9432 0.3487 0.2287  0.5089 2.7648 0.3253 1.0226 1.2521 -0.0491  

  Kurt. 10.461 4.6388 2.7988 2.4881 2.6963 18.689 3.0141 3.6565  3.7906   3.7336 

  J.B. 4119.5 

[0.0] 

325.99 

[0.0] 

27.500 

[0.0] 

24.604 

[0.0] 

58.890  

 [0.0] 

14448 

 [0.0] 

22.114 

 [0.0] 

240.87  

 [0.0] 

360.02 

 [0.0] 

28.600 

 [0.0] 

 A.C. 

 Lags 

          

   1 0.095 0.964 0.991 0.989 0.964 0.145 0.961 0.981 0.976 0.902 

   2 0.123 0.933 0.981 0.983 0.935 0.081 0.925 0.962 0.986 0.843 

   3  0.067 0.907 0.970 0.977 0.911 0.057 0.891 0.943 0.966 0.808 

   4 0.062 0.866 0.961 0.970 0.890 0.084 0.860 0.936 0.958 0.772  

   5 0.039 0.833 0.952 0.964 0.872 0.107 0.829 0.925 0.952 0.736 

  10 0.016 0.706 0.910 0.933 0.804 0.072 0.701 0.890 0.928 0.582 

  20 0.055 0.533 0.822 0.869 0.708 0.050 0.522 0.811 0.881 0.351 

  30 0.036 0.433 0.738 0.803 0.622 0.037 0.344 0.726 0.836 0.225 

 

Notes. S.D. : Standard Deviation; Sk. : Skewness; Kurt. : Kurtosis; J.B.: Jarque Bera normality test; A.C. : 

autocorrelation coefficient; σt : daily volatility; σt,T : future realised volatility; σH,t : historical volatility; σG,t: 

GARCH volatility forecast; ISDt : implied volatility. Probability values are in square brackets. 

 

 

 

Table 1 provides a preliminary description of the time series. The 

coefficients of skewness and kurtosis of daily volatilities ( ) .Rt

2 0 5
, 
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measured here on a percentage basis, are appreciably large and do not 

seem to be compatible with a Gaussian distribution - a result 

corroborated by the significance of the Jarque Bera test statistics. Small 

but significant autocorrelation coefficients of various orders detect a 

degree of persistence. The statistics of the realised, historical, and 

GARCH volatilities provide figures that are typical for time series that 

are based on averaged overlapping data, i.e. smaller standard deviations 

and very high serial correlations. Indeed, the autocorrelation functions 

remain large, positive and significant at very long lags - a pattern which 

they share with the implied volatilities. 

Standard unit root tests are reported in the upper half of table 2. They 

reject the null in all cases but that of σGt,, the GARCH volatility 

forecast time series. We are thus led to reject the unit root hypothesis in 

favour of a highly persistent stationary process. Implied, realised and 

alternative volatility forecasts are moving averages of short memory 

daily volatilities. Granger (1980) has shown that aggregation 

(averaging) of stationary short memory time series can lead to long 

memory. (For an heuristic proof, see Beran 1994, pages 15-16.) In the 

second half of table 2 are set forth estimates of the R/S (Hurst) statistic 

adjusted for short time dependence by Lo (1991). Long range 

dependence is systematically detected in the volatility time series of 

both contracts - a finding which justifies thorough investigation into the 

possibility of ARFIMA parameterisation à la Granger and Joyeux 

(1980).  

 

 

 



 10

Table 2 

                                                                         ADF Unit Root Test Statistics 

 

S. 

Sterling 

     Euro- 

Mark 

     

     ϖ n       ϖ n      ϖ n       ϖ n 

  σt,T -4.7448* 0  ∆σt,T -37.748* 0    σt,T -4.6618* 0  ∆σt,T -35.989* 0 

  σH,t -3.9472° 1  ∆σH,t -34.807* 0    σH,t -3.6564* 0  ∆σH,t -35.090* 0 

  σG,t -2.8634 0  ∆σG,t -67.146* 0    σG,t -2.4286 2  ∆σG,t -56.430* 0 

 ISDt -3.9712* 1 ∆ISDt -39.912* 0   ISDt             -5.0996* 4 ∆ISDt -43.443* 0 

 

Notes. The ϖ test statistics are obtained from the following estimates: ∆xt = ι + ϖxt-1 + Σi=1,…,nϕi∆xt-i + et where 

n is selected using the Akaike Information Criterion (AIC). *: significant at the 1 percent level; °: significant at 

the 5 percent level. 

 

 

 

Adjusted R/S (Hurst) Test Statistics for Long Memory 

 

         σt,T        σH,t            σG,t          ISDt 

S. Sterling   3.7830*     5.0518*      5.0867*      4.9388* 

Euromark   3.2799*     4.2997*      4.6561*      3.4625* 

  

  Notes. The R/S statistic reads as Q b x x x xT T k T j k T j
j

k

j

k

= − − −≤ ≤ ≤ ≤
==
��( ( ))[max ( ) min ( )]1 1 1

11

σ where x is 

the sample mean and σT b( ) is the square root of the Newey West (long run) variance estimate with bandwidth 

b=7 (given by the integer part of 4(T/100)0.25) and sample size T =1260. * : the null of no long term dependence 

is rejected at the 1 percent level of significance.
5
 

 

 

 

Table 3 shows the ARFIMA(p,d,q) estimates of the volatility time 

series obtained with the error decomposition procedure set forth by 

Beran (1995). They are selected – among alternative parameterisations 

– according to the BIC minimisation criterion. Parameter d reflects the 

long term behaviour, whereas p, q, and the corresponding AR and MA 

coefficients determine the short term correlation structure.
6
 The range 

of d that is of interest in the context of stationary long memory 

modelling is 0 1 2≤ <d . In that case the process is mean-reverting. It 

is stationary with long memory and is appropriate for long-term 

persistence modelling.  
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Table 3 

ARFIMA(p,d,q) Parameter Estimates 

 

      d      Φ1      m     Ψ1    BIC    LLF 

S. Sterling       

  σt,T  -0.0293 

(0.0293) 

 0.9716 

(0.0091) 

    0   3465.341 

 

-1725.54 

  σH,t  0.0081 

(0.0257) 

 0.9899 

(0.0047) 

    0   1200.687  -593.21 

  σG,t  0.0146 

(0.0316) 

