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Abstract

The aim of this work is to investigate the asymptotic properties of weighted least squares (WLS)
estimation for causal and invertible periodic autoregressive moving average (PARMA) models with
uncorrelated but dependent errors. Under mild assumptions, it is shown that the WLS estimators
of PARMA models are strongly consistent and asymptotically normal. It extends Theorem 3.1
of Basawa and Lund (2001) on least squares estimation of PARMA models with independent
errors. It is seen that the asymptotic covariance matrix of the WLS estimators obtained under
dependent errors is generally different from that obtained with independent errors. The impact
can be dramatic on the standard inference methods based on independent errors when the latter
are dependent. Examples and simulation results illustrate the practical relevance of our findings.
An application to financial data is also presented.
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1 Introduction

Periodically correlated time series are common in many scientific fields where the observed phenom-

ena may have significant periodic behavior in mean, variance and covariance structure, namely in

hydrology, meteorology, finance and economy. An important class of stochastic models for describing

such periodicity in mean and in covariances, are the periodic autoregressive moving average (PARMA)

models. PARMA models are an extension of autoregressive moving average (ARMA) models in the
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sense that they allow the model parameters to vary with respect to time. The literature on periodic

time series models has abounded since the seventies. For prior works, see among others Gladyshev

(1961) and Jones and Brelsford (1967). Tiao and Grupe (1980) illustrated the pitfalls of ignoring the

periodic behavior in time series modelling. Empirical evidence supporting the usefulness of PARMA

models was documented by many authors, see for example, Vecchia (1985a, 1985b), Salas and Obey-

sekera (1992), Lund (2006), Tesfaye et al. (2006) for applications to streamflow series, Bloomfield et

al. (1994), Lund et al. (2006) to environmental data, Osborn and Smith (1989) to economic data and

Gardner and Spooner (1994) for applications in signal processing.

Time series modelling usually involves three main steps: model identification, parameter estimation

and diagnostic checking. There is a substantial literature on estimation of PARMA models. Pagano

(1978) dealt with moment estimation of periodic autoregressive (PAR) models. He proved that those

estimators are almost surely consistent and asymptotically efficient under Gaussianity. Salas et al.

(1982) investigated moment estimation of low order PARMA models. They observed that the esti-

mators of the periodic moving average parameters are often unsatisfactory and that the Yule-Walker

equations become more complicated. Vecchia (1985a, 1985b) investigated Gaussian maximum likeli-

hood estimation of PARMA models and established its superiority over moment estimation. Jimenez

et al. (1989) presented an exact maximum likelihood procedure for estimating the parameters of a

PARMA model using a state-space representation and a Kalman filtering algorithm. Basawa and

Lund (2001) established the asymptotic properties of the least squares (LS) estimators of PARMA

models with independent errors; they extended the results for periodic autoregression earlier derived

by Pagano (1978) and Troutman (1979). Lund and Basawa (2000) developed an efficient algorithm

for maximum likelihood estimation of Gaussian PARMA models. An extensive simulation study con-

ducted by Smadi (2005) shows that LS estimation of PAR models with non-Gaussian errors is quite

satisfactory even with heavy tails like in the Cauchy distribution.

The aforementioned estimation procedures for PARMA models were established under the assump-

tion of independent errors (strong PARMA). Of course, this assumption is not satisfied for nonlinear

processes that admit a weak PARMA representation (the errors are uncorrelated but dependent) such

as the periodic generalized autoregressive conditional heteroskedastic (PGARCH) and periodic bilin-

ear processes (PBL). Another argument in favor of considering the weak PARMA models comes from

the fact that, in general, temporal aggregation or systematic sampling of a strong PARMA model

yield a weak PARMA model, see Roy and Saidi (2008). Finally, note that many time series encoun-

tered in practice cannot be described by strong PARMA models. For instance, Wang et al. (2005,

2006) found evidences of the existence of autoregressive conditional heteroskedastic effects, a nonlinear
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phenomenon in the variance behavior, in the residual series obtained from fitting conventional linear

streamflow models to daily and monthly streamflow series of the upper Yellow River in China. In

this type of situation, it is necessary to relax the independence assumption and to consider nonlinear

models for describing such time series. All these examples have important practical meanings and

emphasize the need for taking into account an eventual dependence of the errors when estimating a

PARMA model.

In recent years, a large part of the time series and econometric literature was devoted to weaken

the strong noise assumption. In particular, Romano and Thombs (1996) showed that the significance

limits of the sample autocorrelations obtained under the strong ARMA assumption can be quite

misleading if the underlying innovations are only uncorrelated rather than independent. Francq and

Zaköıan (1998a) and Francq, Roy and Zaköıan (2005), considered least squares estimation and tests

for lack of fit in weak ARMA models. They showed that the standard Box-Pierce and Ljung-Box

portmanteau tests can perform poorly if the errors are only uncorrelated. Under mild assumptions,

Francq and Zaköıan (2004) derived the strong consistency and asymptotic normality of the quasi-

maximum likelihood estimator of pure GARCH models and of ARMA models with noise sequence

driven by a GARCH model. Aknouche and Bibi (2009) extended this latter work to the case of pure

PGARCH models and PARMA models with PGARCH noise.

The main goal of this paper is to study the asymptotic properties of least squares estimation for

invertible and causal weak PARMA models. Four different LS estimators are considered: ordinary

least squares (OLS), weighted least squares (WLS) for an arbitrary vector of weights, generalized

least squares (GLS) in which the weights correspond to the theoretical seasonal variances and quasi-

generalized least squares (QLS) where the weights are the estimated seasonal variances. It is seen

that the GLS estimators are optimal in the class of WLS estimators when the noise sequence is in a

particular class of martingale differences. The strong consistency and the asymptotic normality are

established for each of them. Obviously, their asymptotic covariance matrices depend on the vector

of weights. Our results extend Theorem 3.1 of Basawa and Lund (2001) for least squares estimation

of PARMA with independent errors (strong PARMA). Furthermore, we retrieve results of Francq and

Zaköıan (1998a), when the period is one, i.e., the model is a weak stationary and invertible ARMA.

The paper is organized as follows. In Section 2, we provide examples of weak periodic noises and of

nonlinear processes admitting a weak PARMA representation. The asymptotic results are described in

Section 3. Since the proofs are rather long and technical, they are relegated to an Appendix. In Section

4, we present two examples of weak PARMA models for which the asymptotic covariance matrix of

the least squares estimators is given in a close form and is compared to the corresponding matrix
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under the assumption of a strong noise. Monte Carlo results are described in Section 5. In the first

part of the experiment, we considered various white noises (strong or weak) to which we fitted a PAR

model. The discrepancy between the empirical standard errors of the parameter estimators and their

theoretical asymptotic standard errors under the assumption of a strong noise is examined, as well as

the size distortion of a Wald test for the hypothesis that the model parameters are zero. In the second

part, two different PARMA models with strong and weak noises were used to investigate the size and

power of a Wald test based on a consistent estimator of the asymptotic covariance matrix, under the

assumption of either a weak or strong noise. The rate of convergence of the estimated asymptotic

standard errors is also analysed. Our results are exploited in Section 6 to address the question of

day-of-the-week seasonality of four European stock market indices. Finally, some concluding remarks

are presented in Section 7.

2 Weak and Strong PARMA models

A stochastic process {Xt} is called periodically stationary if µt = E [Xt] and γt(h) = E [XtXt+h],

h ∈ Z, are both periodic functions in time t with the same period T and E
[

X2
t

]

< +∞ for all t.

For convenience, the non-periodic notation Xt will be used interchangeably with the periodic no-

tation XnT+ν which refers to Xt during the season ν ∈ {1, ..., T} in the cycle n. By definition, a

periodic process {Xt} follows a periodic (with period T ) autoregressive moving average model with

the following parameters at season ν ∈ {1, ..., T}: the mean µν , the autoregressive order and co-

efficients pν , φ1(ν), ..., φpν (ν), and the moving average order and coefficients qν ,θ1(ν), ..., θqν (ν), de-

noted simply PARMAT (p1, ..., pν , ..., pT ; q1, ..., qν , ..., qT ), if there exists a periodic white noise sequence

{ǫt} = {ǫnT+ν}, i.e. E [ǫt] = 0 for all t, E [ǫtǫt′ ] = 0 for all t 6= t′, and E

[

ǫ2nT+ν

]

= σ2
ν > 0, such that

(XnT+ν − µν) −
pν
∑

k=1

φk(ν)(XnT+ν−k − µν−k) = ǫnT+ν −
qν
∑

l=1

θl(ν)ǫnT+ν−l. (2.1)

If the errors ǫt are uncorrelated but not necessarily independent, both periodic white noise or weak

periodic white noise are used to qualify the error process {ǫt} and similarly the terminology PARMA

or weak PARMA are used for the model (2.1). When the error terms σ−1
ν ǫnT+ν are independent and

identically distributed (iid) rather than only uncorrelated, the model (2.1) is called strong PARMA

model and {ǫt} is a strong periodic white noise.

When the order of both the autoregressive and moving average components are not allowed to vary

with season, i.e., when p1 = ... = pT = p and q1 = .... = qT = q we simply write PARMAT (p; q) instead

of PARMAT (p, ..., p; q, ..., q). The terminology periodic autoregressive (PAR) model and periodic

moving average (PMA) model are respectively used when the moving average orders are null, and when
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the autoregressive orders are null. If T = 1 the process (2.1) is the usual stationary autoregressive

moving average model (ARMA).

2.1 Examples of periodic weak white noises

In this section, we give examples of periodic white noises that are uncorrelated but dependent. We

also present data-generating processes that can be compatible with weak PARMA representation.

2.1.1 Periodic weak white noise derived from a strong white noise

The following weak white noise example is inspired by examples given in Romano and Thombs (1996).

Let {ξt} be any sequence of iid random variables with E [ξt] = 0, E
[

ξ2t
]

= 1 and having finite fourth-

order moment. For fixed ν ∈ {1, ..., T}, let

ǫnT+ν = σν

m
∏

j=0

ξnT+ν−j (2.2)

where m > 0 is a fixed integer and σ1, ..., σT are positive constants. The periodic process {ǫnT+ν} is

a weak white noise because E [ǫt] = 0 for all t, E [ǫtǫt′ ] = 0 for all t 6= t′, E

[

ǫ2nT+ν

]

= σ2
ν > 0. It is

a m-dependent white noise since the variables ǫt and ǫt′ are dependent if |t − t′| ≤ m but they are

independent for |t− t′| > m.

2.1.2 Periodic weak white noise derived from nonlinear processes

Some models usually encountered in the nonlinear time series literature constitute important examples

of periodic weak white noises. The simplest of these is the generalized autoregressive conditional het-

eroskedasticity (GARCH) model. Indeed, the stationary solution of a GARCH model is a martingale

difference and therefore is a weak white noise. It must be noted that the variance here is constant.

However, a periodic weak white noise of period T , is given by the following process

ǫnT+ν = σν

(

ηnT+ν/

√

E

[

η2
nT+ν

]

)

,

where {ηt} represents the stationary solution of the following GARCH(P,Q) process















ηt = htξt,

h2
t = ω +

Q
∑

i=1

αiη
2
t−i +

P
∑

j=1

βjh
2
t−j ,

where {ξt} is a sequence of iid centered variables with unit variance, the αi and βj are nonnegative

constants, and ω is a positive constant. Under the assumption that
Q
∑

i=1

αi +
P
∑

j=1

βj < 1, there exists an

unique stationary and nonanticipative solution process {ηt} that has a finite variance. We can easily
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check that this is a periodic weak white noise and that the variance is not constant but periodic with

period T . Under more restrictive conditions on the coefficients and E
[

ξ4t
]

<∞, then E
[

ǫ4t
]

<∞ (see

Ling and McAleer, 2002). The simple extension of GARCH models to the periodic case is discussed

by Bollerslev and Ghysels (1996). To illustrate this case, consider the following periodic (with period

T = 2) ARCH model
{

ǫnT+ν = hnT+νξnT+ν ,
h2

nT+ν = αν,0 + αν,1ǫ
2
(n−1)T+ν ,

with {ξt} being a sequence of iid N (0, 1) variables. It is easy to check that the periodic stationary

solution is a periodic weak white noise. In a similar spirit, the class of bilinear processes and the

class of periodic purely bilinear and strictly superdiagonal processes constitute important examples of

periodic weak white noises. The last class is characterized by the following equation

ǫnT+ν = ξnT+ν +
P
∑

i=2

αν,iǫnT+ν−iξnT+ν−1

with P ≥ 2 and {ξt} is any sequence of iid random variables with E [ξt] = E
[

ξ3t
]

= 0, E
[

ξ2t
]

= 1 and

having finite fourth-order moment. Bibi and Gautier (2006) give conditions ensuring the existence of

a causal and invertible solution and show that the solution is a periodic weak white noise.

2.2 Data generating processes with weak PARMA representations

2.2.1 Temporal aggregation and systematic sampling

Temporal aggregation and systematic sampling of a stochastic process {Xt, t ∈ Z} over non-overlapping

periods of length M are particular cases of the following linear transformation. If
{

Yt̃, t̃ ∈ Z
}

represents

the resulting process at date t̃,

Yt̃ =
M
∑

i=1

ciXM(t̃−1)+i, (2.3)

where c1, c2, ..., cM are real constants. For temporal aggregation, c1 = c2 = ... = cM = 1, and for

systematic sampling, c1 = c2 = ... = cM−1 = 0, cM = 1.

