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Abstract: The paper provides new sufficient conditions for 

consistent and coherent Bayesian inference when a model is 

invariant under some group of transformations. Building on 

our theoretical results we reexamine an example from Stone 

(1976) giving some new insights. The priors for multivariate 

normal models and Structural Vector AutoRegression models 

that entail consistent and coherent Bayesian inference are also 

discussed. 

 

 

 

I. INTRODUCTION 

This paper contributes to the line of research whose main goal is to determine 

conditions under which the Bayesian inference is not strongly inconsistent in Stone’s 

(1976) sense, coherent in de Finetti’s sense (Dutch book) or coherent in the sense of 

Heath and Sudderth (1978) (precise definition to be given later). Informally, when 

strong inconsistency or incoherence arises, an adoption of the frequency approach and 

Bayesian inference for the same model may result in very different and sometimes 

paradoxical conclusions. Although a Bayesian inference that corresponds to a 

posterior with a proper prior, which is a countable additive measure, is always 

coherent and not strongly inconsistent, an inference with improper prior need not be 

coherent and may be strongly inconsistent. Since improper priors are widely used, the 

problem is very serious. The literature on strong inconsistency and/or incoherence 

contains many interesting but also striking results. One of them concerns the use of 
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the Jeffreys’ prior when we have a sample of n  random variables , where 

 ( 2m ) and . For example, Eaton and Sudderth (1995), 

Eaton and Freedman (2004) showed that the Jeffreys’ prior in such a case (i.e. 

proportional to 

1, , ny y…
m

iy ∈ \ ≥ . . .iy i i d∼ (0, )N Σ

1
2( 1)| | m− +Σ ) leads to incoherent posteriors in the sense of Heath and 

Sudderth (1978), incoherent in de Finetti’s sense (Dutch book) and strongly 

inconsistent in the Stone’s (1976) sense. Moreover, Eaton and Sudderth (1993, 1998), 

Eaton and Freedman (2004) showed that predictive distributions in this model under 

the Jeffreys’ prior are incoherent in de Finetti’s sense, in the sense of Heath and 

Sudderth (1978) and strongly inconsistent in the Stone’s (1976) sense. Those 

conclusions are far–reaching and imply that incoherence may arise in basic models 

even with standard priors. It also suggests that the priors in Simultaneous Equations 

Models (SEM) or Vector AutoRegression (VAR) models that are proportional to 
1
2( 1)| | m− +Σ  are incoherent and strongly inconsistent. Unfortunately, the matters are 

even worse. Except Bernardo’s reference prior (see e.g. Yang and Berger (1994)), all 

non–informative priors for SEM or VAR models proposed in the literature have the 

form | , for some α  (see e.g. Drèze (1976), Zellner (1977), and entries 3–7 as 

listed in table 1 in Keyes and Levy (1996)). Perhaps surprisingly, Eaton and 

Sudderth (1998), Eaton (2008) showed that any prior in the form |  leads to 

incoherent and strongly inconsistent predictive distributions in multivariate normal 

model i.e. a coherent predictive distribution is built on the prior that can not be cast 

in the form | , for any α . We think the above claims make the concepts of 

strong inconsistency and incoherence very interesting research topic. 

|αΣ ∈ \

|αΣ

|αΣ ∈ \

In all considerations about strong inconsistency and incoherence special role is 

reserved for the prior induced by the right Haar invariant measure on a group that 

acts in a model (see section IV for formal statement)1. For reference, let us call such 

a prior the right Haar prior. It turns out that any predictive distribution that is not 

based on the right Haar prior is incoherent and strongly inconsistent, see e.g. Eaton 

and Sudderth (1998,1999), Eaton and Freedman (2004), Eaton (2008). Parallel 

results of Eaton and Sudderth (2002,2004) and Eaton and Freedman (2004) indicate 

that any Bayesian posterior that is not derived under the right Haar prior must be 

strongly inconsistent and incoherent. However the question whether the Bayesian 

posterior or predictive distribution derived under the right Haar prior is not strongly 

                                                 
1
 One may say ‘again’. It is remarkable in how many problems the right Haar invariant measure turns out to be 

really the “right” choice. For an incomplete survey see e.g. Helland (2004) and references therein. 
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inconsistent (i.e. consistent) or coherent, has no definite answer. Some further 

conditions are needed. 