 0.9944 

(0.0035) 

    0  0.3994 

(0.0336) 

1374.449   -678.24 

 ISDt  0.4256 

(0.0846) 

 0.6632 

(0.0764) 

    0  0.3435 

(0.0347) 

3639.420  -1809.01 

Euromark       

  σt,T  -0.0197 

(0.0304) 

 0.9695 

(0.0096) 

    0   3170.643 -1578.19 

  σH,t  0.7794 

(0.0409) 

     1  -0.1571 

(0.0515) 

3972.738 -1979.24 

  σG,t  0.0064 

(0.0289) 

 0.9940 

(0.0360) 

    0  0.5825 

(0.0271) 

3907.988 -1943.29 

 ISDt  0.4052 

(0.0138) 

 0.8379 

(0.0629)  

    0  0.5608 

(0.0354) 

4007.598 -2001.01 

 

Notes. The estimates come from the zero mean volatility process  Φ(L)(1-L)δ [(1-L)mxt - µ] = Ψ(L)εt , where µ is 

the mean of the xt time series and –1/2<δ<1/2. The difference parameter is computed as d=δ+m, where the 

integer m indicates the number of times that xt must be differenced to achieve stationarity. Estimated asymptotic 

standard errors in parentheses. BIC: Bayes Information Criterion; LLF: Log Likelihood Function. 

 

 

 

The ARFIMA estimates in table 3 do not provide homogeneous results.  

The parameter d estimates of most realised, historical and GARCH 

volatilities are not significantly different from zero, suggesting that 

deviations from the mean be short memory. The associated 

autoregressive parameters, however, imply substantial shock 

persistence and (being close to one) may explain the rejection of the 

null of no long term dependence obtained with the R/S tests. The d 

parameters lie in the stationary long memory 0 - 0.5 range in the case of 

the implied volatilities of both contracts and in the covariance non 

stationarity 0.5 - 1 range in the case of the Euromark historical 

volatility.
7
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The estimates cited in this section suggest that the volatilities of 

both contracts are characterised by substantial shock persistence, but do 

not usually behave as random walks. Estimation in terms of levels 

might thus be appropriate. However, whenever the regressand and the 

regressors lie on the borderline separating mean and variance 

stationarity from non stationarity any a priori selection of the model 

parameterisation can be misleading, which probably explains the 

arbitrariness of this choice in most of the literature. Estimation in terms 

of levels can lead to a spurious regression bias unless the time series are 

cointegrated and, in terms of first differences, to a misspecification bias 

due to over-differencing. The latter may be costly; it tends to discard 

low frequency information and eliminate cointegration effects.  

2. Analysis of the predictive power of volatility forecasts 

Description of the different techniques introduced in the literature to 

assess the information content of implied volatility is followed by the 

discussion of a panel data approach that will be used to avoid the main 

econometric pitfalls outlined in the previous section.   

2.1. Unbiasedness and efficiency   

  An interesting insight into the information content of the alternative 

volatility forecasting proxies is provided by the following regression 
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σ Tt , =  a + bσ F

Tt ,  + u Tt ,                                                                         (7) 

 

where σ Tt ,  is the realised volatility between time t and T and σ F

Tt ,  is a 

volatility forecast derived at t over the period from t to t+T. We would 

obtain a slope of one and a zero intercept if σ F

Tt ,  were to be an efficient 

and unbiased forecast of future volatility. If all the information 

available at time t is processed rationally, the disturbance term should 

be serially uncorrelated. This condition cannot be assessed with daily 

data because of the overlapping nature of the volatility time series. σ F

Tt ,  

can be quantified either with the implied standard deviation ISDt 

provided by the LIFFE option pricing or with the volatility proxies σH,t 

and σG,t obtained manipulating the returns of the underlying. 

If the option market is informationally efficient, implied volatility 

should incorporate all the available information about future volatility, 

while alternative forecast proxies should provide no additional 

information on the dependent variable. Forecast restrictions can then be 

tested with the help of the following encompassing regression à la Fair 

and Shiller (1990)  

 

σ Tt ,  = a + b ISDt  + cσP,t + u Tt ,                                                          (8) 

 

where σP,t is either σH,t or σG,t. 

Under the null of implied volatility informational efficiency, the 

restriction is that c = 0.
8
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2.2. Previous estimation methodologies 

Alternative approaches have been used in order to deal with the pitfalls 

that are due to the properties of the volatility time series. Canina and 

Figlewski (1993), Lamoureux and Lastrapes (1993) and Jorion (1995) 

among others estimate relationships analogous to equations (7) and (8) 

and disregard potential spurious regression biases. Since the length of 

the contracts – and thus the span of the forecasts – exceeds the 

sampling frequency of the data, the error term will have a moving 

average structure and, as pointed out by Hansen and Hodrick (1980), 

OLS will provide consistent, albeit inefficient estimates. The downward 

bias in standard errors is corrected using Hansen’s (1982) GMM 

procedure, the lag truncation parameter of the Newey West kernel 

being selected in various ways. (We  shall follow Lamoureux and 

Lastrapes here and use the well known Andrews (1991) bandwidth 

selection approach.) 

Guo (1996) is concerned with the finite sample bias that affects the 

regression coefficients in the presence of highly persistent time series - 

a problem also discussed in Richardson and Smith (1991). He estimates 

equations (7) and (8) using the Fully Modified Least Squares estimator 

of Phillips and Hansen (1990), a procedure originally developed in 

order to correct for the finite sample bias which affects OLS 

cointegration estimates.
9
 

The analyses of Scott (1992), Fleming (1993), and of ap Gwylim and 

Buckle (1999) posit a reformulation of equation (7) in terms of 

volatility differentials, thus avoiding any spurious regression effects 

that may be due to the unit root structure of the time series. (Fleming 
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points out that tests in levels of the association of differing variables 

with the dependent variable tend to be biased in favour of the most 

highly correlated variable.) Economic interpretation of the results has to 

be adjusted accordingly as the equation estimates are meant now to 

assess the predictability of realised volatility changes. 