When the high frequency process {Xt} is periodic of period T , we suppose that M ≤ T and that

T = MT̃ for some T̃ ∈ N. For example, with monthly data aggregated in quarterly data, T = 12,

M = 3 and T̃ = 4. In such a situation, the low frequency process {Yt̃} is also periodically correlated

of period T̃ .

Roy and Saidi (2008) showed that the class of weak PARMA processes is closed under the aggrega-

tion transformation (2.3) but that property does not hold any more with the class of strong PARMA

processes. Furthermore, a sufficient condition under which temporal aggregation of a strong PARMA
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model yields a weak PARMA model is provided. Under that condition, the noise of the aggregated

process is neither strong nor a martingale difference.

2.2.2 Nonlinear processes with weak PARMA representations

In general, it seems difficult to prove the existence of a PARMA representation for some models

usually encountered in the periodic nonlinear time series literature. However, for some special cases

like bilinear models, it is possible to show that they can admit a weak PARMA representation. For

instance, consider the following periodic (with period T=2) bilinear model
{

XnT+1 = ǫ̃nT+1 + αXnT ǫ̃nT−1,
XnT+2 = ǫ̃nT+2 + βXnT+1ǫ̃nT ,

where the ǫ̃t’s are independent with E [ǫ̃t] = 0 for all t, and E

[

ǫ̃2nT+1

]

= σ̃2
1 , E

[

ǫ̃2nT+2

]

= σ̃2
2. If

|αβ| < 1, the process {Xt} admits a periodic stationary solution and using Shao and Lund (2004)

characterization of PMA models, we obtain that this solution admits a weak PMA2(3) representation.

2.2.3 Causal representations of noncausal PARMA models

Let us consider the following PAR2(2) model
{

XnT+1 − αX(n−1)T+1 = ǫ̃nT+1,

XnT+2 − βX(n−1)T+2 = ǫ̃nT+2,

where the ǫ̃t’s are independent with E [ǫ̃t] = 0 for all t, and E

[

ǫ̃2nT+1

]

= σ̃2
1 , E

[

ǫ̃2nT+2

]

= σ̃2
2 . We also

assume that |α| > 1 and that |β| > 1. In that case, the process {Xt} admits a noncausal representation

of the form






















XnT+1 = −
∞
∑

i=1

α−iǫ̃(n+i)T+1,

XnT+2 = −
∞
∑

j=1

β−j ǫ̃(n+j)T+2.

Now, let
{

ǫnT+1 = XnT+1 − α−1X(n−1)T+1,

ǫnT+2 = XnT+2 − β−1X(n−1)T+2.

It is clear that E [ǫt] = 0 for all t, E [ǫtǫt′ ] = 0 for all t 6= t′ and E

[

ǫ2nT+ν

]

= σ2
ν > 0. Thus, {Xt} admits a

stationary PAR2(2) representation. Moreover, we can check that E

[

X3
(n−1)T+1

]

= (1−α3)−1
E

[

ǫ̃3nT+1

]

and E

[

XnT+1X
2
(n−1)T+1

]

= α−2(1 − α3)−1
E

[

ǫ̃3nT+1

]

. This implies that

E

[

ǫnT+1X
2
(n−1)T+1

]

= E

[

XnT+1X
2
(n−1)T+1

]

− α−1
E

[

X3
(n−1)T+1

]

6= 0,

whenever E
[

ǫ̃3t
] 6= 0. Therefore, the periodic white noise {ǫt} is neither strong nor a martingale

difference.

7



Furthermore, we can show, using Corollary 1 in Cheng (1999), that the noise {ǫt} is strong if and

only if the process {Xt} is Gaussian.

2.2.4 Approximation of the Wold decomposition for periodic processes

Weak PARMA processes can be viewed as an approximation of the Wold decomposition of periodically

stationary processes. Indeed, any periodically stationary process {Xt} of period T admits an infinite

periodic moving average representation of the form

XnT+ν =
∞
∑

k=0

ψν,kǫnT+ν−k, (2.4)

where {ǫt} is the linear innovation process of {Xt}, ψν,0 = 1 and
∑∞

k=0 ψ
2
ν,k < +∞. The process

{XnT+ν} can be approximated by the weak PMA(q1, ..., qT ) process

XnT+ν(qν) =
qν
∑

k=0

ψν,kǫnT+ν−k, ν = 1, ..., T,

because

E [XnT+ν(qν) −XnT+ν ]
2 ≤ ( max

1≤ν≤T
σ2

ν)
∑

k>qν

ψ2
ν,k → 0

where qν → ∞. The linear model (2.4), which consists of the PARMA models and their limits is very

general under the noise uncorrelatedness, but can be quite restrictive if the assumption of strong noise

is made.

The previous examples demonstrate that weak PARMA models can arise from various situations.

Making the assumption of a strong noise precludes most of these data generating processes (DGP),

as well as many others.

3 Least squares estimation of weak PARMA models

In this section, we focus on the asymptotic properties of the least squares estimators of the autoregres-

sive and moving average parameters of the PARMAT process (2.1). There is no loss of generality in

assuming that p1 = ... = pT = p and q1 = ... = qT = q by adding coefficients equal to zero (Lund and

Basawa, 2000). Furthermore, we suppose that the process is centered, that is µ1 = ... = µT = 0. We

make this assumption to lighten the presentation, but the results stated in this section extend directly

for models with constants. Such models will be considered for the numerical illustrations. Thus, the

PARMAT (p, q) process {XnT+ν} satisfies the following difference equations

XnT+ν −
p
∑

i=1

φi(ν)XnT+ν−i = ǫnT+ν −
q
∑

j=1

θj(ν)ǫnT+ν−j, (3.1)
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ν = 1, ..., T , where {ǫnT+ν} is a periodic white noise (weak or strong) and we assume that p+ q > 0.

The process {ǫt = ǫnT+ν} can be interpreted as the linear innovation of {Xt = XnT+ν}, i.e.

ǫt = Xt − E [Xt|HX(t− 1)]

where HX(t) is the Hilbert space spanned by {Xs, s ≤ t}.
The difference equations (3.1) can be written in the T -dimensional vector form (Vecchia, 1985b)

Φ0Xn −
p∗
∑

k=1

ΦkXn−k = Θ0ǫǫǫn −
q∗
∑

l=1

Θlǫǫǫn−l, (3.2)

where

Xn = (XnT+1, ...,XnT+T )′ , ǫǫǫn = (ǫnT+1, ..., ǫnT+T )′ , (3.3)

p∗ = [(p− 1)/T ] + 1, q∗ = [(q − 1)/T ] + 1, the matrix coefficients Φk, k = 0, ..., p∗ and Θl, l = 0, ..., q∗,

are defined by

(Φ0)i,j =











1 if i = j
0 if i < j
−φi−j(i) if i > j

, (Θ0)i,j =











1 if i = j
0 if i < j
−θi−j(i) if i > j

, (3.4)

and

(Φk)i,j = φkT+i−j(i), k = 1, ..., p∗, (Θl)i,j = θlT+i−j(i), l = 1, ..., q∗. (3.5)

Here, it is implicit that φh(ν) = 0, h /∈ {1, . . . , p} and θh(ν) = 0, h /∈ {1, . . . , q}. The covariance

matrix of the T -dimensional white noise ǫǫǫn is Σǫ = Diag(σ2
1 , ..., σ

2
T ) > 0. Denote by B the lag operator

such that BhXn = Xn−h. Equation (3.2) can be written as

Φ(B)Xn = Θ(B)ǫǫǫn (3.6)

where Φ(z) = Φ0 −Φ1z− ...−Φp∗z
p∗ and Θ(z) = Θ0 −Θ1z− ...−Θq∗z

q∗ are the matrix polynomials

of the vectorial autoregressive moving average representation. It is important to note that the lag

operator B operates on the cycle index n. When it acts on the time index t = nT + ν of the periodic

process {Zt}, it gives BkZnT+ν = Z(n−k)T+ν .

From (3.2), we can in principle deduce the properties of weak PARMA parameter estimation from

existing results on parameter estimation of a vector ARMA model under general assumptions on the

white noise process including dependence cases. In particular, Dunsmuir and Hannan (1976) and Dun-

smuir (1979) assume a higher order martingale difference condition on the white noise while Hosoya

and Taniguchi (1982) and, Taniguchi and Kakizawa (2000) impose what they called an assymptoti-

cally higher order martingale difference condition. Here, we have preferred to work in the univariate
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PARMA setting for various reasons. First, results obtained directly in terms of the univariate PARMA

representation are more directly usable because fewer parameters are involved and their estimation is

easier. For example, in a PARMAT (1, 1) model, there are 2T AR and MA parameters to estimate.

The corresponding VARMA(1,1) representation contains 4T 2 parameters among which 2T (2T − 1)

are constrained to 1 or 0, according to (3.4) and (3.5). The difference in the number of parameters is

huge, specially with monthly or weekly data (T = 12, 52). Second, the VARMA representation (3.2)

is not standard, the matrices Φ0 and Θ0 are not in general the identity matrix. Rescaling the vector

noise in (3.2) via ǫǫǫ∗n = Θ0ǫǫǫn and then multiplying both sides by Φ−1
0 leads to a standard VARMA

representation. In doing so, the covariance matrix of {ǫǫǫ∗n}and the MA parameters would depend on

both the AR parameters of the PARMA representation and the vector of variances ~σ2. Even in the

strong case, a time series package that provides the inverse transformation in order to be able to make

inference on the parameters of the VARMA representation (3.2) under the constraints (3.4) and (3.5)

does not exist at our knowledge. With the PARMA representation, we have been able to derive in

Theorem 3.2 a convenient form for the covariance matrix of the least squares estimators of the AR

and MA parameters. A consistent estimator of that covariance matrix, as described in Remark 3.4,

was implemented in the R-language and was used in the empirical part of the paper.

Hereafter, we impose a strong mixing condition on the process {Xn}.

(A1) The PARMA process {XnT+ν} is causal and invertible, in the sense that, the roots of det{Φ(z)}
and of det{Θ(z)} are greater than one in modulus (Brockwell and Davis, 1991). Furthermore, we

assume that the VARMA model (3.6) is identifiable (see Reinsel, 1997, Section 2.3.4 or Hannan

and Deistler, 1988, Section 2.7).

For notation, let ~φ(ν) = (φ1(ν), ..., φp(ν))
′ and ~θ(ν) = (θ1(ν), ..., θq(ν))

′ respectively denote the

vectors of autoregressive and moving average parameters for season ν. The T (p + q)-dimensional

collection of all PARMA parameters is denoted by

~α :=
(

~φ(1)′, ..., ~φ(T )′, ~θ(1)′, ..., ~θ(T )′
)′
.

The white noise variances ~σ2 =
(

σ2
1 , ..., σ

2
T

)′
will be treated as nuisance parameters.

Let X1, ...,XNT be a data sample from the causal and invertible PARMA model (3.1) with the

true parameter value ~α = ~α0 and ~σ2 = ~σ2
0 . The sample contains N full periods of data which are

indexed from 0 to N − 1. Indeed, when 0 ≤ n ≤ N − 1 and 1 ≤ ν ≤ T , nT + ν goes from 1 to NT . It

is understood that ~α0 belongs to the parameter space

Ω =

{

~α =
(

~φ(1)′, ..., ~φ(T )′, ~θ(1)′, ..., ~θ(T )′
)′

∈ R
T (p+q) such that (A1) is verified

}

.
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For ~α ∈ Ω, let ǫnT+ν(~α) be the periodically second-order stationary solution of

ǫnT+ν(~α) = XnT+ν −
p
∑

i=1

φi(ν)XnT+ν−i +
q
∑

j=1

θj(ν)ǫnT+ν−j(~α). (3.7)

Note that, almost surely, ǫnT+ν(~α0) = ǫnT+ν for all n ∈ Z and ν ∈ {1, ..., T}. Moreover, ǫnT+ν(~α) can

be approximated by enT+ν(~α) which is also determined recursively in t via a truncated version of (3.7)

enT+ν(~α) = XnT+ν −
p
∑

i=1

φi(ν)XnT+ν−i +
q
∑

j=1

θj(ν)enT+ν−j(~α), (3.8)

where the unknown starting values are set to zero: e0(~α) = ... = e1−q(~α) = X0 = ... = X1−p = 0.

Let δ be a strictly positive constant chosen such that ~α0 belongs to the interior of the compact set

Ωδ =
{

~α ∈ R
T (p+q)|the zeros of det{Φ(z)} and those of det{Θ(z)} have modulus ≥ 1 + δ

}

.