One criterion for coherence of Bayesian posterior under the improper prior was 

given by Heath and Sudderth (1978). The posterior is coherent if the improper prior 

may be replaced with some finitely additive (proper) prior which gives the same 

posterior as that under the improper prior, see Heath and Sudderth (1978), or the 

posterior is approximable by proper prior, see Heath and Sudderth (1989). Neither 

criterion is easy to apply in practice. Some other coherency conditions are available in 

Lane and Sudderth (1983) but are suitable only when a parameter space or a sample 

space is compact. On the other hand Heath and Sudderth (1978) showed that when a 

parameter space is equal to a sample space (very unrealistic), a model belongs to the 

translation family and a group acting in the model is amenable2, a posterior derived 

under the right Haar prior is coherent. However, the results of Eaton and Sudderth 

(1998,1999,2002,2004) clearly suggest that the above assertion depends crucially on 

the amenability of a group, which appears as the essential sufficient condition for the 

coherent inference.  

Since the group of nonsingular matrices with matrix multiplication as a group 

composition (so–called the general linear group) is not amenable, we are in an 

uncomfortable position. It is so because such a group is the most natural group acting 

in the multivariate normal model with zero mean. However according to the available 

theory represented by Eaton and Sudderth (1998,1999,2002,2004), the lack of 

amenability implies that the right Haar prior in this case is strongly inconsistent. 

Essentially this is the reason why the Jeffreys’ prior in the multivariate normal model 

is condemned by those authors to strong inconsistency and incoherence. Our 

contribution is, to some extent, a partial re–validation of the Jeffreys’ prior. We 

provide an alternative sufficient condition, which does not refer to amenability, but 

guarantees that the right Haar prior leads to consistent and coherent Bayesian 

inference. By our criterion, the coherence of Bayesian inference may be preserved 

even though the group is not amenable. Since non–amenable groups are basic in all 

theoretical considerations (e.g. general linear group, affine group), our contribution 

has obvious merits. 

                                                 
2
 Amenability of a group is a rather technical notion. There are many equivalent definitions of the amenability see 

e.g. Bondar (1977), Heath and Sudderth (1978), Eaton and Sudderth (1999), Lehmann and Casella (1998), p. 422. 

More complete discussion is available in Bondar and Milnes (1981). We note that amenability of a group is 

precisely the condition for Hunt–Stein theorem, see e.g. Lehmann (1986), pp. 519–522. 
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II. NOTATION AND ASSUMPTIONS 

All results in our paper are restricted for invariant models with respect to 

some group of transformations. See e.g. Lehmann (1986), chapter 6, for the theory 

and our assumption 1 for the mathematical definition. By G  we will denote this 

underlying group acting in a model. Basic material on groups, group actions and 

other related notions (sufficient for our problem) may be found in Eaton (1989). By 

 we denote the identity element in a group G . We will extensively use the concepts 

of Haar measures and integrals. Traditional reference is Nachbin (1965), but Eaton 

(1989) and Wijsman (1990) are also useful. We will use the following unified 

notation, : the left Haar invariant measure on a group G ; : the right Haar 

invariant measure on a group G ; : a probability measure on a space S ; : a 

finite measure on a space S . In particular the Lebesgue measure on a space  

will be denoted as ( , where s . We shall denote σ –algebra of Borel subsets of 

a space  as . 

e

Gμ Gν

ηS λS
σ − S

)ds ∈ S

S SB

We will not differentiate between groups and its domain spaces. Thus 

 signifies both the general linear group with matrix 

multiplication as a group composition, and (seen as a space) the space of m m  

nonsingular matrices. Analogous remark relates to : the group (space) of m m  

lower triangular matrices with positive elements on the diagonal; and 

: the group (space) of orthogonal matrices 

(  is the identity matrix). Obviously, a group composition in  and 

 is the usual matrix multiplication. Lastly, a space of m  positive definite 

symmetric matrices will be denoted as . 

