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Abstract. Applied econometricians tend to show a long neglect for the proper frequency 

to be considered while sampling the time series data. The present study shows how 

spectral analysis can be usefully employed to fix this problem. The case is illustrated 

with ultra-high-frequency data and daily prices of four selected stocks listed on the Sao 

Paulo stock exchange. 

 

1. Introduction 

 

How often to sample a continuous time series? In the presence of market microstructure, 

for example, Ait-Sahalia et al. [1] suggest the rule of thumb of sampling “as often as 

possible.” Here, we propose a precise method to find the proper frequency. It is unusual 

for applied econometricians to analyze a time series from the perspective of the 

frequency domain, that is, they usually do not consider the spectral analysis of the 

frequency. Here, the first concept highlighted is the Nyquist-Shannon sampling theorem 

presented in 1949 in the pioneering work of Shannon [2]. This theorem has given rise to 

the then new area of information theory. 

 According to the theorem, for a sampled signal to convey all the original 

information it is necessary for the signal to be sampled at a rate which is at least two 

times larger than the highest frequency in the spectrum [3, 4]. If a function ( )f t  

contains no frequencies higher than W Hz, it is completely determined by giving its 

ordinates at a series of points spaced ½ seconds W apart [2]. 

 Thus, undersampling may introduce errors in the signal. One standard example 

is to consider two distinct frequencies that are mistakenly taken as identical due to 

undersampling [5]. Let 

 

 cos(2 )tx ft tπ= ∆ ,                                                                                             (1) 

 

where t∆  is the sampling time period. Then, for * 1
t

f f∆= − , where ( )1
2

0,
t
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 *cos(2 )tx f t tπ= ∆  

 ( )( )1   cos 2 f t tπ ∆= − ∆  

 ( ) ( )   cos 2 cos 2t ft tπ π= + − ∆       

 ( )   1 cos 2 ft tπ= + ∆ .                                                                                        (2) 

 

As a result, ( ) ( )*sin 2 sin 2f t f tπ π∆ = ∆  and the frequencies f  and *f  are 

indistinguishable from one another. This phenomenon is called aliasing. Figure 1 shows 

that a sinusoid of frequency equals to 10Hz. If it is sampled at 8Hz it could be 

mistakenly confused with a sinusoid of 2Hz. 



 Aliasing has been systematically neglected by applied econometricians despite 

the (scant) warnings of a few theoretical econometricians. Granger and Newbold [6] 

provide a theoretical example where data containing weekly cycles sampled at a 

monthly frequency generate a spurious peak in the spectrum. Ashley and Dwyer in an 

unpublished working paper [7] give another example of aliasing. Here, an AR(6) time 

series is generated and then resampled at different frequencies to show how poorly 

sampled regressions in the series are prone to errors of coefficient estimation. 

 In a startling contrast to applied econometricians, analyses of the frequency 

domain are widespread in well developed areas, such as biology, astrophysics, 

engineering, and telecommunications. Spectral analysis is routinely used in all 

applications where either oscillatory properties or pattern recurrence are present in a 

signal. 

 The Fourier transform is the main toolkit employed to learn the characteristics of 

a series in the frequency domain. It works like regressing a series to a sum of sinusoids. 

As a result, the coefficient values of a given frequency represent the signal amplitude of 

the frequency. A continuous Fourier transform ℑ  takes the form: 
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ℑ =∫ ,                                                                                     (3) 

 

where 2w fπ= . 

 Another key ingredient of spectral analysis is the power spectral density 

function, which represents the amount of energy for each frequency analyzed in a 

stochastic process. It is also the representation in the frequency domain of the 

autocorrelation function, through the Fourier transform. A continuous power spectral 

density function is given by: 
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 The present study demonstrates how neglecting aliasing could be harmful in the 

context of sampling financial prices. Samples of ultra-high-frequency historical price 

time series of four selected stocks listed on the Sao Paulo stock exchange (Bovespa, for 

short) were taken. The study demonstrated how sampling on a daily basis, using the 

tick-by-tick data as the raw data, violates the Nyquist-Shannon sampling theorem. 

 The rest of the present article is organized as follows: section 2 presents data and 

the methods used, section 3 shows the results, and section 4 concludes the study. 

 

2. Data and methods 

 

The ultra-high-frequency price time series data considered are for the stocks of Ambev 

PN (AMBV4; 514,302 observations), Sid Nacional On (CSNA3; 1,359,702 

observations), Petrobras PN (PETR4; 5,381,081 observations), and Vale PNA N1 

(VALE5; 5,220,472 observations), which are listed on the Bovespa. The sample period 

ranged from 11:00 am on January, 2 2007 to 06:00 pm on December, 30 2008. The four 

stocks have been selected on the basis of the largest trade volume and foreign visibility. 

 At first it was assumed that the unevenly sampled tick-by-tick series were in 

accordance with the Nyquist-Shannon theorem due to the ultra high frequency. Direct 

methods to calculate the spectra cannot be applied as the data were unevenly sampled. 



Using interpolation of the missing observations, interpreting them as zero, or keeping 

the last measured observation as constant until the next one appears are all poor 

alternatives [8]. Here, it would be preferable to resort to the Lomb-Scargle method [9, 

10], which makes use of the series of sines and cosines and takes only the observations 

sampled, with no need of interpolation. The Lomb-Scargle method can also be used to 

evaluate any previous interpolation, signal resample, and autoregression conditional 

duration [11]. However, this method is not free of problems, especially when ultra high 

frequency is involved [12, 13]. 