The random variable ~̂αOLS is called the ordinary least squares (OLS) estimator of ~α if it satisfies,

almost surely,

SN (~̂αOLS) = min
~α∈Ωδ

SN (~α), (3.9)

where

SN (~α) =
1

N

N−1
∑

n=0

T
∑

ν=1

e2nT+ν(~α). (3.10)

Because of the presence of heteroscedastic innovations, the OLS estimator might be inefficient. We

will see that, for some vectors of weights ~ω2 =
(

ω2
1, ..., ω

2
T

)′
, the OLS estimator is asymptotically

outperformed by the weighted least squares (WLS) estimator ~̂αWLS = ~̂α
~ω2

WLS defined by

Q~ω2

N (~̂αWLS) = min
~α∈Ωδ

Q~ω2

N (~α) (3.11)

where

Q~ω2

N (~α) =
1

N

N−1
∑

n=0

T
∑

ν=1

ω−2
ν e2nT+ν(~α). (3.12)

We will also see that an optimal WLS estimator is the generalized least squares (GLS) estimator

~̂αGLS = ~̂α
~σ2

0

WLS. (3.13)

The GLS estimator assumes that ~σ2
0 is known. In practice, this parameter has also to be estimated.

Given any consistent estimator ~̂σ2 of ~σ2
0 , a quasi-generalized least squares (QLS) estimator of ~α0 is

defined by

~̂αQLS = ~̂α
~̂σ2

WLS. (3.14)
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One possible consistent estimator of σ2
ν is

σ̂2
ν =

1

N

N−1
∑

n=0

e2nT+ν(~̂αOLS).

To establish the consistency of the least squares estimators, an additional assumption is needed.

(A2) The T-dimensional white noise
{

ǫǫǫn = (ǫnT+1, ..., ǫnT+ν , ..., ǫnT+T )′ , n ∈ Z

}

in (3.6) is strictly

stationary and ergodic.

Theorem 3.1 Suppose that {XnT+ν} is a PARMAT (p, q) process. Let ~̂αOLS, ~̂αWLS, ~̂αGLS and ~̂αQLS

be the least squares estimators defined by (3.9), (3.11), (3.13) and (3.14). Then, under Assumptions

(A1) and (A2), and for any ~ω2 = (ω2
1 , . . . , ω

2
T ) > 0, where the inequality applies element-wise, we have

~̂αOLS → ~α0, ~̂α
~ω2

WLS → ~α0, ~̂αGLS → ~α0, ~̂αQLS → ~α0, almost surely as N → ∞.

Let Fm
−∞ and F+∞

m+h be the σ-fields generated by {Xn, n ≤ m} and {Xn, n ≥ m+ h} respectively.

The strong mixing coefficients of the T-variate stationary process {Xn, n ∈ Z} are defined by

αX(h) = sup
A∈Fm

−∞
,B∈F+∞

m+h

|P (A ∩B) − P (A)P (B)|.

Let ||Z||r = [E||Z||r]1/r where ||.|| stands for the Euclidean norm of a vector. In addition to Assump-

tions (A1) and (A2), we need the following assumption to establish the asymptotic normality of the

least squares estimators previously introduced.

(A3) The T-variate stationary process {Xn} is such that for some τ > 0, ||Xn||4+2τ < ∞ and
∞
∑

h=0

[αX(h)]
τ

2+τ <∞.

Notice that Assumption (A3) does not require that the noise {ǫt} be strong or a martingale difference.

The mixing condition is valid for large classes of processes. The moment condition is relatively mild

given that the existence of I(~α, ~ω2) and J(~α, ~ω2) defined below requires ||Xn||4 <∞.

Theorem 3.2 Under the assumptions of Theorem 3.1 and (A3), as N → ∞,

√
N(~̂αLS − ~α0)

L→ N (0,VLS)

where the subscript LS stands for OLS, WLS, GLS or QLS, and where

VOLS = V
(

~α0, (1, . . . , 1)
′) , VWLS = V(~α0, ~ω

2), VGLS = VQLS = V(~α0, ~σ
2
0),

with

V(~α0, ~ω
2) =

(

J(~α0, ~ω
2)
)−1

I(~α0, ~ω
2)
(

J(~α0, ~ω
2)
)−1

, (3.15)
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I(~α0, ~ω
2) =

T
∑

ν=1

T
∑

ν′=1

ω−2
ν ω−2

ν′

∞
∑

k=−∞
E

[(

ǫν(~α0)

(

∂ǫν(~α)

∂~α

)

~α=~α0

)(

ǫkT+ν′(~α0)

(

∂ǫkT+ν′(~α)

∂~α

)

~α=~α0

)′]

and

J(~α0, ~ω
2) =

T
∑

ν=1

ω−2
ν E

[

(

∂ǫν(~α)

∂~α

)

~α=~α0

(

∂ǫν(~α)

∂~α

)′

~α=~α0

]

.

Remark 3.1 In the periodic AR case, the OLS and WLS estimators coincide. Indeed we have in this

particular case ~α = (~φ(1)′, . . . , ~φ(T )′)′ and

Q~ω2

N (~α) =
T
∑

ν=1

ω−2
ν

1

N

N−1
∑

n=0

e2nT+ν(
~φ(ν)).

Thus the WLS estimator does not depend on the vector of weights ~ω2:

~̂α = (~̂φ(1)′, . . . , ~̂φ(T )′)′, where ~̂φ(ν) = arg min
~φ(ν)

1

N

N−1
∑

n=0

e2nT+ν(
~φ(ν)).

Notice however that it does not hold when ~µ = (µ1, . . . , µT )
′ 6= ~0. In the general PARMA case, the

WLS estimator varies with ~ω2 because e2nT+ν depends on the entire parameter ~α, and not only on
(

~φ(ν), ~θ(ν)
)

, when the MA term is present.

Remark 3.2 In the strong PARMA setting, i.e., when {σ−1
0ν ǫnT+ν} is an independent and identically

distributed sequence, the asymptotic covariance matrix of the QLS estimators takes a simple form.

Indeed, independence of the ǫnT+ν ’s implies that only the terms for k = 0 and ν = ν ′ are non zero.

Therefore, we obtain that

I(~α0, ~σ
2
0) =

T
∑

ν=1

σ−2
0ν E

[

(

∂ǫν(~α)

∂~α

)

~α=~α0

(

∂ǫν(~α)

∂~α

)′

~α=~α0

]

= J(~α0, ~σ
2
0).

This implies that the asymptotic covariance matrix of the QLS estimators for a PARMA model with

independent errors is

VQLS =
(

J(~α0, ~σ
2
0)
)−1

. (3.16)

This result was obtained by Basawa and Lund (2001). Moreover, applying Theorem 3.2 in the weak

ARMA setting, i.e., when the period T is equal to one (T = 1), we retrieve the result obtained by

Francq and Zaköıan (1998).

Remark 3.3 If {ǫt} is a martingale difference such that E
[

ǫ2t
∣

∣Ft−1] = E
[

ǫ2t
]

where Ft is the σ-field

spanned by {ǫs, s ≤ t}, the QLS estimator is an optimal LS estimator in the sense that

VWLS − VQLS is a semi-definite positive matrix.
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Indeed, let the random vector

S~ω2

N =
{

J(~α0, ~ω
2)
}−1 1√

N

N−1
∑

n=0

T
∑

ν=1

ω−2
ν ǫnT+ν(~α0)

(

∂ǫnT+ν(~α)

∂~α

)

~α=~α0

.

We have

Cov

(

S~σ2

N , S
~ω2

0

N

)

=
{

J(~α0, ~ω
2)
}−1 1

N

N−1
∑

n=0

T
∑

ν=1

ω−2
ν σ−2

0ν Eǫ2nT+νE

[

(

∂ǫν(~α)

∂~α

)

~α=~α0

(

∂ǫν(~α)

∂~α

)′

~α=~α0

]

{

J(~α0, ~σ
2
0)
}−1

→
{

J(~α0, ~σ
2
0)
}−1

.

Therefore

lim
N→∞

Var

(

S~ω2

N − S
~σ2
0

N

)

=
{

J(~α0, ~ω
2)
}−1

−
{

J(~α0, ~σ
2
0)
}−1

= VWLS − VQLS

and the conclusion follows.

Remark 3.4 It can be shown that J(~α0, ~ω
2) is consistently estimated by the empirical mean

Ĵ(~α0, ~ω
2) =

T
∑

ν=1

ω−2
ν

1

N

N−1
∑

n=0

[

(

∂enT+ν(~α)

∂~α

)

~α=~̂αLS

(

∂enT+ν(~α)

∂~α

)′

~α=~̂αLS

]

.

Note that the matrix (2π)−1I(~α0, ~ω
2) is the spectral density at frequency zero of the process

Υn =
T
∑

ν=1

ω−2
ν ǫnT+ν(~α0)

(

∂ǫnT+ν(~α)

∂~α

)

~α=~α0

.

Estimators of such long-run variances are available in the literature (see e.g. den Haan and Levin (1997)

for a general reference). For the numerical illustrations presented in this paper, we used a VAR spectral

estimator consisting in: i) fitting VAR(p) models for p = 0, . . . , pmax to the series Υ̂n, n = 0, . . . , N−1,

where Υ̂n is obtained by replacing ǫnT+ν(~α0)) and its derivatives by enT+ν(~̂αLS) and its derivatives in

Υn; ii) selecting the order p which minimizes an information criteria and approximating I(~α0, ~ω
2) by

(2π) times the spectral density at frequency zero of the estimated VAR(p) model. Hereafter, we used

the AIC model selection criterion with pmax = 25.

Remark 3.5 Most of the descriptive techniques for identifying a strong PAR model, as described in

McLeod (1994) and Hipel and McLeod (1994), remain valid for a weak PAR model. We have seen

in Remark 3.1 that the LS estimator of ~φ(ν) in a weak PAR model with means zero only involves

the sequence {enT+ν , n = 0, . . . , N − 1}. Therefore, the sample ACF and PACF of the ν-th season

of the original series can be used to identify the AR order pν . Valid significance limits for ACF and

14



PACF in the weak case were obtained by Romano and Thombs (1996). See also Berlinet and Francq

(1997) and Francq and Zaköıan (2009). The popular AIC and BIC model selection criteria can also

be applied to each season. Francq and Zaköıan (1998b) showed that asymptotically, the orders of a

weak ARMA model are not underestimated when these criteria are employed. As in the strong case,

note however that these techniques do not work for a general PARMA model.

Also with PAR models, the significance limits for residual ACF and the modified Ljung-box test

described in Francq et al. (2005) can be applied at each season either for testing the hypothesis of

weak white noise of the observed periodic series or for checking the validity of the estimated model.

A global goodness-of-fit test would be welcomed but it is beyond the scope of this paper.

4 Examples of covariance matrix calculations

The asymptotic covariance matrix of the QLS estimators obtained under independent errors is gener-

ally different from the one obtained under uncorrelated but dependent errors. Here, we give explicit

expressions for the asymptotic covariance of the QLS estimator of a weak PAR2(1) model for two dif-

ferent weak white noises. In both cases, it is seen that the difference with the asymptotic covariance

matrix under the assumption of a strong noise can be huge.

4.1 Example 1

Consider the weak periodic white noise of section 2.1.1 with T = 2:

ǫnT+ν = σν

m
∏

j=0

ξnT+ν−j, ν = 1, 2, (4.1)

and assume that the iid sequence {ξt} has a finite fourth-order moment κ = E
[

ξ4t
]

.

¿From a realization Xt = ǫt, t = 1, ..., NT , of that weak white noise, suppose that a statistician

fits the following PAR2(1) model:

{

XnT+1 − φ1XnT = ǫnT+1,
XnT+2 − φ2XnT+1 = ǫnT+2.

(4.2)

The true parameter values are φ1 = φ2 = 0 and ~σ2 = ~σ2
0 . According to Theorem 3.2, some moment

calculations show that the asymptotic covariance matrix of the QLS estimator of
√
N
(

φ̂1, φ̂2

)′
is given

by

V
(w)
QLS =

(

J(~α0, ~σ
2
0)
)−1

I(~α0, ~σ
2
0)
(

J(~α0, ~σ
2
0)
)−1

= κm





σ2
01

σ2
02

0

0
σ2
02

σ2
01



 . (4.3)
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On the other hand from (3.16), the corresponding asymptotic covariance matrix under the assumption

of a strong noise is equal to

V
(s)
QLS =

(

J(~α0, ~σ
2
0)
)−1

=





σ2
01

σ2
02

0

0
σ2
02

σ2
01



 . (4.4)

It is clear that V
(w)
QLS and V

(s)
QLS can be very different. For example, if the iid sequence {ξt} is N (0, 1),

E
[

ξ4t
]

= 3, and the discrepancy between the two matrices is important even for small m. It may lead

the statistician to wrongly reject the hypothesis that φ1 = φ2 = 0 if he does not take into account the

dependence of the errors ǫt.

4.2 Example 2

To illustrate the influence of the kind of dependence on the asymptotic covariance matrix of the LS

estimators, let us go back to the weak periodic white noise of section 2.1.1 with T = 2:

ǫnT+ν = σν

(

ηnT+ν/

√

E

[

η2
nT+ν

]

)

, (4.5)

where {ηt} is the causal solution of the following ARCH(1) model

ηt =
√

1 + αη2
t−1ξt, t ∈ Z,

with 0 < α < 1 and {ξt} is a sequence of symmetric and centered iid random variables with unit

variance and having finite fourth-order moment. Let κ = E
[

ξ4t
]

and assume that κ > 1 and 0 <

κα2 < 1.

