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Abstract: 

 This paper specifies a vertically differentiated products model for a product with a 

discrete/continuous choice. The model is easily estimated with the relatively limited data 

used in classical demand equation estimation, supplemented by readily available market 

characteristics data. The model, with some modifications, is estimated with a new dataset 

(by state and region) for the U.S. Portland cement industry. Plausible patterns of own and 

cross price elasticities are obtained. The role of market characteristics is estimated 

generalizing the applicability of the results to other markets and periods. 
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1. Introduction  

Estimation of differentiated products models, after beginning with the U.S. 

automobile industry has flowered into other consumer products (see Davis (2000) for a 

recent survey). This work has developed models for particularly visibly differentiated 

products, where the consumer makes a discrete choice, which are estimated with readily 

available specialized datasets of prices, sales and product characteristics. Even then, 

estimation remains demanding. Furthermore, for numerous products for which the 

framework is appealing, useful product characteristics data is not available. One of the 

implicit assumptions of the new empirical industrial organisation is that though industry 

specific models are developed, they are substantially generalisable. However, the focus 

on discrete choices and the specialized data and estimation requirements mean the 

generalization of structural differentiated products models has been limited to date. 

This paper specifies a differentiated products model for a product that features 

both a discrete and continuous choice. The model is readily estimated with the type of 

data typically used in classical demand equation estimation. The discrete choice 

component is based on the vertical differentiation model used in Bresnahan (1987). The 

model is estimated with a new dataset on U.S. state and regional Portland cement 

consumption, construction, prices of building materials and other market characteristics. 

This dataset is typical of data available to researchers in a broad set of products. 

Furthermore the model is estimable using just instrumental variables estimation yet it 

yields estimates of structural own and cross price elasticities of demand. In addition, 

elasticities with respect to market characteristics are estimated.  
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This paper demonstrates how structural models of demand for differentiated 

products can be extended to handle products with a discrete and continuous choice. This 

case is particularly important for modeling long run demand for products, for example, 

with switching costs. It demonstrates how these models can be applied to broader set of 

commodities, with more limited data, than the highly visible differentiated consumer 

products considered to date. Finally, a new set of estimates of demand elasticities for 

Portland cement is provided – an industry that has rarely been considered for demand 

estimation (see Gupta (1975) for the only direct example). 

The paper proceeds as follows. In the next section, the cement industry and the 

data are introduced. At the end of this section, estimates of a set of linear demand 

equations are presented, demonstrating that further structure is required to explain 

demand - especially the cross-section variation. Then an estimable version of a 

generalized vertical differentiation model is derived - so to handle the mixed 

discrete/continuous choice and other features of the commodity and data. In section four, 

it is discussed how to handle complements, uncertain substitutes and other econometric 

issues. Then the estimated equations and elasticities are presented. Some suggestions for 

further work are presented in the conclusion. 
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2. The Demand for Portland cement: Background, Data and Preliminary Estimates 

2.1 Background  

Portland cement is the powder mixed with water, sand and aggregate that makes 

concrete. For a manufactured product, cement is essentially homogeneous, with no 

important differences across the types of Portland cement or across the products of 

different manufacturers (Prentice (1997)). Up until recently there has been no economic 

substitute for cement in making concrete in the United States.  

Concrete is primarily used in construction and its importance differs significantly 

across different types of construction. The shares of cement in the cost of selected types 

of construction are presented in Table One. Streets and Highways feature the largest 

share, just over 2.5%. 

Table One: Cost Share of Cement in Construction 

Category Percentage 

All Construction 0.96 

New Construction 1.07 

One Family Housing 1.15 

Streets and Highways 2.51 

Farming 1.30 

Calculated by averaging requirements (including in concrete) in the Input-Output 

Statistics for 1972, 1977 and 1982, (Williams (1981, 1985) and Bureau of Economic 

Analysis (1991)) 

Cement differs in importance, in part, because there are several substitutes for 

concrete such as asphalt, steel, wood and curtain wall products (U.S Department of 

Commerce (1987)). The substitutability of concrete varies considerably with the type of 

construction. While there are few substitutes for concrete for foundations and large dams, 

the use of concrete varies considerably across buildings and over time. For example, the 

Brutalist school, and other modernist architects made prominent and substantial use of 
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concrete in a variety of buildings (Fleming et al (1980), Jencks (1985)). In addition, 

concrete houses were built in early 20
th

 century U.S.A and Australia and are common in 

developing countries today. Although cement is substantially homogeneous, it is one of a 

set of differentiated products in the building materials industry, highlighted by the variety 

in the buildings around us. 