Neuhaus (1995), Christensen and Prabhala (1998) and Bahra (1998) 

avoid these complex econometric problems by altering the sampling 

procedure. In order to obtain statistically independent errors they 

restrict the sampling to one observation per contract, and the forecast 

horizon thus coincides with the frequency of the data. This approach 

eliminates overlapping observations and has two major advantages; (i) 

it reduces the relevance of the long range dependence of the daily 

volatility time series as the data are sampled on a monthly (or quarterly) 

basis; (ii) it eliminates the complex moving average structure of the 

residuals of the regression estimates. Canina and Figlewski (1993) 

show, however, that this sampling procedure will raise the standard 

error of the slope coefficient and reduce the power of the estimation of 

equation (7). One additional weakness of the approach, is that a 

constant residual maturity (or tenor) has to be selected a priori. Indeed, 

it tends to vary over time, in the case of the fixed date maturity 

contracts examined in the paper, with potentially significant effects on 

the forecasts. Neuhaus (1995) points out that the effect of a diminishing 

maturity on the quality of volatility forecasts is twofold. As the time to 

expiration declines forecasts tend to become more accurate since there 

is less to forecast. At the same time, however, as the residual maturity 

of the option decreases, the contract tends to lose its option 

characteristic and the volatility forecasts play a declining role in price 
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formation. Ap Gwilym and Buckle (1999) maintain that by construction 

the potential for forecast errors should rise as maturity declines; 

realised volatility becomes increasingly variable as the time to 

expiration decreases since the effect of a shock to the returns in 

equation (2) is averaged on a smaller sample size.  

2.3. A panel data reformulation 

A panel data procedure is set out in order to compensate for the loss of 

information due to the use of quarterly data and to eliminate the 

arbitrariness associated with the selection of a specific contract tenor. 

The daily time series are regrouped in 63 sets or “units” of 20 quarterly 

data corresponding to each fixed tenor non overlapping volatility 

observation over the January 1993 – December 1997 time period. 

Equation (7) is then reformulated as 

 

σ it T, =  a i  + bσ it T

F

,  + u it T,                                                                    (9) 

  

for i = 1, 2,…, 63 (the differing times to contract expiration, which 

correspond, respectively, to 7, 8, …, 69 trading days to expiration) and t 

= 1, 2, …, 20 (the number of non overlapping quarter to quarter 

observations corresponding to each tenor). The residuals u it T,  are 

assumed to be uncorrelated with the regressors. In this context the 

a i coefficients summarise the effects of the change over time of the 
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tenor of the contract. These relationships can be estimated using either 

the fixed effect or the random effect procedure. 

If we assume that a i = a ∀i , i.e. that tenor variation has no effect on 

the interpretation of realised volatility, OLS pooled regression will 

provide consistent and efficient estimates of the coefficients in (9), a
t
 

and b
t
. If we assume that the unit tenor specific effect is constant over 

time but differs across units, OLS estimates of b can be obtained using 

a partitioned regression procedure. The following OLS regression on 

transformed data provides the “within units” estimator b
w

  

 

( ) ( ) ( ), ., , ., , .,σ σ σ σit T i T it T

F

i T

F

it T i Tb u u− = − + −                                (10) 

 

where  

σ σi T it T
t

., ,=
=
�

1

20 1

20

, σ σi T

F

it T

F

t

., ,=
=
�

1

20 1

20

, and u ui T it T

t

., ,=
=
�

1

20 1

20

.  

For each group i an estimator of a i corresponds to the mean residual  

a i i T

w

i T

Fb= −σ σ., ., . 

Alternatively, we can run a regression in terms of the 63 group means 

 

σ σi T i T

F

i Ta b u., ., .,= + +                                                                       (9’) 

  

and compute the “between units” estimator of b, b
b
. 

It can be shown (Greene, 1993, pages 471-473) that the estimator b
t
is a 

weighted sum of b
w

 and b
b
. 
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b
S

S S
b

S

S S
bt

w

w b

w

b

w b

b=
+

+
+

                                                         (11) 

 

where S w
and S b

 are, respectively, the within units and the between 

units sums of squares that enter the OLS estimation of bw
and bb

.  

A second “random effect” estimation procedure posits that the 

individual tenor specific effects be random variables. The tenor (and 

those factors which may influence the realised volatility but are not 

captured in the model specification) can be summarised by a random 

disturbance. A group specific error term α i  is thus added to the non 

specific error term uit T,  and model (9) is rewritten as 

 

σ it T, =  a + bσ it T

F

,  + w it T,                                                                    (12) 

 

where 

w u E E u i tit T i it T i it T, , ,; ( ) ( ) ,= + = = ∀α α 0  

var( )α σαi = 2
; var( ),uit T u= σ 2

     ∀i t,   

cov( , ) ;α αi j i j= ∀ ≠0    

cov( , ) ,, ,u u i j t sit T js T = ∀ ≠ ≠0  

and cov( , ),σ αit T

F

i = 0 , cov( , ),α i it Tu = 0  

Efficient estimators of model (12) are obtained using GLS. The 

appropriate transformation of the variables reads as 
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~ ( )
~ ( )

, ,

.

.,

, ,

.

.,

σ σ λ σ

σ σ λ σ
it T it T i T

it T

F

it T

F

i T

F

= − −

= − −

1

1

0 5

0 5  

where λ
σ

σ σα

=
+

u

u z

2

2 2 , z being the number of observations of the ith 

unit. A GLS estimator is obtained running the following OLS 

regression 

 

~ ~
, , ,σ µ σ εit T it T

F

it Tb= + +                                                                     (13) 

 

Here too the GLS estimate of b, b
G

, is a weighted average of the 

between and within units estimates and is formulated as 

   

b
S

S S
b

S

S S
bG

w

w b

w

b

w b

b=
+

+
+λ

λ

λ
                                                 (14) 

 

 

Whenever λ is different from one, the standard pooled sample OLS 

estimator b t
 set forth in equation (11) will prove inefficient because of 

an incorrect weighting of the bw
and bb

estimates. The entire variability 

of σ it T,  is explained in terms of the variation of σ it T

F

, , whereas the 

appropriate procedure would be to attribute a fraction of it to random 

variations across units associated with the variation of α i . OLS thus 

places excessive weight on between groups variation. 