Given a realization Xt = ǫt, t = 1, ..., NT , from (4.5), let us estimate the PAR2(1) model (4.2) for

that series. Once again, the true parameter values are φ1 = φ2 = 0 and ~σ2 = ~σ2
0. Direct computation

of the matrices in (3.15) lead to the following asymptotic covariance matrix of the QLS estimators of
√
N
(

φ̂1, φ̂2

)′
:

V
(w)
QLS =

(

J(~α0, ~σ
2
0)
)−1

I(~α0, ~σ
2
0)
(

J(~α0, ~σ
2
0)
)−1

=

{

1 +
(κ− 1)α

1 − κα2

}





σ2
01

σ2
02

0

0
σ2
02

σ2
01



 . (4.6)

It is obvious that (4.6) can be quite different from the asymptotic covariance matrix (4.4) corresponding

to a strong white noise. For example, if {ξt} is an iid N (0, 1) sequence, and α = 0.5,V
(w)
QLS = 5V

(s)
QLS.

With a series of 2000 observations (N = 1000) and if σ2
01 = σ2

02, the standard error of the QLS

estimators of φ1 and φ2 is 0.0707 for that weak white noise whilst it is equal to 0.0316 under the

assumption of a strong noise.
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5 Some Monte Carlo results

The aim of this Monte Carlo study is to underline that the standard inference procedures developed

for strong PARMA models can be quite misleading when analyzing data generated by weak PARMA

models. In the first part of this simulation experiment, we considered various white noises (strong or

weak) to which we fitted a PAR2(1) model. The discrepancy between the empirical standard errors

of the parameter estimators and their asymptotic standard errors under the assumption of a strong

noise is examined. The size distortion of a Wald test for the hypothesis that the model coefficients

are zero, based on the asymptotic covariance matrix under the assumption of a strong noise, is also

investigated. In the second part, two different PARMA2(1,1) models with strong and weak noises were

used to investigate the size and power of a Wald test based on a consistent estimator of the asymptotic

covariance matrix under the assumption of either a weak or strong noise. The rate of convergence of

the estimated asymptotic standard errors is also analysed.

5.1 Using the theoretical covariance structure

To make the presentation easier, we again consider the PAR2(1) model (4.2) with three different types

of periodic white noises {ǫnT+ν}.

1. Type 1: The periodic white noise {ǫt} is assumed to be a sequence of independent random vari-

ables. More precisely, the random variables σ−1
ν ǫnT+ν are independent and identically distributed

with mean zero and variance one. We consider the following distributions for σ−1
ν ǫnT+ν : stan-

dard Normal (N ), Student with 3 degrees freedom (t), Lognormal with parameters (4,1) (LN),

Chi-square with 1 degree freedom (χ2), Exponential with parameter one (Exp), and Gamma with

parameters (5,1) (Gam). When necessary, each of these six distributions have been normalized

to obtain distributions with mean equal to zero and variance equal to one.

2. Type 2: Here {ǫt} is the periodic weak white noise defined by (2.2) and we considered two

particular cases: m = 1 (WN1) and m = 2 (WN2).

3. Type 3: This is the periodic ARCH white noise defined by (4.5). For this type of weak white

noise, we considered three values for α : 0.3, 0.4, and 0.5.

For each of these eleven different periodic white noises, 1000 replications of length (N + 200) × 2

were generated. These sequences were plugged into the PAR2(1) model (4.2), yielding 1000 replications

of the periodic process {Xt} of length (N + 200) × 2. Initial values were set to zero and in order to

achieve periodic stationarity, the first 400 observations were dropped. For each replication of length
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NT = N × 2, the PAR2(1) model (4.2) was estimated by ordinary least squares. As pointed out in

Remark 3.1, the OLS and WLS estimators coincide in the periodic AR case. The OLS estimators of

φ1 and φ2 are denoted φ̂1 and φ̂2. In the experiment, we considered the three values of N : 50, 100,

1000.

We carried out simulations for different set of values of φ1, φ2, σ1 and σ2. However, for sake of

brevity, we only present the results for φ1 = φ2 = 0 and σ1 = σ2 = 1.0. For each value of N and for

each type of periodic white noise, we report, in Table 1, the empirical standard errors Sφ̂1
and Sφ̂2

of

φ̂1 and φ̂2 respectively, based on 1000 replications. The mean values of the estimates
¯̂
φ1 and

¯̂
φ2 are

not reported since they are always very close to the true values φ1 = φ2 = 0. The empirical standard

errors should be compared to the corresponding asymptotic standard errors
√

V (φ̂1), for either a

strong noise as given by (3.16) or for a weak noise as provided by (3.15). For the PAR2(1) model

chosen, the formulas of the asymptotic variances of the LS estimators corresponding to the three types

of white noises considered are provided respectively by (4.4), (4.3) and (4.6). Moreover, for each type

of periodic white noise, and for each replication we test the following null hypotheses H
(1)
0 : φ1 = 0,

H
(2)
0 : φ2 = 0, and H0 : φ1 = φ2 = 0 using the Wald test computed under the assumption of a strong

PAR2(1) model. The rejection frequencies in 1000 replications at significance level 5% are reported in

Table 1.

Inspection of Table 1 reveals that the Asymptotic Standard Errors (ASE) are reasonably close to

the Empirical Standard Errors (ESE) even for short series (N = 50, 100) except for the 2-dependent

noise WN2 and the ARCH(1) noise with α = 0.5. For long series (N = 1000), ASE and ESE are very

close for all the white noises considered. Also, comparison of the ESE’s for types 2 and 3 noises with

the ASE’s for a strong noise (ASEs) shows that the ESE’s are considerably larger than ASEs. Even for

short series, the dependence of the errors considerably inflate the true standard error. For instance,

with WN2, the ESE is more than twice the corresponding ASEs and with the ARCH(1) noise with

α = 0.5, the ratio is greater than 1.5. This remark also hold for N = 1000.

Perusal of the rejection frequencies of the standard Wald test for the three series lengths shows

that the size of the test is considerably affected by the dependence of the errors. Based on 1000

replications, the standard error of the rejection frequencies at the nominal level 0.05 is 0.0069. With

the strong noises, the size of the Wald test is reasonably well controlled. For N=50, we observe a slight

tendency to overreject, but all frequencies except 2 are within 3 standard errors from the nominal level

0.05. At N=100, 1000, all the rejection frequencies, except one for each series length, are within 2

standard errors from 0.05. The standard Wald test clearly overreject with the weak noises considered.

The smallest rejection frequency 0.12 is obtained with the ARCH(1) noise when α = 0.3. For the
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Type 2 noises and the Type 3 with α = 0.5, all the rejection frequencies are greater than 0.2.

This small simulation experiment clearly shows that the dependence of the errors invalidates the

standard inference procedures developed for PARMA models with independent errors.

Type 1 Type 2 Type 3

N t LN χ2 Exp Gam WN1 WN2 α = 0.3 α = 0.4 α = 0.5

NT = 100

Empirical standard errors
Sφ̂1

.1487 .1671 .1462 .1504 .1548 .1526 .2355 .3434 .1783 .1984 .2265

Sφ̂2
.1406 .1683 .1447 .1376 .1399 .1504 .2362 .3249 .1863 .1984 .2192

Asymptotic standard errors (i = 1, 2)
√

V(φ̂i) .1414 .1414 .1414 .1414 .1414 .1414 .2449 .4243 .1909 .2253 .3162

Rejection frequencies in 1000 replications of the null hypothesis

H
(1)
0 .0640 .0590 .0670 .0680 .0740 .0740 .2580 .4100 .1280 .1670 .2200

H
(2)
0 .0640 .0700 .0610 .0460 .0520 .0590 .2610 .3940 .1590 .1680 .2070

H0 .0640 .0660 .0690 .0580 .0680 .0680 .3830 .5650 .1820 .2310 .3060

NT = 200

Empirical standard errors
Sφ̂1

.1013 .1130 .1025 .0998 .0992 .0991 .1770 .2531 .1294 .1380 .1616

Sφ̂2
.0994 .1126 .1004 .1016 .1002 .1001 .1676 .2506 .1271 .1466 .1570

Asymptotic standard errors (i = 1, 2)
√

V(φ̂i) .1000 .1000 .1000 .1000 .1000 .1000 .1732 .3000 .1350 .1593 .2236

Rejection frequencies in 1000 replications of the null hypothesis

H
(1)
0 .0570 .0540 .0620 .0520 .0480 .0490 .2830 .4110 .1370 .1560 .2190

H
(2)
0 .0560 .0630 .0530 .0590 .0500 .0630 .2340 .4290 .1270 .1770 .2000

H0 .0580 .0650 .0550 .0520 .0560 .0510 .3810 .6140 .1670 .2260 .2960

NT = 2000

Empirical standard errors
Sφ̂1

.0311 .0320 .0309 .0330 .0324 .0314 .0529 .0918 .0430 .0498 .0612

Sφ̂2
.0322 .0321 .0320 .0314 .0319 .0310 .0542 .0925 .0411 .0500 .0609

Asymptotic standard errors (i = 1, 2)
√

V(φ̂i) .0316 .0316 .0316 .0316 .0316 .0316 .0548 .0948 .0427 .0504 .0707

Rejection frequencies in 1000 replications of the null hypothesis

H
(1)
0 .0400 .0510 .0450 .0540 .0580 .0550 .2460 .4840 .1510 .2020 .2750

H
(2)
0 .0620 .0460 .0510 .0470 .0630 .0360 .2530 .4920 .1200 .2120 .2820

H0 .0510 .0450 .0480 .0520 .0530 .0460 .3560 .6870 .1730 .2840 .4040

Table 1. Empirical and asymptotic standard errors of the OLS estimators of φ1 and φ2 in the PAR2(1)

model (4.2) and the rejection frequencies at the nominal level 0.05 of the standard Wald test computed under

independent errors for three types of white noises and three series lengths NT . The number of replications is

1000.
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5.2 Using an estimated covariance structure

In this second experiment, we used the PARMA2(1, 1) model defined by

XnT+ν = µν + φνXnT+ν−1 + ǫnT+ν − θνǫnT+ν−1, ν = 1, 2, (5.1)

with various sets of parameter values. Including means, the vector of parameters becomes ~α =

(µ1, µ2, φ1, φ2, θ1, θ2)
′. For each realisation, we computed the QLS estimator of ~α and its estimated

asymptotic covariance matrix using the method described in Remark (3.4) under both the assumptions

of a strong noise (denoted by S) and a weak noise (denoted by W). The strong noise is an iid N(0, 1)

sequence while the weak noise in a 3-dependent process as defined by Equation (2.2) with m = 3,

the ξt are iid N(0, 1) random variables and σ1 = σ2 = 1. For each of these two noises, the PARMA

realisations were obtained by plugging in (5.1) the noise series. In all cases, the initial values were

set to zero and for each realisation of length NT , NT + 400 data were generated and the first 400

were discarded. For each of the three series lengths (500, 1000 and 2000), the QLS estimator of

~α was obtained as well as the estimated standard errors under both the assumptions of a strong

noise and a weak noise. From the 1000 independent realisations, various statistics for studying the

variability and the rate of convergence are reported in Table 2, namely the biais, the Empirical

Standard Error (ESE), the Mean Asymptotic Standard Errors under the assumption of a strong

noise (MASE(s)) and a weak noise (MASE(w)). These results correspond to the parameter values

~α = (0.05,−0.05, 0.8, 0.75,−0.5,−0.45)′ .

Here are some comments about these numerical results. The bias is negligible for all parameters

and the three series lengths. In the case of a strong noise, MASE(s) and MASE(w) are close to each

other and also reasonably close to the corresponding ESE for all parameters but µ2. For this latter

parameter, both asymptotic standard errors underestimate the true standard error even with 2000

observations. With a weak noise, MASE(s) is quite far from the corresponding ESE for all parameters

except µ1. MASE(w) provides a rather poor approximation of the true standard error when NT = 500.

As expected, the approximation improves as the series length increases and it is rather satisfactory

with 2000 observations. For all parameters but µ1, MASE(w) is much closer to ESE than MASE(s).

Table 3 gives the rejection frequencies of the Wald statistic for testing the null hypothesis H0

of absence of seasonality in a PARMA2(1, 1) model. It is equivalent to testing that (µ1, φ1, θ1)
′ =

(µ2, φ2, θ2)
′. For the null hypothesis, we used the parameter values ~α = (0, 0, 0.8, 0.8,−0.5,−0.5)′ .

Under the alternative hypothesis H1, we employed the same parameter values as in the first part

of this experiment,that is ~α = (0.05,−0.05, 0.8, 0.75,−0.5,−0.45)′ . We also considered alternatives

further away from the null but the results are reported because too many rejection frequencies were
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equal to 100%. The Wald test under the assumption of a strong noise is denoted WS while WW

represents the Wald test under a weak noise. Based on 1000 realisations, the standard error of the

rejection frequencies at the nominal levels 1, 5 and 10% are respectively 0.31, 0.69 and 0.95%.