2.2 Highlights of the Data 

In this subsection, the highlights of the data are presented. The sample is 

composed of annual data on U.S. states and regions from 1956 to 1992. There are three 

sets of data. First, there is the cement and construction data. Second, there is the set of 

prices of building materials. Third, there is the set of market characteristics. 

The characteristics of the cement and construction data are summarized in Table 

Two: 

Table Two: Characteristics of the Cement and Construction Data 

Series Aggregation Availability  Sources 

Cement State 1956-1992 except 

Hawaii, Alaska. 

Bureau of Mines 

(1956-1992) 

Construction  State 1967-1992, except 

Hawaii, Alaska. 

FW Dodge 

Construction  Regions 1956-1966 FW Dodge 

NB: The components of the FW Dodge regions are listed in a Data Appendix available 

from the author. 

The construction data is the value of contracted new construction, supplied by 

F.W. Dodge Co., which is then deflated using a construction price index constructed in 

Prentice (1997). From 1956 – 1966, detailed construction data is provided for eight 

regions across the U.S. From 1967 on, state level data is provided. Hence, all other data 

was collected for 48 states and Washington DC for 26 years, and eight FW Dodge regions 

for 11 years, providing a total of 1362 observations. The coverage of construction is not 
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complete as Preston and Lipsey (1966) suggest rural building is particularly under-

represented. Comparison with the input-output data suggests over 90% of cement 

consumption is captured, but just 50-70% of new construction expenditure. However, the 

FW Dodge construction data is used commercially, as a base for official statistics and is 

the best available measure of detailed regional construction activity.  

The quantities of construction and cement consumed are highly correlated over 

time. The ratio of national cement consumption to construction, presented in Graph One, 

demonstrates some cyclical variation without a trend. This is consistent with there being 

no evidence of any substantial technological change in cement use in construction over 

the period. This ratio is used repeatedly in the paper and is hereafter referred to as the 

cement-construction ratio. 

There is, though, considerable regional variation as displayed in Map One. The 

plains states, and some energy producing states feature higher than average cement-

construction ratios. And the Atlantic states and Washington feature lower than average 

cement-construction ratios. These differences may reflect different mixes of construction 

or local prices but there is no immediate intuitive explanation for the regional variation. 

In Table Three, the definitions and sources of the data on prices and market 

characteristics are summarized. 

The second set of data is the prices of building materials. For cement and bricks, 

average prices are calculated at the source over states or a relatively small number of 

states. Where prices are calculated over groups of states, these prices are assigned to all 

states in the group. However, for the other substitutes, the Engineering News Record 

prices are collected across twenty cities. 
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Table Three: Data 

Variable Definition Source 

Prices of Building Materials 

Price-Cement Average Annual Mill Price Bureau of Mines Minerals 

Yearbook (1956 – 1992) 

Price-Bricks Average Annual Price of 

Building Bricks* 

Current Industrial Reports: 

Clay Construction Products 

(1957 – 1992) 

Price-Steel Average – three types of 

Building Steel* 

Engineering News Record 

(1956 – 1992) 

Price-Lumber Average – four types of 

Lumber* 

Engineering News Record 

(1956 – 1992) 

Price-Gravel Average – two types of 

Gravel* 

Engineering News Record 

(1956 – 1992) 

Price-Asphalt Weighted average of three 

types of Asphalt and Road 

Oil. 

Engineering News Record 

1956 – 1969, Dept. of 

Energy (1970 – 1992) 

Market Characteristics 

Disaster Prone Value of Losses for nine 

types of natural disaster, by 

state for 1970. 

Table 5.14, Petak and 

Atkisson (1982) 

Number of Hot Days  Statistical Abstract of the 

United States (denoted SA) 

Average Temperature  SA 

Precipitation  SA 

Normal Minimum  SA 

Area  SA 

Annual Growth  SA, Bureau of the Census 

(1975) (denoted HS) 

Share of Agriculture Ratio Cash Receipts from 

Farm Marketing to State 

Income 

SA 

Share of Industries Employment Share of Eight 

Broad Industry Groups 

SA 

Catch-up Ratio Ratio of Per Capita State 

Income to Highest Income 

State Income in 1950 

SA, (HS) 

Income Growth Growth 1950-1992 SA, (HS) 

Other Data 

Interest Rate  Real Moodys Aaa 

Corporate Bond Rate 

Economic Report of the 

President. (various years) 
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Where prices are not available for states, prices from neighboring (sometimes averages 

across various states) are used. All prices are deflated using the Implicit GDP Deflator, 

collected from the Economic Report of the President (various years). 

The third set of data is the market characteristics data. There are three sets of 

characteristics: physical characteristics, economic structure and stage of development. 