Two extreme cases are of interest. If λ = 1 (and σα
2

= 0) b bG t= from 

equation (11) and the standard pooled sample fixed effect regression 
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model applies. If λ = 0 (and either σ u

2 0= or z →∞ ) the GLS 

estimator coincides with the fixed effect within units estimator since 

b bG w= . In the intermediate case, provided that the consistency pre-

conditions are satisfied, the GLS (random effect) estimator will be more 

efficient than the fixed effect within units OLS counterpart. The 

λ estimates will therefore be used, along with the standard Wu-

Hausman test for orthogonality of the random effects and the 

regressors, in order to assess whether a fixed effect or a random effect 

modelling procedure is appropriate for our panel.
10

 The corresponding 

encompassing model reads as 

 

~ ~ ~
, , ,σ µ σ εit T it P it it TbISD c= + + +                                                     (15) 

 

where σ P it,  is either the historical or the GARCH out of sample 

volatility forecast.  

3. Empirical analysis: results and discussion 

The purpose of this section is to compare daily overlapping and non 

overlapping analyses of the information content of implied volatility. 

As usual the tests are based on the joint hypothesis that the LIFFE 

option market is informationally efficient and that the selected option 

pricing model is correct.    
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3.1. Overlapping daily data estimation 

The estimates of equation (7) with daily overlapping observations are 

set  out  in   table  4 (rows  1  to  3  and  7  to   9). What is being tested 

here is not only the unbiased expectations hypothesis, but also the less 

stringent proposition that implied volatility forecasts contain some 

information about realised future volatility. The relevance of this 

hypothesis is then assessed using the σ H t, and σ G t, volatility forecasts. 

Implied volatilities seem to be biased predictors of future realised 

volatility as the corresponding null hypothesis ( H a bo : , )= =0 1 is 

consistently rejected. An analogous result is obtained with historical 

and GARCH out of sample volatility forecasts across both the Short 

Sterling and Euromark contracts. The positive intercept and the slope 

coefficient less than one are in line with previous findings in the 

literature; they suggest that realised volatility is usually underpredicted 

in the low variance periods and overpredicted in the high variance ones. 

The results are not homogeneous, however, as the implied volatility 

coefficient estimate is larger for the Short Sterling than for the 

Euromark contract, which seems to be more biased. Similarly, the 

adjusted R 2
 coefficient suggests that the explanatory power of implied 

volatility is higher for the former than for the latter. This ranking is 

corroborated by the properties of the remaining volatility forecasts; 

Euromark regressors having small or even insignificant coefficients, 

with very low explanatory power. On the whole implied volatilities 

tend to outperform historical volatilities which, in turn, dominate the 

GARCH out of sample forecasts.
11
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Table 4 

                                      σt,T  = a + b σ t T
F
,  + ut,T                                                     (7) 

 

      

    σ t T
F
,  

         

    a 

             

   b 
 

    R 2
 

 

  S.D. 

 

  D.W. 

    

  LB(5) 

            

Arch(1) 

          

 

  W0 

   

S.Sterling          

   OLS 

    [1] 
    ISDt   5.571 

(0.974) 

  0.431 

 (0.064) 

   0.235  3.181 0.099 4607.3 

[0.00] 
886.78 

[0.00] 

99.406 

[0.00] 

   OLS 

    [2] 
    σ H t,   6.281 

(1.509) 
  0.368 

 (0.119) 
   0.121  3.412 0.079 4929.0 

[0.00] 

851.27 

[0.00] 

31.545 

[0.00] 

   OLS 

    [3] 
    σG t,    6.447 

(1.472) 

  0.357 

 (0.108) 

   0.120  3.414 0.082  4941.9 

[0.00]         

849.14 

[0.00] 

41.451 

[0.00] 

    FD 

    [4] 
   ISDt   0.002 

(0.027) 

   0.141 

 (0.258) 

   0.023  0.957 2.109  8.127 

[0.15] 

 0.307 

[0.58] 

1105.4 

[0.00] 

    FD 

    [5] 
   σ H t,   0.003 

(0.027)  

   0.324 

 (0.069) 

   0.016  0.960 2.108  9.305 

[0.10] 

 0.755 

[0.38] 

95.261 

[0.00] 

     FD 

    [6] 
   σG t,    0.001 

(0.027) 

   0.048 

  (0.061) 

   0.0005  0.968 2.136   9.870 

 [0.08] 

 0.649 

[0.421] 

242.64 

[0.00] 

Euromark          

   OLS 

    [7] 
    ISDt   5.268 

(1.972) 

  0.375 

 (0.134) 

    0.111  3.015 0.098 4749.9 

[0.00] 

925.84 

[0.00] 

282.34 

[0.00] 

   OLS 

    [8] 
    σ H t,   9.212 

(0.968) 

  0.085 

 (0.049) 

    0.031  3.149 0.075 4999.0 

[0.00] 

955.90 

[0.00] 

443.97 

[0.00] 

   OLS 

    [9] 
    σG t,    9.443 

(0.539) 

  0.068 

 (0.029) 

    0.017  3.171 0.072 5044.2 

[0.00]         

960.33 

[0.00]         

1732.5 

[0.00] 

     FD 

   [10] 
    ISDt  -0.008 

(0.024) 

  0.055 

 (0.019) 

    0.006  0.858 2.026  5.106 

[0.40] 

 0.016 

[0.90] 

2352.4 

[0.00] 

    FD 

   [11] 
    σ H t,  -0.008 

(0.024) 

  0.038 

 (0.020) 

    0.002  0.859 2.028  4.361 

[0.50] 

 0.020 

[0.89] 

2109.6 

[0.00] 

    FD 

   [12] 
    σG t,   -0.007 

(0.024) 

  0.116 

 (0.018) 

    0.031  0.847 2.015  8.383 

[0.14] 

 0.128 

 [0.72] 

2309.4 

[0.00] 

 

Notes.  FD: First differences OLS estimates; LB(x): Ljung-Box Q statistic for xth order serial correlation; 

Arch(x): LM test for xth order ARCH; W0 : Wald test χ2 statistic for the null hypothesis that a = 0, b = 1. 

Probabilities are in square brackets and standard errors in parentheses. The standard errors of the levels estimates 

are robust to heteroskedasticity. 