 As a result, the present work considers the Bayesian spectrum estimation [14], 

which fits well for analyzing the time evolution of the frequency spectrum of commonly 

nonstationary financial data. This method does not rely on the need for the series to be 

stationary. Further, time windows have also been dismissed. It jointly estimates the 

newly generated data observation by updating the coefficient values using a 

nonstationary Kalman filter. 

 However, unlike the Lomb-Scargle method, the Bayesian spectrum estimation is 

not equipped with a straightforward way of reckoning the significance of an estimated 

coefficient. To fix this problem, a large range of the spectrum was considered by taking 

many coefficient values. In addition, a t  test was also performed to learn whether the 

coefficient value ic  was distinguishable from the mean c . For each coefficient value 

the null hypothesis ( 0H ) was tested against the alternative ( 1H ): 

 

 0 :  1.5iH c c<  

 1 :  1.5iH c c≥                                                                                                      (5) 

 

where the value 1.5 was parsimoniously chosen on a trial and error basis. 

 As the Bayesian spectrum estimation is quite sensitive to the chosen inputs, 

maximum frequency and interval number, it is appropriate to use a high value for the 

frequency and then reduce this value until a proper value is met. 

 Further, it is necessary to inform the moment when each observation is sampled 

as the times series used are unevenly spaced. Figure 2 demonstrates how to tackle this 

issue. Here, an observation is adjusted to differ from the precedent observation in 

seconds. Thus, in this procedure periods without activity, such as weekends, holidays 

and closing hours, have been computed. This reinforces the significance of the 

coefficient for the continuous state, 0 Hz. Thus, the estimate is made even more 

parsimonious for the high frequency data used in the method. 

 

3. Results 

 

Using the ultra-high-frequency raw data, it was observed that the four stock prices never 

overshot frequencies higher than 277.8µHz. This corresponded to a period of one hour.  

Based on the obtained results and the fact that the series were not regular in time, the 

original raw series were resampled and samples were taken at an interval of 10 minutes 

each. It was observed that this procedure was well above the recommended Nyquist-

Shannon rate. The new series were then reestimated to make it possible to contrast the 

significant frequencies with the daily series. Figures 3-6 show the obtained results. 

 In general, after allowing for the coefficients to converge in the newly created 

series, the four stock price series displayed frequencies higher than 11.6µHz (a period of 

twenty-four hours). However, the frequencies were always lower than 92.6µHz (three 

hours). If the Nyquist-Shannon sampling theorem is used as a guide, such data should 



be sampled at least at the frequency of 185.2µHz, which corresponds to a period of one 

and a half hours. 

 As an exercise, a GARCH(1,1) process was considered for forecasting a day 

ahead. Figures 3-6 show the results in terms of quadratic errors. The error series show 

large values when the frequency spectrum is high (aliasing), as well as when there is a 

significant change in the values of the last frequency, which can be attributed to 

financial volatility. 

 In the field of telecommunications low-pass filters are used as a common 

solution for the presence of undesirable high frequencies. These filters remove the 

influence of the high frequencies while keeping the desirable signal, which is then 

resampled at a more convenient rate. However, anti-aliasing filters are likely to bring 

more costs than benefits when the financial series are at stake [15]. 

 

4. Conclusion 

 

Spectral analysis is widespread in well developed areas, such as biology, astrophysics, 

engineering, and telecommunications. It is mainly used in applications where either 

oscillatory properties or pattern recurrence are present in a signal. However, applied 

econometricians tend to neglect the proper frequency to be considered while sampling 

the time series data. The present study shows how spectral analysis can be usefully 

employed to fix this problem. The case is illustrated with ultra-high-frequency data and 

the daily prices of the four selected stocks listed on the Sao Paulo stock exchange. 

 The study demonstrated how neglecting aliasing by resampling on a daily basis, 

using the tick-by-tick data as the raw data, violates the Nyquist-Shannon sampling 

theorem. In general, the four stock price series display frequencies higher than 11.6µHz 

(which corresponds to twenty-four hours). However, the frequencies were always lower 

than 92.6µHz (three hours). Taking into account the Nyquist-Shannon sampling theorem 

as a guide, such data should be sampled at least at the frequency of 185.2µHz, which 

corresponds to a period of one and a half hours. 
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Figure 1. The aliasing phenomenon: A sinusoid of frequency equals to 10Hz. If it is 

sampled at 8Hz it could be mistakenly confused with a sinusoid of 2Hz. 

 

 

 

 

 

 

 

 
 

Figure 2. Data adjustment: It is necessary to inform the moment when each observation 

is sampled as the times series used are unevenly spaced. Figure 2 shows how a given 

observation is adjusted to differ from the precedent one in seconds. 

 



 

Figure 3. Price series of Ambev PN: Top: daily closing prices. Middle: GARCH(1,1) 

prediction series. Bottom: 10-minute sampled frequency spectrum. 



Figure 4. Price series of Sid Nacional On: Top: daily closing prices. Middle: 

GARCH(1,1) prediction series. Bottom: 10-minute sampled frequency 

spectrum.



Figure 5. Price series of Petrobras PN: Top: daily closing prices. Middle: GARCH(1,1) 

prediction series. Bottom: 10-minute sampled frequency spectrum. 



 
 

Figure 6. Price series of Vale PNA N1: Top: daily closing prices. Middle: GARCH(1,1) 

prediction series. Bottom: 10-minute sampled frequency spectrum. 
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