First, the physical characteristics of the state, including its exposure to natural disasters, 

are likely to influence construction choices. For example, the demand will be lower in 

states which feature both high precipitation and extreme cold as this combination of 

weather makes concrete failure more likely (Lea (1970)). Demand will be higher in states 

which feature short lived strong winds, like tornadoes, as concrete tends to hold well with 

short-lived strong winds (Petak and Atkisson (1982)). Second, the economic structure, 

and short run demand fluctuations may affect the composition of construction in ways not 

captured by the different construction categories. Finally, the stage of economic growth 

may also affect the composition of construction. There is no formal theory of the effects 

of growth but Hayek (1939), as discussed in Montgomery (1995), suggests one pattern. 

Large, basic projects are then followed by smaller more specialized projects to obtain full 

value from the initial projects. Roads, dams, aqueducts are examples of basic projects 

featuring cement-intensive construction. 

2.3 Estimating a Standard Demand Equation 

In this section, instrumental variable estimates of standard demand equations are 

presented to demonstrate how they fail to adequately control for cross section variation 

and to suggest issues important for modeling and estimation in sections three - five.  
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All regressions use the full sample of states and regions. The dependent variable is 

the cement-construction ratio. The explanatory variables are the prices of building 

materials, shares of construction types and time-varying market characteristics. As the 

prices of cement and gravel are locally determined, instruments are constructed.  

The first regression (not reported here), with the prices of building materials as the 

sole explanatory variables, reveals this data features the heterogeneity associated with 

unit record data. Prices explain just 8.6% of the variation. Hence, fixed effects are 

introduced (using the within transformation to reduce multicollinearity). 

In Table Four, extracts of the results of three regressions with fixed effects are 

presented. The first column contains the estimates of an equation with just the prices of 

building materials as explanatory variables. The second column contains the estimates of 

a second equation with the prices of building materials and the shares of different types of 

construction. The third column contains the estimates of a third equation with prices, 

construction shares and time varying market characteristics. 

Table Four: Extracts from the Demand Equation Results 

Explanatory 

Variable 

Basic Specification 

(1) 

(1) & Construction 

Shares 

(2) 

(2) & Time Varying 

Market 

Characteristics 

(3) 

Price – Cement -0.3706 (-7.812) -0.2286 (-5.756) -0.2180 (-5.408) 

Price – Brick -0.03419 (-0.361) -0.07376 (-0.947) -0.0861 (-1.112) 

Price – Asphalt 0.4138 (3.648) 0.5785 (5.114) 0.5938 (4.170) 

Price – Steel 0.1765 (3.934) 0.1928 (5.173) 0.1863 (4.974) 

Price – Lumber 0.0394 (1.588) 0.0624 (3.054) 0.0607 (2.947) 

Price – Gravel 0.2379 (1.723) 0.1347 (1.200) 0.0532 (0.469) 
2R  60.04 75.71 77.26 

Spearman Rank 

Correlation Test  

23.158 19.121 10.3018 

Condition Number 10.9593 1113.1 1817.55 

F-Test Result 32.67 (vs. no fixed 

effects) 

38.19 (vs. column 

(1)) 

9.73 (vs. column 

(2)) 
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There are two things to note about these results. First, that the coefficients on 

prices have plausible signs and typically are statistically significant from zero. However, 

these demand equations fail to pick up the cross sectional variation identified in Map 

One. This is demonstrated by testing the relationship between the fixed effects and the 

dependant variable. First, the average cement-construction ratios over time for each state 

and region are calculated and ranked. Then the sizes of the fixed effects are ranked and 

the two sets of ranks used in a Spearman Rank Correlation Test. In all cases the null 

hypothesis of no correlation is rejected, suggesting the demand equation has failed to pick 

up the cross section variation.  

To gain some information on what could be determining the cross sectional 

variation, the estimated fixed effects from the third specification are regressed on a set of 

non-time varying explanatory variables. Extracts of the results are presented in Table Five 

Table Five: Extracts of the Results of the Regression of Fixed Effects 

on market characteristics. 

Variable Coefficient (T-Statistic) 

Catch-up 0.0621 (5.078) 

Precipitation -0.2292 (-11.339) 

Normal Minimum 0.3406 (5.080) 

Area -0.0193 (-3.516) 

Flood 1.1686 (13.195) 

Storm Surge 0.7970 (13.825) 

Tornado 0.0759 (1.516) 

Hurricane -0.6746 (-11.018) 

Strong Winds 11.2428 (4.048) 

Earthquake -0.1442 (-4.037) 

Landslide 0.3654 (1.396) 

Expansive Soil 1.0310 (17.002) 
2R  71.4 

A substantial proportion of the variation in the fixed effects is accounted for by 

the market characteristics. Not surprisingly, weather conditions and physical disaster 
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losses influence the cement-construction ratios. Precipitation has a negative effect and 

strong winds a positive effect. The catch-up variable also positively affects cement 

intensity, supporting the hypothesis of Hayek (1939). 