 

The estimates are characterised by a high serial correlation of the 

residuals commonly attributed to the overlapping nature of the data and 

a consistent estimator of the variance covariance matrix of the residuals 

is obtained using the GMM procedure mentioned above. In four out of 

six regressions, however,  the   coefficients  of   multiple   correlation  

are  larger   than   the corresponding D.W. statistics. These findings, 

combined with the persistence of the regressors and of the regressands 

detected in section 1 suggest that a spurious regression bias à la 

Granger and Newbold (1974) might affect the estimation. The analysis 

was thus performed in terms of first differences, following the standard 
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cure suggested in Hamilton (1994, page 562). The null that the constant 

term is nil and the slope of the regressor one is rejected throughout (see 

rows 4 to 6 and 10 to 12). No evidence is found of serial correlation 

and, as expected in the analysis of first differences, multiple correlation 

coefficients become very small, especially those of the Euromark 

contract estimates. Finally, the value of the slope coefficients tends to 

drop significantly, implied standard deviations being more affected by 

this reduction than the alternative volatility forecasts. The quality of the 

estimates thus shows a decline, bearing out the criticisms of 

Christensen and Prabhala (1998), as indeed does their financial 

relevance, changes in realised volatilities being more difficult to 

forecast than the corresponding levels. Unfortunately, because of the  

 

Table 5 

σt,T  = a + bISDt + cσ P t,  + ut,T                        (8) 

 

  

 σ P t,  

 

     a 

 

      b 

 

    c    2R
   

 

  S.D. 

    

  D.W.   

 

Arch(1) 

 

 

  W1 

  
S.Sterling          

   OLS 

    [1] 
 σ H t,  

 

 5.6920 

(1.0931) 

 0.4466 

(0.0969) 

-0.0253 

(0.1179) 

 0.2351  3.1821 0.1009 886.94 

[0.00] 

105.37 

[0.00] 

    OLS 

    [2] 
 σG t,   5.1959 

(1.1277) 

 0.3944 

(0.0817) 

 0.0668 

(0.1047) 

 0.2374  3.1774 0.0979 884.49 

[0.00] 

103.64 

[0.00] 

    FD 

    [3] 
 σ H t,  

 

 0.0055 

(0.0267) 

 0.1488 

(0.0256) 

 0.3467 

(0.0685) 

 0.0415  0.9480 2.0845 0.3449 

[0.56] 

1152.7 

 [0.00] 

   FD 

    [4] 
 σG t,   0.0024 

(0.0271) 

 0.1407 

(0.0259) 

 0.0264 

(0.0606) 

 0.0220  0.9576 2.1115 0.3102 

[0.58] 

1104.8 

 [0.00] 

Euromark          

   OLS 

    [5] 
 σ H t,  

 

 4.0555 

(1.1647) 

 0.3546 

(0.0821) 

 0.0648 

(0.0278) 

 0.1289 2.9853 0.0985 926.05 

[0.00] 

100.09 

[0.00] 

    OLS 

    [6] 
 σG t,   4.5338 

(1.1698) 

 0.3650 

(0.0817) 

 0.0554 

(0.0271) 

 0.1227 2.9960 0.0971 918.10  

 [0.00] 

87.526 

 [0.00] 

    FD 

    [7] 
 σ H t,  

 

-0.0076 

(0.0242) 

 0.0537 

(0.0195) 

 0.0355 

(0.0203) 

 0.0072 0.8573 2.0210 0.0162 

 [0.90] 

2359.3 

 [0.00] 

   FD 

    [8] 
 σG t,  -0.0069 

(0.0239) 

 0.0506 

(0.0192) 

 0.1147 

(0.0183) 

 0.0349 0.8452 2.0087 0.1404 

 [0.71] 

 459.58 

 [0.00] 

 

Notes.  FD: First differences OLS estimates; Arch(x): LM test for xth order ARCH; W1 : Wald test χ2 statistic for 

the null hypothesis that a = c = 0 and b = 1. Probabilities are in square brackets and standard errors in 

parentheses. The standard errors of the levels estimates are robust to heteroskedasticity. 
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borderline nature of the stationarity of most volatility time series, we 

are unable to discriminate a priori between the level and first difference 

parameterisations. Also the encompassing regression estimates of 

equation (8), set out in table 5, provide results that differ according to 

the parameterisation of  the  regressions.  Levels estimates suggest that 

only the Short Sterling implied standard deviations contain relevant 

information on future realised volatility that cannot be duplicated by the 

alternative volatility proxies. (The coefficient estimates of the latter are 

not significantly different from zero.) First difference estimates find 

that historical and GARCH out of sample volatility changes have, in the 

case of the Short Sterling and Euromark contracts respectively, 

appreciable explanatory power.  

3.2. Daily analysis using panel data 

The daily time series are regrouped in 63 sets of 20 quarterly data 

corresponding to each fixed tenor non overlapping observation over the 

whole sample. Three tenors of 60, 40 and 20 days are selected at first  -

following Neuhaus (1995) – and three sets of OLS regressions of the 

realised volatility on the implied standard deviation are accordingly 

performed. The null of informational efficiency requires that a = 0, b = 

1 and that the residuals be serially uncorrelated in  

 

σ jt T jt jt Ta bISD u, ,= + +                                                                  (16) 

 

where j = 20, 40 and 60 days to expiration of the option contract. 
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Table 6 

                              σjt,T  = a + bISDjt + ujt,T                                            (16) 

 

             Short Sterling 

 j      a       b 
  R 2

 
 S.E.  D.W.       LB(5)      Wo 

20  4.622 

(1.895) 

 0.478 

(0.159) 

 0.297 2.803  1.626 1.363 

[0.92] 

7.273 

[0.00] 

40  4.075 

(2.576) 

 0.577 

(0.207) 

 0.262 2.962  2.531 22.363 

[0.00] 

3.218 

[0.06] 

60  5.167 

(1.533) 

 0.459 

(0.107) 

 0.476 2.118  1.940 11.703 

[0.04] 

23.873 

[0.00] 

             Euromark 

20  0.225 

(3.403) 

 0.763 

(0.248) 

 0.309 2.614  1.041 9.674 

[0.08] 

35.339 

[0.00] 

40  9.312 

(3.999) 

 0.088 

(0.294) 

 0.050 2.988  1.436 2.767 

[0.74] 

14.469 

[0.00] 

60  6.226 

(3.267) 

 0.326 

(0.208) 

 0.071 2.777  1.960  8.812 

[0.12] 

27.975 

[0.00] 

 

Notes. LB(x): Ljung Box Q-statistic for xth order serial correlation; Wo: Wald test χ2 statistic for the null 

hypothesis that a = 0, b = 1. Probability values are in square brackets and standard errors in parentheses. 
 