NT Noise Statistics µ1 µ2 φ1 φ2 θ1 θ2

500 S Bias .007 .007 -.007 -.006 -.013 -.003
ESE .258 .235 .040 .031 .103 .042

MASE(s) .281 .137 .044 .023 .120 .035

MASE(w) .307 .149 .043 .023 .119 .035

W Bias -.018 -.015 -.008 -.005 -.022 .001
ESE 1.218 1.141 .072 .053 .269 .110

MASE(s) .240 .119 .037 .020 .101 .030

MASE(w) .245 .121 .040 .026 .270 .070

1000 S Bias .000 .000 -.005 -.004 -.010 -.002
ESE .173 .158 .026 .021 .072 .030

MASE(s) .204 .099 .031 .016 .085 .025

MASE(w) .216 .105 .031 .016 .084 .025

W Bias .003 .004 -.008 -.005 -.015 .004
ESE .157 .144 .055 .041 .222 .089

MASE(s) .184 .091 .028 .015 .077 .023

MASE(w) .190 .094 .052 .023 .233 .061

2000 S Bias .002 .002 -.003 -.002 .000 -.001
ESE .116 .107 .019 .015 .049 .021

MASE(s) .146 .071 .022 .011 .060 .018

MASE(w) .151 .073 .021 .011 .060 .018

W Bias -.006 -.005 -.004 -.002 -.016 .004
ESE .113 .104 .044 .032 .170 .072

MASE(s) .139 .068 .021 .011 .057 .017

MASE(w) .143 .070 .042 .018 .192 .050

Table 2. Bias, Empirical Standard Error (ESE), Mean Asymptotic Standard Error under the assumption of a

strong noise (MASE(s)) and a weak noise (MASE(w)) of the QLS estimators of the PARMA2(1, 1) model (5.1)

with ~α = (0.05,−0.05, 0.8, 0.75,−0.5,−0.45)′, based on 1000 independent realisations for each series length NT .

For strong PARMA series, all the rejection frequencies with WS and WW are within two standard

errors of the corresponding nominal levels except one which is between 2 and 3 standard errors.

Therefore, the levels of both tests are well controlled, even with series of 500 observations. Also, the

power of both tests are almost identical. At least for this model, there is nothing to loose in applying

WW if we have doubts about the nature of the noise (strong or not).

When the noise is weak, the size of WS is out of control and considerably increases with NT . For

example, at the 5% level, it varies from 42.9% to 59.1% as NT increases. In contrast, the size of WW

decreases with NT and seems to converge to the true level. However, there is also a tendency to over
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reject even with NT = 2000. For example, at 5%, the empirical level is 9.9%. Under H1, we cannot

say which test is more powerful since the empirical levels of WS and WW are too far apart. However,

WW is clearly more powerful when the noise is strong than in the weak case.

This experiment illustrates the usefulness of the proposed estimator of the covariance structure of

the QLS estimators of PARMA parameters in presence of possibly dependent errors.

Nominal Level
Hypothesis NT Test Statistic Strong noise Weak noise

1 5 10 1 5 10

H0 500 WS 1.2 4.1 7.8 37.1 47.9 54.2
WW 1.5 5.0 8.4 9.7 18.9 25.3

1000 WS .6 4.3 9.5 41.7 51.9 57.8
WW .7 4.5 9.6 5.6 13.2 19.6

2000 WS .9 5.0 9.0 48.9 59.1 64.8
WW 1.1 5.0 8.8 3.1 9.9 16.2

H1 500 WS 6.9 21.9 34.4 53.0 66.2 73.9
WW 8.1 23.9 37.2 34.6 49.2 57.0

1000 WS 26.4 54.5 69.7 68.7 82.2 86.6
WW 26.8 54.0 69.8 34.3 51.8 62.4

2000 WS 78.3 95.4 98.5 87.3 93.8 95.9
WW 78.4 95.4 98.1 44.7 65.3 75.4

Table 3. Rejection frquencies (%) at the nominal levels 1, 5 and 10% of the Wald test for the null hypothesis

of non periodicity (H0) and for a fixed alternative (H1) under the assumption of a strong (WS) or a weak noise

(WW) based on 1000 independent realisations for each series length NT of PARMA2(1, 1) model (5.1). Under
H0, ~α = (0, 0, 0.8, 0.8,−0.5,−0.5)′ and under H1, ~α = (0.05,−0.05, 0.8, 0.75,−0.5,−0.45)′ .

6 Application to real data

In this section, we consider the daily returns of four European stock market indices: CAC 40 (Paris),

DAX (Frankfurt), FTSE 120 (London), for the period from January 7, 1991 to July 3, 2009, and the

index SMI (Swisserland), from November 12, 1990 to July 3, 2009. The number of observations varies

between 4674 and 4692. The data were obtained from Yahoo Finance. Standard models for such

financial series are weak white noises of the form rt = σtηt where rt is the log-return, {ηt} is an iid

noise with variance equal to 1, and σ2
t is the so-called volatility. For the GARCH-type models, σt is

a measurable function of {rs, s < t}.
In recent decades, many researchers addressed the question of day-of-the-week seasonality in stock

markets, see among other Franses and Paap (2000, 2004), Balaban et al. (2001), Bollerslev and Ghysels

(1996), Peiro (1994). Most of these studies focus on the description of day-of-the-week seasonality in
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returns and volatility. In particular, it was observed that in many stock markets, the Monday returns

are often lower than those of other days. In the finance literature, it is referred to as the Monday

effect.

In order to analyse the seasonality of these four European indices, we fitted the following simple

PAR5(1) model to each series:

rnT+ν = µν + φνrnT+ν−1 + ǫnT+ν, ν = 1, . . . , T = 5, (6.1)

where rt = 100ln(It/It−1) is the log-return multiplied by 100 and It is the value of the index at

time t. Because of the legal holidays, many weeks comprise less than five observations. However, we

cannot talk of missing values because these variables do not exist on those days. For that reason, we

preferred removing the entire weeks when there was less than five data available rather than estimating

the ”pseudo-missing” observations by an ad hoc method. The effective number of observations used

in the analysis is given in Table 5. For each index, Model (6.1) was used to test the hypothesis of

white noise (H01) and the hypothesis of non seasonality (H02). In terms of the parameters in (6.1),

these hypotheses correspond to

H01: µ1 = . . . = µ5, φ1 = . . . = φ5 = 0, and H02: µ1 = . . . = µ5, φ1 = . . . = φ5.

In Table 4, we present the p-values of the Wald test for H01 and H02 under both the assumptions of

a strong noise (WS) and a weak noise (WW). At the 5% significance level, the hypothesis of strong

noise is rejected for all indices except FTSE 120. On the other hand, the hypothesis of a weak noise is

rejected for the four indices. Since the class of strong noises is a subset of the class of weak noises, these

results show that the standard inference based on the assumption of a strong noise can be misleading.

For the hypothesis H02 of non seasonality, we get similar results. At the 5% level, WS rejects except

with FTSE 120 whilst WW rejects with the four indices.

The hypothesis of weak white noise being rejected, we present in Table 5 the estimated parameters

and their estimated standard error under the assumption of a weak noise. Unsurprisingly, all the

estimates are rather small and very few are significant, even at the 10% level. With CAC 40, φ̂5 is

significant at 5%, with DAX, µ̂1, φ̂3 and φ̂5 are significant at 10%, with SMI, φ̂5 is significant at 1%.

With FTSE 120, the smallest p-value 0.129 corresponds to φ̂3.

With respect to the means µ̂ν , even if they are all positive on Monday, we cannot really talk of a

global Monday effect since only one value (DAX) is significant. Wednesday seems a particularly bad

day with negative returns for the four indices.
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Index H01 H02

WS WW WS WW

CAC 40 .026 .005 .022 .013

DAX .013 .038 .009 .035

FTSE 120 .165 .001 .180 .014

SMI .001 .005 .002 .008

Table 4. p-values of the Wald test for the hypotheses H01 of

white noise and H02 of non seasonality on the daily returns of the

four indices, under the assumption of strong noise (WS) or a weak

noise (WW), based on Model (6.1).

Index CAC 40 DAX FTSE 120 SMI

NT 4165 4200 4165 4185

Day µ̂ν φ̂ν σ̂ν µ̂ν φ̂ν σ̂ν µ̂ν φ̂ν σ̂ν µ̂ν φ̂ν σ̂ν

Monday .045
(.056)

−.081
(.124)

1.91 .132c

(.072)
−.060
(.104)

2.06 .061
(.046)

−.042
(.072)

1.51 .038
(.050)

−.008
(.120)

1.66

Tuesday −.012
(.040)

−.045
(.029)

1.35 .013
(.039)

−.031
(.042)

1.41 .003
(.041)

−.056
(.037)

1.09 .000
(.037)

−.016
(.042)

1.13

Wednesday −.055
(.058)

−.055
(.036)

1.41 −.090
(.058)

−.066c

(.038)
1.43 −.071

(.050)
−.015
(.031)

1.12 −.038
(.044)

−.008
(.052)

1.14

Thursday .001
(.067)

−.008
(.067)

1.46 −.044
(.062)

−.008
(.072)

1.47 .004
(.043)

.002
(.088)

1.15 −.011
(.055)

.061
(.071)

1.24

Friday .021
(.042)

.092b

(.042)
1.35 −.010

(.043)
.086c

(.048)
1.38 .004

(.028)
.052
(.047)

1.18 .010
(.036)

.159a

(.040)
1.15

Table 5. QLS estimates and their estimated standard errors under the assumption of a weak white noise (in

parentheses) of Model (6.1) fitted to the daily returns of the four European stock market indices. a, b and c

respectively mean significant at the 1%, 5% and 10% levels.

The autoregressive coefficients φ̂ν which also represent the correlation between today returns and

those of yesterday, are all negative on Monday, Tuesday and Wednesday but they are all positive on

Friday. Furthermore, three of them are significant (CAC, DAX and SMI) on Friday. With these three

indices and the period considered, it is probably more appropriate to talk of a Friday effect rather

than a Monday effect.

Finally, perusal of the estimated noise standard deviations shows that for the four indices, the

volatility is considerably greater on Monday and for the other days, it is smaller and almost constant.

A comparison of the four indices indicates that CAC and DAX are systematically more volatile over

the five days of the week than the other two.
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7 Conclusion

In this work, we have established under mild assumptions, the almost sure consistency and the asymp-

totic normality of the weighted least squares estimators for invertible and causal PARMA models with

dependent but uncorrelated errors. Our results extend Theorem 3.1 of Basawa and Lund (2001) for

PARMA models with independent errors. The asymptotic covariance matrix of WLS estimators ob-

tained under independent errors is generally different from the one under dependent errors and the

difference may be huge with some types of dependence. The standard procedures of estimation and

inference in PARMA models under the assumption of independent errors can be quite misleading when

analysing data from PARMA models with dependent errors.

The empirical results of Sections 5.2 and 6 illustrate the applicability of our theoretical results using

a consistent estimator of the covariance matrix of the QLS estimators of weak PARMA parameters.

In the model building process for weak PAR models, a global diagnostic checking procedure along the

lines of Francq et al. (2005) would be useful but it is beyond the scope of this paper. In contrast with

the strong PAR case, as described in McLeod (1994), the asymptotic covariance matrix of the QLS

estimators of a weak PAR model is no longer block diagonal with respect to seasons and depends on

the fourth-order moments of the noise process. The usual model selection criteria (AIC, BIC, ...) also

need to be studied thoroughly in the context of periodic models.

APPENDIX

The proofs of Theorems 3.1 and 3.2 are splitted in a series of lemmas. The strong consistency of

the LS estimators follows from Lemmas 1 to 10. The asymptotic normality is deduced from Lemma

11 to 14. In this appendix, the letters K, ∆ and M stand for generic positive constants that may

change from one place to another.

It will be shown in the sequel that working with the true errors ǫt(~α) rather than the truncated

ones (et(~α)) does not alter the asymptotic results and we will use the criterion

O~ω2

N (~α) =
1

N

N−1
∑

n=0

T
∑

ν=1

ω−2
ν ǫ2nT+ν(~α). (7.1)

instead of Q~ω2

N (~α) defined by (3.12).

Lemma 7.1 For any ~α ∈ Ω, let (Ci(~α))i∈N
be the sequence satisfying

ǫǫǫn(~α) =
∞
∑

i=0

Ci(~α)Xn−i.
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Then, there exists a constant K such that for all i ∈ N,

sup
~α∈Ωδ

‖Ci(~α)‖ ≤ KiTq∗
(

1

1 + δ

)i

.

Proof. Consider the case where q∗ = 0 and p∗ > 0. Let L = sup
i=0,...,p∗

sup
~α∈Ωδ

‖Ci(~α)‖ and put K =

L (1 + δ)p∗ . It is not difficult to show that

sup
~α∈Ωδ

‖Ci(~α)‖ ≤ K

(

1

1 + δ

)i

.

Now, consider the case q∗ > 0. Define the q∗T × 1 vectors

X̃n =













Xn

0T×1
...

0T×1













, ǫǫǫn(~α) =













ǫǫǫn(~α)
ǫǫǫn−1(~α)

...
ǫǫǫn−q∗+1(~α)













, en(~α) =













en(~α)
en−1(~α)

...
ǫǫǫn−q∗+1(~α)













, (7.2)

and the q∗T × q∗T companion matrices

Ai =













Θ−1
0 Φi 0T×T ... 0T×T

0T×T 0T×T ... 0T×T
...