If the sole purpose of the analysis is to extract current elasticities for the cement 

industry then using fixed effects is fine. However, if we want to compare elasticities 

across countries or over longer periods of time, estimating the determinants of the cross 

section variation is important. 

3. A Structural Model of the Demand for Portland cement 

 In this section, an estimable differentiated products demand model featuring a 

discrete and continuous choice is presented. In the first subsection, it is argued that 

cement consumption is based on a mixed discrete/continuous choice. Then the discrete 

choice component for each construction job is specified following the vertical 

differentiation model used by Bresnahan (1987). The quantities consumed for each job 

are then aggregated up to a state demand equation. This equation though features 

variables unobserved by the econometrician so the equation is manipulated until an 

estimable equation is obtained. Because meaningful product characteristics data does not 

exist, unlike Bresnahan (1987), the estimated equation is a structural equation. To explain 

the cross section variation, market characteristics are introduced as determinants of some 

coefficients. 

An additional complication, specific to this industry, is to allow for a price 

inelastic component of the demand for cement because of building regulations or extreme 

physical conditions.  
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3.1 A Model with Discrete/Continuous Product Choice and Inelastic Demand 

The demand for building materials has two features that require adapting the 

discrete choice framework that is the standard foundation for differentiated products 

models. 

The first feature is that the demand for building materials is best characterized as 

featuring both a discrete choice and a continuous choice. For each component of a 

construction job a discrete choice of the building material to be used must be made. For 

example, the builder of a driveway could choose gravel, concrete, bricks or asphalt. This 

type of choice seems not dissimilar to a choice of model of automobile or other consumer 

product. However, a continuous component must be added as rather than buying one 

automobile, the quantity of the chosen material varies across consumers with the size of 

the construction job. It is assumed the continuous component is a linear function of the 

size of the construction job i.e. in effect there is constant returns to scale in construction. 

So the total quantity of the i
th

 material consumed on a construction job, j, of type g is: 

(1) con
jg

i
g

i
jg QQ ,, β=  

where i
gβ  is the per unit requirement coefficient for input i for construction type g. 

Different coefficients for different types of construction are assumed because Table One 

demonstrates different construction types feature different per unit consumption of 

cement. The mixed discrete/continuous specification, though required for building 

materials is also applicable to other commodities, particularly those featuring switching 

costs such as sunk costs before use. 
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The second modification, though, is more specific to the construction industry. It 

is assumed there is a price inelastic component of demand. This is because building codes 

or industry practice requires the use of concrete for some jobs because only concrete 

provides, for example, sufficient strength or sealant powers. Hence there is a price 

inelastic component and a price elastic component of cement consumption. Then, the 

total cement consumed for a job j of type g is: 

(2) 
( )

��

�
�
� −+

=
otherwise 

chosen iscement  if 1

,,

,,,,
, con

jgg
cem

ig

con
jgg

cem
eg

con
jgg

cem
igcem

jg
Qk

QkQk
Q

β

ββ
 

where kg is the share of construction type g that features a price inelastic component of 

cement and cem
ig ,β  and cem

eg ,β  are the input requirement coefficients for the inelastic and 

elastic components of cement consumption. 

3.2 Modeling the Discrete Choice of a Building Material 

The model of a discrete choice of a building material largely follows the 

adaptation of the vertical product differentiation model in Bresnahan (1987). This model 

has the disadvantage of a relatively restricted pattern of elasticities. While more general 

models exist (see Davis (2000) for a survey) for the (even multiple) discrete choice case, 

there is no existing model that handles the mixed discrete/continuous case required here 

and the Bresnahan (1987) model can be generalized to this case relatively easily.  

Therefore, we start with a model of the decision maker and then aggregate up to a 

market demand equation. The decisionmaker, hereafter referred to as the client, has 

income, Y, to invest and chooses one of a set of construction projects composed of 

particular materials, or another investment, commonly referred to as the outside option. 