 

The estimates of table 6 show that the quality of fit is far from 

homogeneous across tenors. In the case of the Euromark contract the 

explanatory power of implied volatility seems to rise as the time to 

expiration declines, whereas in the case of the Short Sterling the 

opposite seems to obtain. Arbitrary choice of a tenor may thus affect 

the results erratically. As expected, standard errors tend to be much 

larger than in the corresponding estimates with overlapping data, and 

the coefficient estimates less accurate. With panel data analysis the 

information provided by all the 63 tenors entering the data set can be 

exploited and these pitfalls overcome. 

Preliminary analysis using the truncated cross sectionally adjusted IPS 

unit root test of Pesaran (2003) set forth in table 7 shows that the time 

series entering the panel data set are always stationary. R/S (Hurst)  

tests  were  performed for  each   volatility    time  series.  No  evidence  
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Table 7 

Truncated Cross Sectionally Augmented IPS Panel Unit Root Test Statistics 

 

         σit,T        σH,it            σG,it          ISDit 

Short Sterling     -3.8487a      -6.3452b       -4.9409a       -5.3399a 

Euromark     -3.3460a      -5.8299a       -5.9411a       -3.9623b 

 

Notes.  The tests of the unit root hypothesis are based on the t-ratios of the OLS estimation of bi in the following 

Cross Sectionally Augmented DF (CADF) regressions 

(a) No intercept, no trend          ∆ ∆y b y c y d y eit i i t i t i t it= + + +− −, 1 1  

(b) Intercept only                       ∆ ∆y a b y c y d y eit i i i t i t i t it= + + + +− −, 1 1  

where, for i = 1, 2,…, N and t = 1, 2,…, T, yit is an observation on the ith cross section unit at time t and 

y N yt it
i

N

= �
−

=

1

1

is the cross section mean of yit . The no intercept specification (a) is selected whenever, in a 

preliminary panel estimation of equation (b), the intercept ai is not significantly different from zero.    

The truncated version of the cross sectionally augmented IPS statistic (Im et al. 2003) reads as 

                                                               CIPS N t N Ti
i

N

* ( , )*= �
−

=

1

1

 

where t N Ti
* ( , ) is the truncated t-ratio of bi in the CADF regressions (a) and (b) above. The 5 percent critical 

values set forth in Pesaran (2003, tables 3a and 3b) are, respectively, –1.535 and –2.105.12   

 

Average Adjusted R/S (Hurst) Test Statistics for Long Memory 

 

         σit,T        σH,it            σG,it          ISDit 

S. Sterling   1.2221     1.2872      1.2105      1.2329 

Euromark   1.2053     1.1484      1.1183      1.1123 

    

Notes. The  bandwidth is 2 in each of the 63 tests. 

 

of long run dependence was detected as the statistics never proved 

significant. Their average values over the 63 sets of non overlapping 

observations that correspond to each volatility are set out at the bottom 

of table 7. Estimation in terms of volatility levels thus seems to be 

justified.  

Panel estimates of model (13) are set out in table 8. The random effect 

GLS estimator was selected, assuming that the individual tenor specific 

effects   be   random   variables. The   consistency   pre-conditions    are  
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Table 8 

             
~ ~

, , ,σ µ σ εit T it T
F

it Tb= + +                                                (13) 

                                ~ ~ ~
, , ,σ µ σ εit T it P it it TbISD c= + + +                                    (15) 

                               ( ) ( ) ( ), ., , ., , .,σ σ σ σit T i T it T
F

i T
F

it T i Tb u u− = − + −        (10) 

 

 

Model (13) 
     

 
~

,σ it T
F  

         

    µ 

            

    b 
 

    R 2
 

 

  S.D. 

 

  D.W. 

   

      λ 

    

   W.H. 

            

 W.C.H.  

          

S.Sterling          

     [1] ISDit

~

 

 5.579 

(0.283) 

 0.431 

(0.021) 

 0.243 3.192 2.131  0.658  0.075 

[0.78] 

 3.143 

[0.06] 

     [2] ~
,σ H it

 

  6.868 

(0.360) 

 0.324 

(0.027) 

 0.094 3.493 1.854  0.544  0.861 

[0.35] 

 0.050 

[0.82] 

     [3] ~
,σG it    6.945 

(0.351) 

 0.320 

(0.027) 

 0.098 3.487 1.790  0.578  0.055 

[0.81] 

 2.748 

[0.09] 

Euromark          

    [4] 
ISDit

~

 

 5.156 

(0.424) 

 0.383 

(0.029) 

0.117    3.013 1.612       0.830  0.044 

[0.99] 

 28.434 

 [0.00] 

    [5] ~
,σ H it

 

 9.139 

(0.226) 

 0.090 

(0.013) 

0.035    3.151 1.600  0.692  0.704 

[0.40] 

 19.239 

 [0.00] 

    [6] ~
,σG it     9.707 

(0.241) 

 0.052 

(0.014) 

 0.010 3.191 1.550  0.727  0.012 

[0.91] 

 23.808 

 [0.00] 

 

Model (15) 

 
~

,σ P it   

 

     µ 

 

   b 

 

      c 2R
 

 

 S.D. 

    

D.W.   

 

    λ 

 

      W.H. 

 

S.Sterling          

    [7] ~
,σ H it

 

 5.726 

(0.336) 

 0.446 

(0.028) 

-0.027 

(0.034) 

0.244 3.192 2.128   0.660     0.142 

    [0.93] 

    [8] ~
,σG it   5.254 

(0.338) 

 0.405 

(0.026) 

 0.052 

(0.030) 

0.245 3.190 2.126   0.651     0.525 

    [0.77] 

Euromark          

    [9] ~
,σ H it

 

 4.469 

(0.439) 

 0.359 

(0.029) 

 0.066 

(0.012) 

 0.136 2.981  1.663   0.818     0.265 

    [0.87] 

   [10] ~
,σG it   4.564 

(0.460) 

 0.377 

(0.029) 

 0.043 

(0.013) 

 0.124 3.001  1.625   0.835     0.075 

    [0.96] 

 

Model (10)   
  

σ it T
F
,  

     

    b 

 
 2R

 
 

 S.D. 

   

D.W.   