. . . 0T×T

0T×T 0T×T ... 0T×T













, i = 1, ..., p∗,

D =



















−Θ−1
0 Θ1 −Θ−1

0 Θ2 · · · −Θ−1
0 Θq∗−1 −Θ−1

0 Θq∗

IT×T 0T×T · · · 0T×T 0T×T

0T×T IT×T
. . .

... 0T×T
...

. . .
. . . 0T×T 0T×T

0T×T · · · 0T×T IT×T 0T×T



















. (7.3)

It is easy to check that

A0X̃n +
p∗
∑

i=1

AiX̃n−i = ǫǫǫn(~α) −Dǫǫǫn−1(~α).

This implies that

ǫǫǫn(~α) =
∞
∑

j=0

Dj
(

A0X̃n−j +A1X̃n−j−1 + ...+Ap∗X̃n−j−p∗

)

=
∞
∑

i=0

C̃i(~α)X̃n−i,

where

C̃i(~α) =

min(i,p∗)
∑

j=0

Di−jAj . (7.4)

Again, using a multiplicative norm, it can be shown that there exists a constant K1 independent of ~α

such that

‖C̃i(~α)‖ ≤
p∗
∑

j=0

‖Di−j‖‖Aj‖ ≤ K1i
Tq∗

(

1

1 + δ

)i

.

The conclusion follow from the fact that Ci(~α) is the matrix in the first row and the first column of

the block matrix C̃i(~α).
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Lemma 7.2 We have

E

[

sup
~α∈Ωδ

ǫ2nT+ν(~α)

]

<∞.

Proof. From (3.3) and Lemma 7.1, there exists a constant K such that

sup
~α∈Ωδ

|ǫnT+ν(~α)| ≤ K
∞
∑

i=0

iTq∗
(

1

1 + δ

)i

|XnT+ν−i|.

Using the Cauchy criterion, it can be shown that the series
∞
∑

i=0

iTq∗
(

1

1 + δ

)i

|XnT+ν−i| converges in

mean squares. The result follows.

Lemma 7.3 Let ǫǫǫn(~α) as defined by (3.3). For any ~α ∈ Ω,

ǫǫǫn(~α) = ǫǫǫn(~α0) a.s. ⇒ ~α = ~α0.

Proof. Since the covariance matrix Σ0ǫ = Diag(σ2
01, ..., σ

2
0T ) is supposed to be strictly positive definite,

for any sequence of T × T real matrices (Ψi)i∈N
, we have that

∞
∑

i=0

ΨiXn−i = 0 a.s. ⇒ Ψi = 0, i ≥ 0.

Let ~α ∈ Ω, we have (see Lemma 7.1)

ǫǫǫn(~α) =
∞
∑

i=0

Ci(~α)Xn−i and ǫǫǫn(~α0) =
∞
∑

i=0

Ci(~α0)Xn−i.

Then,

ǫǫǫn(~α) − ǫǫǫn(~α0) = 0 a.s. ⇒
∞
∑

i=0

(Ci(~α) − Ci(~α0))Xn−i = 0 a.s.

⇒ Ci(~α) = Ci(~α0), i ≥ 0.

The conclusion hold by invoking the identifiability assumption.

Lemma 7.4 For any ~α ∈ Ω and any ~ω2 = (ω2
1, . . . , ω

2
T ) > 0, let

O~ω2

∞ (~α) =
T
∑

ν=1

ω−2
ν E

[

ǫ2ν(~α)
]

.

Then, for any ~α 6= ~α0, we have

O~ω2

∞ (~α0) =
T
∑

ν=1

σ2
0ν

ω2
ν

< O~ω2

∞ (~α).
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Proof. To ease the writing of the proof, we suppose without loss of generality that n = 0 in t = nT +ν.

It is clear that ǫν(~α)− ǫν(~α0) belongs to the Hilbert space HX(ν− 1). Therefore the linear innovation

ǫν(~α0) is not correlated with ǫν(~α) − ǫν(~α0). Thus

E

[

ǫ2ν(~α)
]

= E

[

(ǫν(~α) − ǫν(~α0) + ǫν(~α0))
2
]

= E

[

ǫ2ν(~α0)
]

+ E

[

(ǫν(~α) − ǫν(~α0))
2
]

+ 2Cov (ǫν(~α0), ǫν(~α) − ǫν(~α0))

= σ2
0ν + E

[

(ǫν(~α) − ǫν(~α0))
2
]

.

If ~α 6= ~α0, Lemma 7.3 implies that the second term in the right hand side of the last equality is strictly

positive for at least one ν ∈ {1, ..., T}. Therefore,

O~ω2

∞ (~α) =
T
∑

ν=1

1

ω2
ν

E

[

ǫ2ν(~α)
]

>
T
∑

ν=1

σ2
0ν

ω2
ν

if ~α 6= ~α0.

Lemma 7.5 For any ~α⋆ ∈ Ω, ~α⋆ 6= ~α0, and any ~ω2 > 0, there exists a neighbourhood V (~α⋆) of ~α⋆

such that V (~α⋆) ⊂ Ω and

lim inf
N→∞

inf
~α∈V (~α⋆)

O~ω2

N (~α) > lim
N→∞

O~ω2

N (~α0) =
T
∑

ν=1

σ2
0ν

ω2
ν

a.s.

where O~ω2

N (~α) is given by (7.1).

Proof. Let Vm(~α⋆) be the open sphere with centre ~α⋆ and radius 1
m . Let

Sm(n) = inf
~α∈Vm(~α⋆)∩Ω

T
∑

ν=1

ω−2
ν ǫ2nT+ν(~α).

The variable Sm(n) is measurable because it can be written as the inf over a dense countable

subset. Moreover, Sm(n) belongs to L1. The ergodic theorem applied to the stationary process

{Sm(n) : n ∈ Z} shows that almost surely

inf
~α∈Vm(~α⋆)∩Ω

O~ω2

N (~α) = inf
~α∈Vm(~α⋆)∩Ω

{ 1

N

T
∑

ν=1

ω−2
ν

N−1
∑

n=0

ǫ2nT+ν(~α)} ≥ 1

N

N−1
∑

n=0

Sm(n) −→
N→∞

E [Sm(0)] .

Since Sm(0) increases to
T
∑

ν=1

ω−2
ν ǫ2ν(~α

⋆) as m tends to infinity, by Lemma 7.4 and the monotone

convergence theorem, we obtain that

lim
m→∞

E [Sm(0)] =
T
∑

ν=1

ω−2
ν E

[

ǫ2ν(~α⋆)
]

= O~ω2

∞ (~α⋆) >
T
∑

ν=1

σ2
0ν

ω2
ν

.
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This implies that

lim inf
m→∞ lim inf

N→∞
inf

~α∈Vm(~α⋆)
O~ω2

N (~α) ≥ O~ω2

∞ (~α⋆) >
T
∑

ν=1

σ2
0ν

ω2
ν

,

and the result follows.

Lemma 7.6 Let ~ω2 = (ω2
1 , . . . , ω

2
T )′ be a vector of strictly positive constants, and let ~̂ω2 be a sequence

of random vectors such that ~̂ω2 → ~ω2 almost surely as N → ∞. For any ~α⋆ ∈ Ω, ~α⋆ 6= ~α0, there exists

a neighbourhood V (~α⋆) of ~α⋆ such that V (~α⋆) ⊂ Ω and

lim inf
N→∞

inf
~α∈V (~α⋆)

O~̂ω2

N (~α) > lim
N→∞

O~ω2

N (~α0) =
T
∑

ν=1

σ2
0ν

ω2
ν

a.s.

Proof. For any ε > 0, we have almost surely

max
ν=1,...,T

∣

∣

∣

∣

1

ω̂2
ν

− 1

ω2
ν

∣

∣

∣

∣

< ε

for N large enough. By the ergodic theorem and Lemma 7.2, we thus have

lim sup
N→∞

sup
~α∈Ω

∣

∣

∣O~̂ω2

N (~α) −O~ω2

N (~α)
∣

∣

∣ ≤ lim sup
N→∞

1

N

N−1
∑

n=0

T
∑

ν=1

∣

∣

∣

∣

1

ω̂2
ν

− 1

ω2
ν

∣

∣

∣

∣

sup
~α∈Ω

∣

∣

∣ǫ2nT+ν(~α)
∣

∣

∣

≤ ε
T
∑

ν=1

E sup
~α∈Ω

∣

∣

∣ǫ2ν(~α)
∣

∣

∣ .

Since the inequality holds for any ε > 0, we have

lim
N→∞

sup
~α∈Ω

∣

∣

∣O~̂ω2

N (~α) −O~ω2

N (~α)
∣

∣

∣ = 0 a.s..

In view of Lemma 7.5, the conclusion follows.

Lemma 7.7 Let ǫnT+ν(~α) given by (3.7) and enT+ν(~α) given by (3.8). Almost surely, there exist

K > 0 and ρ ∈ (0, 1) such that

sup
~α∈Ωδ

|ǫnT+ν(~α) − enT+ν(~α)| ≤ Kρn

for all ν ∈ {1, 2, ..., T} and all n ≥ 1.

Proof. For q∗ = 0, the result is obvious. Otherwise, consider and the q∗T × 1 vectors ǫǫǫn(~α), en(~α)

defined by (7.2) and the q∗T × q∗T companion matrix D given by (7.3). We have

ǫǫǫn(~α) − en(~α) = Dn−p∗
(

ǫǫǫp(~α) − ep(~α)
)

∀n > p∗. (7.5)
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Consider the Jordan decomposition D = PΛP−1, where the matrix Λ takes the form

Λ =













Λ1 0 ... 0
0 Λ2 ... 0
...

. . .

0 0 ... Λs













with Λh =

















λh 1 0 ... 0
0 λh 1 0
...

. . .
. . .

. . .

0 λh 1
0 0 ... 0 λh

















.

Using this decomposition, it can be shown that Dt = PΛtP−1 where Λt = Diag
(

Λt
1, ...,Λ

t
s

)

with

Λt
h =

























λt
h

(

t
1

)

λt−1
h ...

(

t
rh − 1

)

λt−rh+1
h

0 λt
h ...

(

t
rh − 2

)

λt−rh+2
i

...
. . .

0 0 ... λt
h

























.

Since the nonzero eigenvalues λi of D are equal to the inverse of the zeros of det {Θ(z)}, we have

max
h

|λh| ≤ 1
1+δ . Therefore, there exists a positive constant K independent of ~α such that

‖Dt‖ = ‖PΛtP−1‖ ≤ ‖P‖‖P−1‖‖Λt‖ ≤ KtTq∗
(

1

δ + 1

)t

(7.6)

where ‖.‖ stands for any multiplicative matrix norm. The conclusion follows from (7.5) and (7.6).

Lemma 7.8 Let Q~ω2

N (~α) given by (3.12) and O~ω2

N (~α) given by (7.1). For any constant ω > 0, we have

almost surely

sup
~ω2>ω

sup
~α∈Ωδ

|O~ω2

N (~α) −Q~ω2

N (~α)| = O(N−1) as N → ∞.

Proof. Using Lemma 7.7, we obtain that

N sup
~α∈Ωδ, ~ω2>ω

|O~ω2

N (~α) −Q~ω2

N (~α)|

= sup
~α∈Ωδ, ~ω2>ω

∣

∣

∣

∣

∣

T
∑

ν=1

ω−2
ν

N−1
∑

n=0

(

e2nT+ν(~α) − ǫ2nT+ν(~α)
)

∣

∣

∣

∣

∣

≤
T
∑

ν=1

ω−2 sup
~α∈Ωδ

∣

∣

∣

∣

∣

N−1
∑

n=0

(

e2nT+ν(~α) − ǫ2nT+ν(~α)
)

∣

∣

∣

∣

∣

=
T
∑

ν=1

ω−2 sup
~α∈Ωδ

∣

∣

∣

∣

∣

N−1
∑

n=0

(enT+ν(~α) − ǫnT+ν(~α))2 + 2ǫnT+ν(~α) (enT+ν(~α) − ǫnT+ν(~α))

∣

∣

∣

∣

∣

≤ K
T
∑

ν=1

N−1
∑

n=0

ρn

(

1 + sup
~α∈Ωδ

|ǫnT+ν(~α)|
)
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for K > 0 and ρ ∈ (0, 1). By Lemma 7.2 and the Beppo-Levy theorem, we have

E
∞
∑

n=0

ρn

(

1 + sup
~α∈Ωδ

|ǫnT+ν(~α)|
)

<∞.

Therefore, the series
∑∞

n=0 ρ
n

(

1 + sup
~α∈Ωδ

|ǫnT+ν(~α)|
)

converges almost surely, which completes the

proof.

Lemma 7.9 For any ~α⋆ ∈ Ω, ~α⋆ 6= ~α0, and any ~ω2 > 0, there exists a neighbourhood V (~α⋆) of ~α⋆

such that V (~α⋆) ⊂ Ω and

lim inf
N→∞

inf
~α∈V (~α⋆)

Q~ω2

N (~α) >
T
∑

ν=1

σ2
0ν

ω2
ν

a.s.