Because construction is substantially an investment good rather than a consumer durable 
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the utility from the outside option is modeled as dependent on the rate of return, r, rather 

than as a constant (as in Bresnahan (1987)): 

(3) ( )r1YU +=  

The utility gained from investing in any one of the construction projects is specified as 

follows. Denote a as the taste for quality, xi as the quality of the i
th

 material and P
i
 as its 

price.1 The utility gained from the construction project is: 

(4) ( ) ( )( )rQPYQaxQPiaYxU
con

jg
i
g

icon
jgi

con
f

i
f

i +−+= 1,,,,,, ,, ββ  

When the client chooses between the different materials, two factors are of 

concern: price and quality. Quality can be thought of as an index composed of different 

factors such as aesthetic appeal, strength, resistance to weather and insulation ability. It is 

assumed that, for broad classes of materials, clients, following the advice of their 

architects, agree on a ranking, in terms of quality, of the different materials that could be 

used. But, the importance of quality is assumed to differ across clients. In particular a is 

assumed to be distributed uniformly:  

δdensity   with ], [~ max
aaUa  (Per capita). 

Unlike Bresnahan (1987), the density of clients is expressed per capita rather than 

absolutely. This is to allow for variations in population across the states and over time. 

The taste for quality plays an important role in determining the discrete choices of 

whether to invest in construction, and material to be used. For example, assume concrete 

is ranked as higher quality than asphalt but of lower quality than bricks. A client is 

                                                           
1 The budget constraint does not enter the problem formally, but, as with Bresnahan (1987), is assumed to 

be satisfied. Introducing multipliers, etc., to control for the budget constraint would significantly complicate 

the specification without much gain.  
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indifferent between using concrete, c, or asphalt, b, if their taste for quality, a, equals acb 

such that: 

(5) ( )r1
xx

PP
a

bc

b

g

bc

g

c

cb +
−

β−β
=  

Denote, P
sub

, x and sub

gβ  as vectors of the prices, quality ratings and input requirements 

coefficients of the relevant materials. Then the indicator function, Ij
c
(P

sub
,x, sub

gβ ,a), for 

concrete, where the br subscript and superscripts refer to bricks, is defined as follows: 

(6) ( ) ( ) ( )

�
�

�
�

�
+

−

−
>>+

−

−

=

otherwise. 0

11 if 1
,,,

r
xx

PP
ar

xx

PP

axPI
bc

b
g

bc
g

c

cbr

c
g

cbr
g

br

sub
g

subc
j

ββββ

β  

The demand for cement for job j of construction type g, of size con
jgQ , , is as below: 

(7) ( ) con
jg

cem
g

sub
g

subc
j

cem
j QaxPIQ ,,,, ββ=  

where c

cem

c

g

cem

g αβ=β  where c

cemα  is the quantity of cement required per unit of concrete. 

3.3 A Model of State Cement Consumption 

Because the data is aggregated at the state level the job specific model of the 

previous subsection will be aggregated up to the state level. Denote ng as the number of 

jobs of construction type g. Each job requires different nonnegative quantities of each 

type of construction, con

j,gQ . 

The total quantity of cement consumed is then obtained by aggregating across all 

of the individual decisions represented in equation (7): 

(8) ( )�� �
= =

−

=

=Ι=
G

g

n

j

cemcon
g

G

g

cem
g

con
jg

cem
g

sub
g

subc
j

cem
g

QQaxPQ
1 1 1

,,,,  βββ  
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where cemcon
gQ − is the quantity of construction of type g that uses cement. This does not 

yield an equation for estimation in terms of observable exogenous variables as cemcon
gQ −  

is not observed. To get around this problem, first denote, con

gQ  as the average quantity of 

construction of type g and con

j,gε as the deviation from the mean for job j. Then, (8) can be 

rewritten as: 

(9) ( ) ( )��
= =

+Ι=
G

g

n

j

con
jg

con
g

cem
g

sub
g

subc
j

cem
g

QxPQ
1 1

,,,  εββ  

Because, for each construction type, the deviation averages out, (White (1984)), this 

leaves us with (10): 

(10) ( )��
= =

Ι=
G

g

n

j

con
g

cem
g

sub
g

subc
j

cem
g

QxPQ
1 1

,,  ββ  

Denote ng,cm as the number of projects that use cement. Equation (10) can then be 

rewritten as: 

(11) �
=

=
G

g

con
g

cem
gcmg

cem QnQ
1

,  β  

The ng,cm, being unobservable, will now be substituted out. First, multiply and divide (11) 

by ng yielding: 

(12) �
=

�
�

�

�

	
	




�
=

G

g

con
g

cem
g

g

cmgcem
Q

n

n
Q

1

,
  β  

Note, con
gQ  is observable. However ng,cm and ng are not. Following Bresnahan (1987), 

ng,cm for each state s can be replaced as follows: 

(13) [ ] ( ) �


�
�
�

�

−

β−β
−

−

β−β
∗+∗∗δ=−δ=

bc

b

b

c

c

ca

c

c

a

a

sbcacscm,g
xx

PP

xx

PP
r1popaa*pop*n  
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Rewriting equation (12) using (13) yields: 

(14) [ ]( )raaQpop
n

Q bcac

G

g

con
g

cem
gs

g

cem +−
�
�

�

�

	
	




�
= �

=

1  
1

β
δ

 

This leaves ng to deal with which is neither observable nor can be assumed to be constant. 