 

    [11] ISDit

 

  0.421 

(0.030) 

  0.126  3.076 1.718  

    [12] σ H it,

 

  0.111 

(0.009) 

  0.005     3.199 1.725  

    [13] σG it,     0.074 

(0.010) 

  0.027  3.245 1.657  

 

Notes. W.H.: Wu-Hausman Wald test for the orthogonality of the random effects and the regressors; 

λ
σ

σ σα

=
+

u

u z

2

2 2
, z being the number of observations of the ith unit; W.C.H.: White’s cross sectional 

heteroskedasticity test. Probability values in square brackets.  
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satisfied since the Wu-Hausman tests for orthogonality are not 

significant and, at the same time, the  λ ratio  estimates  lie  in  the 0-1  

interval,  indicating that the GLS estimates do differ from the less 

efficient fixed effect within units or pooled data regression 

counterparts. 

The findings are more accurate (the coefficient standard errors being 

much smaller) than those set forth in table 6, computed with quarterly 

non overlapping data. They are broadly similar to the estimates of 

equation (7) of table 4, obtained with daily overlapping data in terms of 

levels and using the GMM procedure in order to adjust the standard 

errors for the serial correlation of the residuals. We can thus conclude 

that spurious regression effects do not seem to affect daily estimates, in 

spite of the persistence detected in the time series. The quality of the 

Short Sterling estimates (rows 1 to 3) is more satisfactory, the residuals 

being homoskedastic and serially uncorrelated throughout. Here too 

implied volatilities are more efficient, as realised volatility predictors, 

than the historical and GARCH out of sample proxies. Encompassing 

regressions corroborate the finding of a differing information content of 

the volatilities across contracts; the coefficients of the historical and 

GARCH out of sample forecasts are not significantly different from 

zero in the case of the Short Sterling only (rows 7 and 8). Euromark 

implied volatility forecast errors (rows 9 and 10) do not seem to be 

orthogonal to the market information set. These results, too, are 

reasonably similar to the daily overlapping data level estimates of table 

5. 

The implementation of the random effect GLS estimation procedure 

might be inappropriate in the case of the Euromark contract since 
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White’s cross sectional heteroskedasticity test statistics are 

significant.
13

 In rows 11, 12, and 13 are set out GLS within units fixed 

effect estimates of model (10) adjusted for cross section 

heteroskedasticity. (Each unit equation is weighted by an estimate of 

the cross section standard deviation obtained from a first step pooled 

data OLS regression.) White’s estimator is also used in order to obtain 

coefficient standard errors that are robust to heteroskedasticity within 

each cross section unit. The results do not differ in a significant way 

from those of rows 4, 5, and 6 and corroborate the previous conclusions 

on the reliability  of overlapping data levels estimates.
14

  

The weights that enter the fixed effect pooled data and random effect 

slope estimators b t
and bG

in equations (11) and (14) are finally 

computed for both implied volatilities in order to analyse the 

homogeneity of the panel, they are set out in table 9. 
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S.Sterling     0.9630    0.0370    0.9753    0.0246 

Euromark     0.9261    0.0739    0.9475    0.0524 

 

 

It turns out that most of the variation is within units. Panel data analysis 

suggests that the relevance of shifts in volatility over the estimation 

interval (which bring about the within units variation) is very large 

compared to the impact of changes in contract tenor. These findings 
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hold for both the fixed and random effects estimation procedures even 

if, as expected, the weight attributed to the between units slope 

estimator is lower in the case of the GLS random effect estimation 

approach.   

4. Conclusion 

The accuracy of volatility forecast estimators was assessed using 

daily overlapping and non overlapping observations on two major 

short-term interest rate futures contracts traded in London. The use of a 

panelized data set has eliminated some of the drawbacks usually 

associated with non overlapping data estimation, such as the lack of 

accuracy due to an insufficient number of observations or the 

arbitrariness of the choice of tenor. Non stationarity and long memory 

characteristics of daily overlapping time series are disposed of in the 

same way, along with their potential distortive effects. 

The empirical findings suggest that information content estimation in 

levels associated with the Hansen (1982) variance covariance matrix 

estimator provides reasonably accurate results, broadly similar to the 

corresponding benchmark panel data estimates. The criticisms of 

estimation in levels with overlapping data advanced by Christensen and 

Prabhala (1998) and ap Gwilym and Buckle (1999) among others do 

not seem here to be justified. 

Implied volatility is not an unbiased and efficient predictor of future 

realised volatility. (Unbiasedness and efficiency are obtained mostly in 

non overlapping data studies and are possibly due to an inappropriate 
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selection of contract tenor.) It has consistently more explanatory power 

than both the historical and GARCH out of sample forecasts - a ranking 

that reproduces the results of Jorion (1995), Fleming et al. (1995) and 

Guo (1996). Figlewski (1997) suggests that the inefficiency of implied 

volatility is not due to a lack of information. Rather, it is due to the 

difficulty in using it, i.e. in implementing the arbitrage trading that 

would bring option prices back to equilibrium after a disturbance. 

Expensive and risky with stock or stock index option contracts, this 

arbitrage is much easier to perform with currency or with futures option 

contracts. Indeed, most findings presented in the literature suggest that 

implied volatilities extracted from foreign exchange or from futures 

options  have a greater information content. 

The results of this paper can be interpreted according to this paradigm. 

The implied volatility from the Short Sterling contracts is more 

accurate as a future volatility predictor than implied volatility from the 

3 Month Euromark contracts. Implied volatilities have thus a country-

specific pattern as LIFFE traders, reacting to the same inflow of 

information, seem to be more proficient in predicting domestic than 

foreign interest rate volatility. This finding can be attributed to the 

greater cost (and associated risk) of options arbitrage trading across 

currencies. 
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Notes 

                                                           
1
 LIFFE options are of the American style but, because of low transaction 

costs, margining eliminates significant differences between European and 

American style options profit opportunities and Black’s formula above can be 

applied. For more details, see Lieu (1990). 
2
 It should be noticed that, owing to the linear relationship between the two 

variables, it is irrelevant whether Ft or it is used as underlying asset; a call (put) 

option on an interest futures price is equivalent to a put (call) option on the 

implied interest rate. 
3
 Black and Scholes (1973) type models should be inconsistent with stochastic 

volatilities. However, as shown by Hull and White (1987), if volatility is 

uncorrelated with aggregate consumption, an option (call) price is equal to the 

expected Black-Scholes price integrated over the average variance during the 

life of the option. More generally, implied volatility obtained inverting a 

Black-Scholes type formula will be, in a stochastic context, an unbiased 

estimator of average expected volatility of the underlying over the remaining 

life of the option if  there is no risk premium and if the price of the option is 

linear in volatility. For more details see Stein (1989) and Feinstein (1989), 

among others. 
4
 Alexander and Leigh (1997) point out that extreme market movements tend 

to distort volatility measures based on equally weighted averages. A N-day 

past squared returns moving average will be affected in the same way, 
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irrespectively of whether the abnormal return shift occurred 1 or N-1 periods 

ago. Volatility estimates may thus be kept artificially high even if the true 

volatility has dropped to a lower level. 
5
 In the presence of serial correlation (short memory), but not of long memory, 

of the xt time series, QT converges weakly to the range of a Brownian bridge 

on the unit interval. The corresponding quantiles can be found in Lo (1991). 
6
 A fractionally integrated ARIMA(p,d,q) or ARFIMA(p,d,q) process reads as 