For any neighbourhood V (~α0) of ~α0,

lim sup
N→∞

inf
~α∈V (~α0)

Q~ω2

N (~α) ≤
T
∑

ν=1

σ2
0ν

ω2
ν

a.s.

Proof. Since V (~α⋆) can be chosen as being included in Ωδ for some δ > 0. We have

inf
~α∈V (~α⋆)

Q~ω2

N (~α) ≥ inf
~α∈V (~α⋆)

O~ω2

N (~α) − sup
~α∈Ωδ

|O~ω2

N (~α) −Q~ω2

N (~α)|

and

inf
~α∈V (~α0)

Q~ω2

N (~α) ≤ O~ω2

N (~α0) + sup
~α∈Ωδ

|O~ω2

N (~α) −Q~ω2

N (~α)|

The conclusion follows from Lemmas 7.5 and 7.8.

Lemma 7.10 Let ~ω2 = (ω2
1, . . . , ω

2
T )′ be a vector of strictly positive constants, and let ~̂ω2 be a sequence

of random vectors such that ~̂ω2 → ~ω2 almost surely as N → ∞. For any ~α⋆ ∈ Ω, ~α⋆ 6= ~α0, there exists

a neighbourhood V (~α⋆) of ~α⋆ such that V (~α⋆) ⊂ Ω and

lim inf
N→∞

inf
~α∈V (~α⋆)

Q~̂ω2

N (~α) >
T
∑

ν=1

σ2
0ν

ω2
ν

a.s.

For any neighbourhood V (~α0) of ~α0

lim sup
N→∞

inf
~α∈V (~α0)

Q~̂ω2

N (~α) ≤
T
∑

ν=1

σ2
0ν

ω2
ν

a.s.

Proof. The proof is the same as that of Lemma 7.9, referring to Lemma 7.6 instead of Lemma 7.5.

Proof of Theorem 3.1. Let V (~α0) be a neighbourhood of ~α0. Clearly Ωδ is covered by V (~α0) and

the union of all the V (~α⋆), ~α⋆ ∈ Ωδ−V (~α0) where V (~α⋆) is defined in Lemma 7.9. By the compactness
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of Ωδ, there exist ~α1, ..., ~αk such that Ωδ is covered by V (~α0), V (~α1), ..., V (~αk). Lemma 7.9 shows that,

almost surely,

inf
~α∈Ωδ

Q~ω2

N (~α) = min
i=0,1,...,k

inf
~α∈V (~αi)∩Ωδ

Q~ω2

N (~α) = inf
~α∈V (~α0)∩Ωδ

Q~ω2

N (~α)

for N large enough. Therefore, ~̂α
~ω2

WLS almost surely belongs to V (~α0) for N large enough. Since

V (~α0) can be arbitrarily small, ~̂α
~ω2

WLS → ~α0 almost surely as N → ∞. The OLS and GLS estimators

correspond to WLS estimators, for particular choices of the weights vector ~ω2. Thus the first three

consistencies of Theorem 3.1 are shown. Using Lemma 7.10, the previous arguments show that ~̂α
~̂σ2

WLS →
~α0 almost surely whenever ~̂σ2 → ~σ2

0 as N → ∞. It follows that the QLS estimator is also consistent.

�

Theorem 3.2 can be established using the following lemmas.

Lemma 7.11 For any ~α⋆ ∈ Ω, and any m ∈ {1, 2, ..., (p + q)T}, there exist absolutely summable

sequences (Ci(~α))i∈N
and (Cm,i(~α))i∈N

such that

ǫǫǫn(~α) =
∞
∑

i=0

Ci(~α)Xn−i and
∂ǫǫǫn(~α)

∂αm
=

∞
∑

i=0

Cm,i(~α)Xn−i. (7.7)

Moreover, there exist ρ ∈ (0, 1) and K ∈ [0,∞) such that, for all i ≥ 0,

sup
~α∈Ωδ

‖Ci(~α)‖ ≤ Kρi and sup
~α∈Ωδ

‖Cm,i(~α)‖ ≤ Kρi. (7.8)

Proof. For q∗ = 0, the result is obvious. Otherwise, we use arguments similar to those used to prove

Lemma 7.1. Indeed, as shown in Lemma 7.1, ǫǫǫn(~α) =
∞
∑

i=0

C̃i(~α)X̃n−i, where X̃n and ǫǫǫn(~α) are given

by (7.2) and C̃i(~α) =

min(i,p∗)
∑

j=0

Bi−jAj as in (7.4). Then,

∂ǫǫǫn(~α)

∂αm
=

∞
∑

i=0

∂C̃i(~α)

∂αm
X̃n−i,

and since,

ǫǫǫn(~α) =
∞
∑

i=0

L′
1C̃i(~α)L1Xn−i =

∞
∑

i=0

Ci(~α)Xn−i,

we have
∂ǫǫǫn(~α)

∂αm
=

∞
∑

i=0

L′
1

∂C̃i(~α)

∂αm
L1Xn−i =

∞
∑

i=0

Cm,i(~α)Xn−i,

where Ci(~α) = L′
1C̃i(~α)L1 and Ci,m(~α) = L′

1

∂C̃i(~α)

∂αm
L1 with L1 = (IT×T , 0T×T , ..., 0T×T )′.
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Also, from Lemma 7.1 there exists a positive constant K1 independent of ~α such that

sup
~α∈Ωδ

‖Ci(~α)‖ ≤ K1i
Tq∗

(

1

1 + δ

)i

≤ K1i
Tq∗

(

1

1 + (δ/2)

)i (1 + (δ/2)

1 + δ

)i

≤ Kρi.

where ρ =
1 + (δ/2)

1 + δ
∈ (0, 1) and K = K1max

i

{

iTq∗
(

1

1 + (δ/2)

)i
}

≤ K1e
−Tq∗

[

q∗T
log(1 + (δ/2))

]Tq∗

.

Now, consider the second inequality in (7.8). We have

∂C̃i(~α)

∂αm
=

min(i,p∗)
∑

j=0

{

∂Di−j

∂αm
Aj +Di−j ∂Aj

∂αm

}

and

sup
~α∈Ωδ

‖∂C̃i(~α)

∂αm
‖ ≤

min(i,p∗)
∑

j=0

{

‖∂D
i−j

∂αm
‖‖Aj‖ + ‖Di−j‖‖ ∂Aj

∂αm
‖
}

. (7.9)

Using the Jordan decomposition D = PΛP−1, we have

∂Dt

∂αm
=

∂P

∂αm
ΛtP−1 + P

∂Λt

∂αm
P−1 + PΛt ∂P

−1

∂αm
.

This implies that

‖ ∂D
t

∂αm
‖ ≤ ‖ ∂P

∂αm
‖‖Λt‖‖P−1‖ + ‖P‖‖ ∂Λt

∂αm
‖‖P−1‖ + ‖P‖‖Λt‖‖∂P

−1

∂αm
‖

with
∂Λt

∂αm
= Diag

(

∂Λt
1

∂αm
, ...,

∂Λt
s

∂αm

)

where

∂Λt
h

∂αm
=

∂λh

∂αm

























nλt−1
h

(

t
1

)

(t− 1)λt−2
h ...

(

t
rh − 1

)

(t− rh + 1)λt−rh

l

0 nλt−1
h ...

(

t
rh − 2

)

(t− rh + 2)λt−rh+1
h

...
. . .

0 0 ... tλt−1
h

























.

Since max
h

|λh| ≤
1

1 + δ
, there exists a positive constant K2 independent of ~α such that

‖ ∂D
t

∂αm
‖ ≤ K2t

Tq∗
(

1

δ + 1

)t

. (7.10)

¿From (7.6), (7.9) and (7.10), we obtain that

sup
~α∈Ωδ

‖Cm,i(~α)‖ ≤ K3i
q∗
(

1

1 + δ

)i

≤ K3i
Tq∗

(

1

1 + (δ/2)

)i (1 + (δ/2)

1 + δ

)i

≤ Kρi
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where ρ =
1 + (δ/2)

1 + δ
∈ (0, 1) and K = K3max

i

{

iTq∗
(

1

1 + (δ/2)

)i
}

≤ K3e
−Tq∗

[

q∗T
log(1 + (δ/2))

]Tq∗

.

Which completes the proof of Lemma 7.11.

Lemma 7.12 Let the assumptions of Theorem 2 be satisfied. For all ~α ∈ Ωδ and all ~ω2 > 0, the

matrix

I(~α, ~ω2) =
1

4
lim

N→∞
Var

(√
N
∂O~ω2

N (~α)

∂~α

)

exists.

Proof. Let the diagonal matrix Σω = Diag
(

~ω2
)

and

Yn =
∂ǫǫǫ′n(~α)

∂~α
Σ−1

ω ǫǫǫn(~α) =
T
∑

ν=1

ω−2
ν ǫnT+ν(~α)

∂ǫnT+ν(~α)

∂~α
.

The process {Yn} is strictly stationary and ergodic. Moreover,

1

4
Var

(√
N
∂O~ω2

N (~α)

∂~α

)

=
1

N

N−1
∑

n=0

N−1
∑

n′=0

Cov (Yn,Yn′) .

Denote by

IN(l,m) =
1

N

N−1
∑

n=0

N−1
∑

n′=0

Cov (Yn(l), Yn′(m)) =
1

N

N−1
∑

k=1−N

(N − |k|)c(k)

where

c(k) = Cov (Yn(l), Yn−k(m))

with

Yn(l) =
∂ǫǫǫ′n(~α)

∂αl
Σ−1

ω ǫǫǫn(~α) and Yn−k(m) =
∂ǫǫǫ′n−k(~α)

∂αm
Σ−1

ω ǫǫǫn−k(~α).

Suppose that k ≥ 0. From Lemma 7.11,

|c(k)| =

∣

∣

∣

∣

∣

∣

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

Cov
(

X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i,X
′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′

)

∣

∣

∣

∣

∣

∣

≤
∞
∑

i,j,i′,j′=0

∣

∣

∣Cov
(

X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i,X
′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′

)∣

∣

∣

≤ g1 + g2 + g3 + g4 + g5
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where

g1 =
∑

i>k/2

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

∣

∣

∣Cov
(

X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i,X
′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′

)∣

∣

∣ ,

g2 =
∑

i′>k/2

∞
∑

i=0

∞
∑

j=0

∞
∑

j′=0

∣

∣

∣Cov
(

X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i,X
′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′

)∣

∣

∣ ,

g3 =
∑

j>k/2

∞
∑

i=0

∞
∑

i′=0

∞
∑

j′=0

∣

∣

∣Cov
(

X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i,X
′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′

)∣

∣

∣ ,

g4 =
∑

j′>k/2

∞
∑

i=0

∞
∑

j=0

∞
∑

i′=0

∣

∣

∣Cov
(

X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i,X
′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′

)∣

∣

∣ ,

g5 =
∑

i≤k/2

∑

j≤k/2

∑

i′≤k/2

∑

j′≤k/2

∣

∣

∣Cov
(

X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i,X
′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′

)∣

∣

∣ .

By the Cauchy-Schwarz inequality, we obtain

g1 ≤
∑

i>k/2

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

{

E

[

(

X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i

)2
]

E

[

(

X′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′

)2
]}1/2

≤
∑

i>k/2

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=0

{

E

[

‖X′
n−j‖2‖C ′

l,j(~α)‖2‖Σ−1
ω ‖2‖Ci(~α)‖2‖Xn−i‖2

]

E

[

‖X′
n−k−j′‖2‖C ′

m,j′(~α)‖2‖Σ−1
ω ‖2‖Ci′(~α)‖2‖Xn−k−i′‖2

]}1/2

≤ E

[

‖Xn‖4
]

‖Σ−1
ω ‖2

∑

i>k/2

‖Ci(~α)‖
∞
∑

j=0

‖Cl,j(~α)‖
∞
∑

i′=0

‖Ci′(~α)‖
∞
∑

j′=0

‖Cm,j′(~α)‖

≤ M1

∑

i>k/2

‖Ci(~α)‖ ≤ ∆1ρ
k/2

for some positive constants M1 and ∆1. Using the same arguments we obtain that gi (i = 2, 3, 4) is

bounded by ∆iρ
k/2.

In the other hand, Davydov inequality (Davydov, 1968) implies that, there exists a positive con-

stant M5 such that

g5 ≤
∑

i≤k/2

∑

j≤k/2

∑

i′≤k/2

∑

j′≤k/2

M5‖X′
n−jC

′
l,j(~α)Σ−1

ω Ci(~α)Xn−i‖2+τ‖X′
n−k−j′C

′
m,j′(~α)Σ−1

ω Ci′(~α)Xn−k−i′‖2+τ

[

αX(min
{

k + i′ − j, k + j′ − j, k + i′ − i, k + j′ − i
}

)
]

τ
2+τ

≤ M [αX(k/2)]
τ

2+τ

for some positive constant M . Therefore, for k ≥ 0, there exist positive constants M and ∆ such that

|c(k)| ≤ ∆ρ|k|/2 +M [αX(k/2)]
τ

2+τ .
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A similar inequality hold for k < 0. Therefore

∞
∑

k=−∞
|c(k)| <∞.