However, ng can also be replaced. First note all clients with a* as defined below are 

indifferent between taking the construction project and just investing the funds in the 

outside option: 

(15) 
( )( )( )

( ) gcgb

cem
g

cem
gg

b
g

b

kxkx

rPkkP
a

+−

++−
=

1

11
*

ββ
 

As long as Pb, the bottom ranked construction material, Pcem and r are negatively 

correlated – which is quite likely as the two materials are inputs to investment, a* will be 

roughly constant. Assuming a* is constant, ng  can be replaced as follows: 

(16) ( )∗−= aapopn sg maxδ  

Substitution of (16) into (14) yields: 

(17) [ ]( )( ) 1

max
1

1  
−∗

=

−+−= � aaraaQQ bcac

G

g

con
g

cem
g

cem β  

Finally, the price inelastic and price elastic components of cement consumption are added 

to yield a differentiated products demand equation for Portland cement: 

( ) ( ) ( )��
=

∗
=

��
�
�
�
�

�

�

		
	
	
	
	




�

−

−+

+−+=
G

g

gbcemgcema

cem
gba

cem
g

gbcem

bb
g

gcema

aa
g

con
g

cem
gg

G

g

con
g

cem
gg

cem

aa

xx

Px

x

P

x

P

rQkQkQ
1 max

,,,,

,,

,,,,

1

11  18

βββ

ββ

where xi,j is the difference (xi – xj) in the quality indices and state and time subscripts are 

suppressed. This equation is estimated with the same set of variables required for a 



 

 

17 

classical demand equation – the prices of building materials and construction as a defacto 

income. The interactive terms arise from the mixed discrete/continuous choice that forms 

the foundation of the model. 

Cross-section variation is accounted for by making the coefficients a function of 

the market characteristics. In the absence of rapid technological change in construction 

materials comparable to cement, the values of the quality index are unlikely to change. 

However, as argued earlier, the coefficients cem
gβ  are likely to vary across construction 

types and with market characteristics. Hence, the cem

gβ  can be re-expressed as follows: 

(19) Zghg

cem

g

′
+= ,,0 βββ  

where Z is a set of market characteristics. Equations (18) and (19) are the theoretical basis 

for the estimation in Section 5. 

4. Econometric Issues 

 Before beginning estimation, there are three major econometric issues that must 

be dealt with. First, a set of prices of building materials for each type of construction must 

be chosen – both substitutes and complements. Second, it is demonstrated that equations 

(18) and (19) reduce to a linear form that is relatively simple to estimate with 

instrumental variables. Finally, the treatment of market characteristics is discussed. 

Strictly replicating Bresnahan (1987, 1981) requires beginning with a set of initial 

rankings so to select those to be compared with, in this case, cement. The market 

characteristics data available in this case does not permit this. Omitting a relevant 

material results in inconsistent estimates, while including an irrelevant variable only 

reduces efficiency. Hence we select a set of building materials that could be ranked 
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around cement, and include these in the demand equation, interacting all of them with the 

relevant variables as if they were the relevant prices. The model is then supported if two 

of the coefficients are significantly positive. 

The related problem is that certain materials may be complementary rather than 

substitutes for cement e.g. steel for reinforced concrete. Potential complements are treated 

the same way as potential substitutes. They are included in the demand equation, 

interacting with the relevant variables. Those inputs with coefficients significantly 

negative are considered complements. Similarly, if more than two inputs prove to be 

significant this suggests they are complementary to the substitutes. Ultimately, as in most 

estimation of this type, the industry knowledge and judgment of the researcher will have 

to be relied on to decide whether a negative coefficient is evidence of complementarity or 

misspecification.  