Φ(L)(1-L)
d
xt  = Ψ(L)εt. All roots of Φ(L) and Ψ(L) lie outside the unit circle 

and εt is iid (0, σ2
). The fractional difference operator is defined as (1-L)

d
 = 

�k=0, ∝{Γ(k-d)L
k
 /[Γ(k+1) Γ(-d)]}where Γ(.) is the gamma function. For -

1/2<d<1/2 the process is covariance stationary, while d<1 implies mean 

reversion. This  is in contrast to a unit root process which is both covariance 

non-stationary  and  not  mean-reverting. Interesting ARFIMA analyses of 

implied volatility performance can be found in Hwang and Satchell (1998) and 

in Li (2002).  
7
 A word of caution is called for here. Some of the time series do lie on the 

borderline separating stationarity from non stationarity, the BIC statistics of 

their non stationary parameterisations being only marginally larger than those 

of the stationary short memory ones.   
8
 Multicollinearity between ISDt and σPt might affect coefficient estimation in 

encompassing tests of this kind. 
9
 The regressor σ

t T

F

,
 in equation (7) is predetermined. It is not necessarily 

exogenous, which may lead to a finite sample bias in the coefficient estimates. 

Indeed σ
t T

F

,
  is correlated with past error terms even if it is not correlated with 

contemporaneous or future error terms. These correlations exist since shocks to 

the regressor are correlated with shocks to the regressand and the regressor is 

highly persistent. 
10

 The GLS estimator is consistent if cov( , )
,

α σ
i it T

F = 0 . Under the null of 

orthogonality the within units OLS and GLS estimators are both consistent 

(but the former is inefficient) whereas under the alternative the within units 

OLS estimator is consistent but the GLS is not. Under the null the two 

estimates should not differ too much and a Wald test is derived in order to 

assess the statistical relevance of their difference (and thus of the null). Let 

Ω = −var( ) var( ),b bw G the Wu-Hausman Wald test statistic is defined as 

( ) ( ).b b b bw G w G− −−Ω 1 It has a chi squared distribution with as degrees of 

freedom the number of regressors. 
11

 Relative out of sample forecasting accuracy has been assessed also using the  

Root Mean Square Error minimisation criterion. It has to be interpreted with 

caution; Alexander (2001, pages 122-123) points out that RMSE statistics will 

give poor results when applied to second moments because of excessive noise. 

The Mean Absolute Error is also set forth since, as suggested by Gemmill 

(1986), it implies a linear loss function and should provide a better measure of 
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forecasting performance. We obtain the following statistics over the 1993-

1997 time period 

                         S. Sterling                                             Euromark 
                σH,t        σG,t     ISDt        σH,t        σG,t      ISDt 

MAE 3.3093 3.4800 3.2785 5.8995 6.0159 4.1230 

RMSE 4.3260 4.3468 4.1784 8.4246 8.4401 4.9456 

 They confirm the ranking obtained with the regression analysis. Forecast 

errors are lower in the case of the Short Sterling contract. Implied volatilities 

are more accurate than historical forecasts and, here too, GARCH out of 

sample forecasts provide the worst results. 
12

 t N Ti ( , ) being the t-ratio of bi in the CADF regressions, t N Ti
* ( , ) is selected as 

follows 

t N T t N T if k t N T k

t N T k if t N T k

t N T k if t N t k

i i i

i i

i i

*

*

*

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

= − < <

= − ≤ −

= ≥

�

�
�

�
�

1 2

1 1

2 2

The boundaries k2 and 

k1 are determined in such a way that Pr[ ( , ) ] .− < < >k t N T ki1 2 0 999 , using the 

normal approximation of t N Ti ( , ) as a benchmark. Their use is justified in 

Pesaran (2003, theorem 2). In the tests above, k1 6 7195= . and k2 3 2595= . .  
13

 White’s cross sectional heteroskedasticity test reads as MR
2 

where M is the 

total number of observations in the panel and R
2
 is provided by the regression 

of the squared residuals of an OLS first stage pooled data estimation of the 

model on a constant and all unique variables in x x⊗ where x are the model 

regressors. It is asymptotically distributed as a chi-square with g-1 degrees of 

freedom, where g is the number of regressors (not including the constant). 

Significance implies rejection of the null of cross sectional homogeneity. 
14

 Panel data estimates may, however, be affected by some cross sectional 

correlation of  the residuals. Residuals are cross sectionally uncorrelated here 

if cov( , )
, ,

u u
it T js T

= 0 (i)∀ ≠t s  and (ii)∀ ≠i j . Condition (i) ensures that the 

(20x20) residual submatrices that constitute the (1260x1260) covariance matrix 

of the residuals from the pooled data regression are diagonal. Condition (ii) 

transforms the unrestricted pooled data regression matrix in a diagonal matrix 

of 63 (20x20) unit regression residual blocks. The combination of both 

conditions ensures that also the latter are diagonal. Condition (ii) may be 

violated, at least in the case of adjoining trading days, because of the 

overlapping nature of the data whereas condition (i) is likely to be satisfied 

because of the quarterly sampling procedure. The covariance matrix of the 

residuals from the pooled data regression will not be wholly diagonal as some 

of the (20x20) off diagonal submatrices that constitute it will have entries that 

are different from zero. It should be noticed, however, that since these 

submatrices are diagonal, because of condition (i), most of the off-diagonal 

entries of the pooled regression residual matrix are likely to be nil.  