Then, the dominated convergence theorem gives

IN (l,m) =
1

N

N−1
∑

k=1−N

(N − |k|)c(k) −→
N→∞

∞
∑

k=−∞
|c(k)|.

This implies that

I(~α, ~ω2) =
T
∑

ν=1

T
∑

ν′=1

ω−2
ν ω−2

ν′

∞
∑

k=−∞
E

[

(

ǫnT+ν(~α)

(

∂ǫnT+ν(~α)

∂~α

))

(

ǫ(n−k)T+ν′(~α)

(

∂ǫ(n−k)T+ν′(~α)

∂~α

))′]

exists. Which completes the proof of Lemma 7.12.

Lemma 7.13 Under the assumptions of Theorem 2, the random vector

√
N

(

∂Q~ω2

N (~α)

∂~α

)

~α=~α0

L→ N (0, 4I(~α0, ~ω
2)) as N → ∞.

Proof. In the PAR case, the proof is simple and follows from the central limit theorem for mixing

processes. The situation is more complicated in the PARMA case. First, note that we can show that

(

∂Q~ω2

N (~α)

∂~α

)

~α=~α0

−
(

∂O~ω2

N (~α)

∂~α

)

~α=~α0

= op(1).

Thus,

(

∂Q~ω2

N (~α)

∂~α

)

~α=~α0

and

(

∂O~ω2

N (~α)

∂~α

)

~α=~α0

have the same asymptotic distribution. Therefore, it

remains to show that
√
N

(

∂O~ω2

N (~α)

∂~α

)

~α=~α0

L→ N (0, 4I(~α0, ~ω
2)) as N → ∞. Moreover, note that

√
N

(

∂O~ω2

N (~α)

∂~α

)

=
2√
N

N−1
∑

n=0

Yn =
2√
N

N−1
∑

n=0

∂ǫǫǫ′n(~α)

∂~α
Σ−1

ω ǫǫǫn(~α)

=
2√
N

N−1
∑

n=0

∞
∑

j=0

(

Id × X′
n−j

)

Ej(~α)Σ−1
ω

∞
∑

i=0

Ci(~α)Xn−i

where d = T (p + q) and Ej(~α) = (C1,j(~α), ..., Cl,j(~α), ..., Cd,j(~α))′. Since

(

∂ǫnT+ν(~α)

∂~α

)

~α=~α0

belongs

to the Hilbert space HX(nT + ν − 1), the random variables ǫnT+ν(~α0) and

(

∂ǫnT+ν(~α)

∂~α

)

~α=~α0

are

orthogonal and it is easy to verify that E

[√
N

(

∂O~ω2

N (~α)

∂~α

)

~α=~α0

]

= 0.
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Now, for any positive integer r, we have

√
N

(

∂O~ω2

N (~α)

∂~α

)

~α=~α0

=
2√
N

N−1
∑

n=0

(Yn,r − E [Yn,r]) +
2√
N

N−1
∑

n=0

(Zn,r − E [Zn,r])

where

Zn,r = Un,r + Vn,r

Un,r =
∞
∑

i=r+1

∞
∑

j=0

(

Id × X′
n−j

)

Ej(~α0)Σ
−1
ω Ci(~α0)Xn−i

Vn,r =
r
∑

i=0

∞
∑

j=r+1

(

Id × X′
n−j

)

Ej(~α0)Σ
−1
ω Ci(~α0)Xn−i

and

Yn,r =
r
∑

i=0

r
∑

j=0

(

Id × X′
n−j

)

Ej(~α0)Σ
−1
ω Ci(~α0)Xn−i.

Note that Yn,r is function of a finite number of values of the process {Xn}. Therefore, the process

(Yn,r)n∈Z
satisfies the strong mixing condition in Assumption (A3). The central limit theorem for

strong mixing processes (Ibragimov, 1962) implies that

1√
N

N−1
∑

n=0

(Yn,r − E [Yn,r]) −→
N→∞

N (0, Ĩr).

Moreover, Ĩr = lim
N→∞

Var
(

1√
N

∑N−1
n=0 (Yn,r − E [Yn,r])

)

−→
r→∞

I(~α0, ~ω
2)). The result follows from a

straightforward adaptation of Corollary 7.7.1 in Anderson (1971, page 426). Indeed, we have to show

that

E





1√
N

N−1
∑

n=0

(Zn,r − E [Zn,r])

(

1√
N

N−1
∑

n=0

(Zn,r − E [Zn,r])

)′

 −→
r→∞ 0, ∀N. (7.11)

For m ∈ {1, ..., T (p + q)}, we have

Var

(

1√
N

N−1
∑

n=0

Un,r(m)

)

=
1

N

N−1
∑

n=0

N−1
∑

n′=0

Cov
(

Un,r(m),Un′,r(m)
)

=
1

N

N−1
∑

h=1−N

(N−|h|)cr(h) ≤
∞
∑

h=−∞
|cr(h)|

where

cr(h) = Cov (Un,r(m),Un+h,r(m))

=
∞
∑

i=r+1

∞
∑

j=0

∞
∑

i′=r+1

∞
∑

j′=0

Cov
(

X′
n−jC

′
m,j(~α0)Σ

−1
ω Ci(~α0)Xn−i,X

′
n+h−j′C

′
m,j′(~α0)Σ

−1
ω Ci′(~α0)Xn+h−i′

)

.

Consider first the case h ≥ 0. For [h/2] ≥ r, using Cauchy-Schwarz inequality, we obtain that,

|cr(h)| ≤M1

∞
∑

i=r+1

‖Ci(~α0)‖
∞
∑

j=0

‖C ′
m,j(~α0)‖

∞
∑

i′=r+1

‖Ci′(~α0)‖
∞
∑

j′=0

‖C ′
m,j′(~α0)‖ ≤ ∆1ρ

r
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for some positive constants M1 and ∆1. For r < [h]/2, using the Cauchy-Schwarz inequality and

Davydov inequality, we get that,

|cr(h)| ≤
∞
∑

i=r+1

∞
∑

j=0

[h/2]−1
∑

i′=r+1

[h/2]−1
∑

j′=0

∣

∣

∣Cov
(

X′
n−jC

′
m,j(~α0)Σ

−1
ω Ci(~α0)Xn−i,X

′
n+h−j′C

′
m,j′(~α0)Σ

−1
ω Ci′(~α0)Xn+h−i′

)∣

∣

∣

+
∞
∑

i=r+1

∞
∑

j=0

∞
∑

i′=[h/2]

∞
∑

j′=0

∣

∣

∣Cov
(

X′
n−jC

′
m,j(~α0)Σ

−1
ω Ci(~α0)Xn−i,X

′
n+h−j′C

′
m,j′(~α0)Σ

−1
ω Ci′(~α0)Xn+h−i′

)∣

∣

∣

+
∞
∑

i=r+1

∞
∑

j=0

∞
∑

i′=0

∞
∑

j′=[h/2]

∣

∣

∣Cov
(

X′
n−jC

′
m,j(~α0)Σ

−1
ω Ci(~α0)Xn−i,X

′
n+h−j′C

′
m,j′(~α0)Σ

−1
ω Ci′(~α0)Xn+h−i′

)∣

∣

∣

≤ ∆2ρ
r
[

αX

([ |h|
2

])]

τ
2+τ

+M2ρ
rρ|h|/2

for some positive constants M2 and ∆2. The same inequality holds for h < 0. Therefore, there exists

a constant ∆ such that

∞
∑

h=−∞
|cr(h)| =

∑

|h|≤2r+1

|cr(h)| +
∑

|h|≥2(r+1)

|cr(h)| ≤ ∆rρr + ∆ρr + ∆ρr
∑

k

[αX(k)]
τ

2+τ −→
r→∞

0.

This implies that

sup
N

Var

(

1√
N

N−1
∑

n=0

Un,r(m)

)

−→
r→∞

0. (7.12)

In a similar way, it can be shown that

sup
N

Var

(

1√
N

N−1
∑

n=0

Vn,r(m)

)

−→
r→∞ 0. (7.13)

Finally, (7.11) follows from (7.12) and (7.13). Which completes the proof of Lemma 7.13.

Lemma 7.14 For all ~ω2 > 0, almost surely the matrix

J(~α0, ~ω
2) =

1

2
lim

N→∞

[(

∂2O~ω2

N (~α)

∂~α∂~α′

)

~α=~α0

]

exists and is strictly positive definite.

Proof. We can show that almost surely

∥

∥

∥

∥

∥

∂2ǫǫǫn(~α)

∂αl∂αm
− ∂2en(~α)

∂αl∂αm

∥

∥

∥

∥

∥

−→
N→∞

0. Therefore,

(

∂2Q~ω2

N (~α)

∂αl∂αm

)

~α=~α0

and

(

∂2O~ω2

N (~α)

∂αl∂αm

)

~α=~α0

have almost surely the same limit. As in Lemma 7.11, it can be shown that

there exists an absolutely summable sequence (Cl,m,i(~α))i∈N
such that

∂2ǫǫǫn(~α)

∂αl∂αm
=

∞
∑

i=0

Cl,m,i(~α)Xn−i.
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This implies that
∂2ǫǫǫn(~α)

∂αl∂αm
belongs to L2. In the other hand, we have

[(

∂2O~ω2

N (~α)

∂~α∂~α′

)

~α=~α0

]

= 2
T
∑

ν=1

ω−2
ν

1

N

N−1
∑

n=0

ǫnT+ν(~α0)

(

∂2ǫnT+ν(~α)

∂~α∂~α′

)

~α=~α0

+2
T
∑

ν=1

ω−2
ν

1

N

N−1
∑

n=0

(

∂ǫnT+ν(~α)

∂~α

)

~α=~α0

(

∂ǫnT+ν(~α)

∂~α

)′

~α=~α0

−→
N→∞

2
T
∑

ν=1

ω−2
ν E

[

ǫnT+ν(~α0)

(

∂2ǫnT+ν(~α)

∂~α∂~α′

)

~α=~α0

]

+2
T
∑

ν=1

ω−2
ν E

[

(

∂ǫnT+ν(~α)

∂~α

)

~α=~α0

(

∂ǫnT+ν(~α)

∂~α

)′

~α=~α0

]

.

Since

(

∂2ǫnT+ν(~α)

∂~α∂~α′

)

~α=~α0

belongs to the Hilbert space HX(nT+ν−1), the random variables ǫnT+ν(~α0)

and

(

∂2ǫnT+ν(~α)

∂~α∂~α′

)

~α=~α0

are orthogonal and the first term in the limit is zero. Therefore,

J(~α0, ~ω
2) =

T
∑

ν=1

ω−2
ν E

[

(

∂ǫnT+ν(~α)

∂~α

)

~α=~α0

(

∂ǫnT+ν(~α)

∂~α

)′

~α=~α0

]

.

Again, invoking the fact that ω2
1, ..., ω

2
T are all strictly positive and the identifiability Assumption

(A1), we can conclude that J(~α0, ~ω
2) is a strictly positive definite matrix.

Proof of Theorem 3.2. Consider the first-order Taylor expansion around ~α0, we obtain

0 =
√
N

(

∂Q~ω2

N (~α)

∂~α

)

~α=~̂αWLS

=
√
N

(

∂Q~ω2

N (~α)

∂~α

)

~α=~α0

+





(

∂2Q~ω2

N (~α)

∂αl∂αm

)

~α=~α⋆
N,l,m





√
N
(

~̂αWLS − ~α0

)

where ~α⋆
N,l,m is between ~̂αWLS and ~α0. Using again a Taylor expansion, we obtain

∣

∣

∣

∣

∣

∣

(

∂2Q~ω2

N (~α)

∂αl∂αm

)

~α=~α⋆
N,l,m

−
(

∂2Q~ω2

N (~α)

∂αl∂αm

)

~α=~α0

∣

∣

∣

∣

∣

∣

≤ sup
~α∈Ωδ

‖ ∂
∂~α

(

∂2Q~ω2

N (~α)

∂αl∂αm

)

‖‖~α⋆
N,l,m − ~α0‖

−→
N→∞

0 a.s..

This implies that, as N → ∞

√
N
(

~̂αWLS − ~α0

)

= −
[(

∂2Q~ω2

N (~α)

∂αl∂αm

)

~α=~α0

]−1 √
N

(

∂Q~ω2

N (~α)

∂~α

)

~α=~α0

+ op(1).

Lemmas 7.13 and 7.14 complete the proof of Theorem 3.2 for LS = WLS, and thus for LS = OLS and

LS = GLS. Finally, the asymptotic normality of the QLS estimator is obtained (i) by showing that an
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equivalent version of Lemma 7.8 can be obtained when O~ω2

N (~α) − Q~ω2

N (~α) is replaced by its first and

second order derivatives, and (ii) by noting that

√
N





∂O~̂σ2

N (~α)

∂~α
− ∂O

~σ2
0

N (~α)

∂~α





~α=~α0

=
T
∑

ν=1

(

1

σ̂2
ν

− 1

σ2
0ν

)

1√
N

N−1
∑

n=0

ǫnT+ν(α0)

(

∂ǫnT+ν

∂α

)

~α=~α0

= oP (1).
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Francq, C., and Zaköıan, J. M. (2009). Bartlett’s formula for a general class of nonlinear processes.

Journal of Time Series Analysis 30, 449-465.
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