The second issue is choice of estimation technique. The model specified in 

equations (18) and (19), though theoretically identified, is highly non-linear. However, 

the model reduces to a linear form that retains key features and, importantly, enables 

identification of the structural elasticities. The linear form estimated in section five is 

summarized below: 
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where con
gs  is the share of total construction of construction type g, γ and θ are the 

reduced form combinations of the structural coefficients in (18) and (19) and Ig and Zg are 
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the set of materials and market characteristics for construction type g. Though the 

individual parameters ( mat

gβ , kg, a
max

,a*, xij) cannot be identified from this specification, 

the structural elasticities can be estimated. The own price, Q
cemp,ε , cross price, Q

matp,ε  and 

characteristics, 
Q

charε , elasticities are stated below: 
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The third issue is the treatment of the market characteristics variables. If the 

coefficients  γg,char are all equal to zero, then the sign of each reduced form coefficient is 

specified unambiguously by the model. The γ’s will all be positive, the θ’s on cement and 

any complements will be negative, and the θ’s on the other prices either positive or 

insignificantly different from zero. However the evidence from section three suggests 

several market characteristics are required to explain the cross section variation. The 

market characteristics variables used are Normal Minimum, Precipitation, Catch Up, 

Income Growth, Share of Agriculture and Losses due to Tornadoes and Expansive Soil. 

While economic theory does not provide signs for the gchar,γ  priors based on industry 

literature enable some of them to be evaluated – for the others, their role will be 

demonstrated by the results. 
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 Finally, the treatment of endogenous explanatory variables and multicollinearity is 

discussed. As for the standard demand equations instruments were constructed for the 

prices of cement and gravel – the building materials for which the prices were most likely 

to be set locally. The other econometric problem is dealing with multicollinearity. The 

results from the standard demand equation estimation suggests, suitably transformed, the 

price data is not collinear but as construction and other forms of heterogeneity variables 

are introduced, the interaction terms are likely to cause problems. Hence the quantity of 

cement is divided by the quantity of construction and (1+r). Then all variables are 

centered on their means before estimation. Finally the data is scaled to similar levels. This 

should reduce problems from multicollinearity. 

5. The Results 

 In this section, three sets of results are discussed. First, the demand equations (20) 

and (21) are estimated with the gchar,γ  set equal to zero. Second, a set of elasticities 

compiled from estimates of the demand equations (20) and (21) with the gchar,γ  allowed 

to differ from zero are discussed. Finally, the coefficients underlying these elasticities and 

a more general specification are discussed. 

First, equations (20) and (21), without market characteristics, are estimated. 

Though potentially inconsistent, the theoretical model provides unambiguous predictions 

of the signs of the coefficients, which enables assessing, on their own terms, if the model 

is supported in the data. Two versions are presented – the first with one construction type, 

and the second with two types: Roads and Rest of Construction. The results are presented 

in Table Six: 
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Table Six: Standard Specifications 

Explanatory Variable One type of Construction Two types of Construction 

Constant* -10.0717 (-4.7346)  

Share of Roads  1.7615 (9.4217) 

Rest of Construction  1.0273 (5.5364) 

Price-Cement 0.0002 (0.0447) -0.0032 (-0.8235) 

Price-Brick 0.0266 (3.1914) 0.02714 (3.4059) 

Price-Asphalt 0.0011 (0.0713) 0.1202 (6.0855) 

Price-Steel -0.0265 (5.0943) -0.0348 (-6.8504) 

Price-Lumber 0.0093 (3.2624) 0.0012 (0.4444) 

Price-Gravel 0.1072 (7.6892) 0.0968 (7.7772) 

RSS 1501.66 1194.07 

Condition Number 533.064 103.999 

The constant term is actually the coefficient on (1/1+r). 

T-statistics are in parentheses. 

The first set of estimates is unsatisfactory because the constant term is 

significantly less than zero and the price of cement is statistically insignificant. However, 

when two types of construction are introduced (only in the “intercept” terms), the 

coefficients on the types of construction are significantly positive. The coefficient on the 

price of cement is now negative though statistically insignificant. Additional support for 

the model is gained from there being at least two prices of substitutes that have 

significantly positive coefficients. The price of steel has a significantly negative 

coefficient suggesting it is a complement. These results are broadly supportive of the 

underlying model. 

In the next set of regressions, market characteristics variables are included through 

equation (21). As is discussed below, results are obtained consistent with the model. 

Hence, as the elasticities are identified these are discussed first as presented in Table 

Seven: 
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Table Seven: Elasticities 

Prices Characteristics 

Variable Elasticity Variable Elasticity 

Cement -0.297 Normal Minimum 0.008 

Brick 0.137 Precipitation -0.005 

Asphalt 0.168 Catch-Up 0.015 

Steel -0.122 Agriculture 0.009 

Lumber -0.006 Tornado 0.004 

Gravel 0.100 Income Growth 0.001 

  Expansive Soil 0.008 

The own-price and cross price elasticities suggest relatively little substitutability 

across inputs, but the pattern across inputs is quite plausible. All cross-price elasticities 

are smaller than the own price elasticity. Asphalt features the largest cross price elasticity 

and steel is again found to be a complement. The coefficient on lumber is statistically 

insignificantly different from zero.  

Next the characteristics elasticities are considered. First note that all coefficients 

on the characteristics are significantly different from zero, except economic growth. But 

cement demand is inelastic to small changes in these characteristics. This is not 

inconsistent with the map presented earlier as the usage ratios are similar in similar states 

but different across substantially different states. Catch-up is the largest, providing some 

support for the pattern of growth suggested in Hayek (1939). 

Next the coefficients on the two regressions with market characteristics are 

presented in Table Eight. The first column (Regression One) allows for different market 

characteristics to interact with the different types of construction but not the coefficients 

on the prices. These results are quite successful and are used to calculate the elasticities in 
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Table Seven. The second set (Regression Two) allows for different coefficients on the 

prices as well – but these results are less successful. 

Table Eight: Coefficients  

Explanatory Variable Regression One Regression Two 

Rest 1.1128 (6.8541) 0.9852 (6.805) 

Roads 1.7640 (10.2046) 1.9949 (2.381) 

Roads – Normal Minimum 0.0012 (4.4865) 0.0013 (4.7159) 

Roads – Precipitation -0.0005 (-2.5356) -0.0009 (3.243) 

Rest – Catch-up 0.0001 (4.6817) 0.0001 (3.7287) 

Rest – Agriculture 0.0002 (8.6483) 0.0002 (6.5064) 

Rest – Tornado Damage 0.0004 (5.3423) 0.0004 (5.2137) 

Rest – Growth 0.0002 (0.6665) -0.0001 (-0.3619) 

Rest – Expansive Soil 0.0008 (8.6416) 0.0008 (7.936) 

Cement -0.0195 (-5.083)  

Brick 0.0321 (3.8457)  

Asphalt 0.1130 (5.9573)  

Steel -0.0137 (-2.9321)  

Lumber -0.0004 (-0.1691)  

Gravel 0.0410 (3.4361)  

Rest – Cement  0.00001 (0.0746) 

Rest – Brick  0.0003 (2.5801) 

Rest – Steel  -0.0001 (-1.8236) 

Rest – Lumber  -0.00002 (-0.5132) 

Roads – Cement  -0.0019 (-1.2965) 

Roads – Asphalt  0.0089 (4.8599) 

Roads – Gravel  0.0042 (3.1313) 

RSS 885.825 885.387 

Condition Number 164.801 579.045 

T statistics are in parentheses. 

 First, consider regression one. The signs on the construction and heterogeneity 

variables are all plausible. Importantly, there are at least two significantly positive 

coefficients on the price variables. The signs on the coefficients on prices have been 

discussed further above. The effects of precipitation and tornadoes are consistent with 

that suggested in the engineering and disaster literature. It is nice to see roads with a 

larger coefficient.  
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 Regression two appears less successful - probably because of multicollinearity. 

The residual sum of squares has barely fallen at all. The coefficients on the heterogeneity 

variables have not changed very much. For the group of prices based around roads, the 

results are broadly satisfactory as both asphalt and gravel are positive and significant from 

zero. Cement is negative though insignificant. However, the “rest of construction” 

coefficients are less satisfactory. Cement is just insignificant but positive. Furthermore, 

only brick is positive and significant, though steel remains negative and significant. These 

discouraging results could be due to two causes. First, the condition number has crept up 

in the second regression so multicollinearity may be starting to create problems. More 

seriously, we may be coming up to the limits of what we can get out of the price data. 

 To summarize, these results suggest we have successfully estimated a 

differentiated products model featuring a discrete/continuous choice and using largely 

classical demand data. The signs of the coefficients are consistent with the theory - and 

departures plausible. The pattern of elasticities is also plausible. Multicollinearity - in part 

from the functional form and in part from the limits of the data - appears to be a problem. 

5. Conclusions 

 There are ongoing important advances in estimating differentiated products 

models. In general, though, these have focused on visibly differentiated consumer 

products best characteristed as requiring a discrete choice. The case of a mixed 

discrete/continuous case has not been considered. In this paper we develop a 

differentiated products model for a product featuring a discrete and continuous choice and 

that is readily estimable with the more limited data typically used in classical demand 

equation estimation. The model also handles complementary products and researcher 
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uncertainty about which inputs are substitutes and complements. This model is estimated 

with a new dataset on U.S. state and regional Portland cement consumption, prices and 

market characteristics. A plausible set of own price and cross price elasticities are 

obtained. Finally, the model is easily applicable to a broad range of products - including 

those with switching costs. 
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Chart One 
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United States

(Alaska and Hawaii excluded)
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