{ | det( )m m

mGL g g×= ∈ ≠\ 0}

I }m

Θ

) ( )gB Bλ χ λY Y

( | ) (p y dθ π
Θ

= ∫

×

mLT + ×

{ |m m

mO g g g gg× ′ ′= ∈ = =\

I : ( )m m m× mLT +

mO m×

mPD

Let Y  be a random variable (with realization y ) taking on values in  (a 

sample space). Let  be a family of probability measures on Y  

indexed by the parameter θ  i.e. a model. In the sequel, probability measure P  

will be also denoted as . We assume that  has a density  with 

respect to some dominating measure λ , which is relatively left invariant. That is 

, for all B , , where the notation gB  is explained in 

assumption 1 and  is the multiplier, see e.g. Wijsman (1990), pp. 127–

130. Moreover, let {  be a family of posterior distributions on Θ  

determined by a model  and a fixed σ finite prior measure . That is 

, for any B , where m y . 

Having measurable spaces ( ,  and ( , , we assume that the map  

Y

{ | }Pθ θ= ∈P

∈ Θ θ

( | )P θ⋅ Pθ ( | )p y θ

Y

( ) (g= ⋅ ∈ YB g G∈

:Gχ +→ \

| }y yΠ ∈ Y

P − π
1( ) [ ( )] ( | ) ( )y

B
B m y p y d

θ
θ π θ−

∈
Π = ⋅ ∫ Θ∈ B ( ) )θ

)ΘΘ B )YY B ( )yy BΠ6
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is measurable for each . We say that Bayesian inference is proper if 

, a.e. [λ ]. We shall call {  derived under specific , a Bayesian 

inference. Depending on situation,  will be also denoted as . 

−YB B Θ∈ B

( )m y <∞ Y | }y yΠ ∈ Y π

yΠ ( | )yΠ ⋅

We use the symbol “ ” to denote the abstract group operation on some sets. 

On the other hand the group composition will not be symbolically distinguished from 

the usual matrix operation e.g. g  but gh , for  (group) and  (set). 

With abuse of notation, but following Eaton (1989) and a large body of the 

literature, both an action of a group on  and its induced action on Θ  will be 

denoted as g  and g , respectively. With this in mind, the assumption that a 

model  is G invariant reads  

D

θD ,g h G∈ θ ∈ Θ

Y

yD θD

P −

 

Assumption 1 (model G –invariance):  for all g G , 

where B  and .  

( ) (gP Y gB P Y Bθ θ∈ = ∈D )

}

1θ

θ

∈

∈ YB { |gB g y y B= ∈D

 

We say that G  acts transitively on Θ  if for each  there is a g G  

such that . In other words, transitivity means that given , every 

 can be represented as , for some g G . 

1 2,θ θ ∈ Θ ∈

2 gθ = D 0θ ∈ Θ

θ ∈ Θ 0gθ = D ∈

 

Assumption 2 (transitivity): G  acts transitively on Θ . 

 

Assumption 2 is restrictive. It holds only in very simple models (like the 

multivariate normal model with unknown mean and covariance), but more 

complicated models including VAR or SEM violate this assumption. However 

transitivity is assumed (literally) in all works cited in the references in the similar 

context. Otherwise, it appears to be difficult to obtain sharp theoretical results. 

Define the stabilizer Sta , for each s . In fact, 

the stabilizer is a subgroup of G . When ,  , we say that a group 

 acts freely on S . 

b { | }s g G g s s G= ∈ = ⊆D ∈ S

Stab { }s e= ∀ s ∈ S

G

 

Assumption 3 (G  freeness): Stab ;  θ . −Θ { }eθ = ∀ ∈ Θ

 

Assumption 4 (G  freeness): Stab ;  y . −Y { }y e= ∀ ∈ Y
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Assumption 3 may be violated even in basic models. For example in the 

multivariate normal model with mean 0 and unknown covariance that was explicitly 

mentioned in section I, when the underlying group is . However there are models 

for which assumption 3 is fulfilled, see section VI. Sometimes, whether the 

assumption holds or not may be a matter of the clever reparameterization of the 

original model. For instance, if instead of the parameterization of the normal model 

from section I we use an alternative model , for , where  

(m ),  and , then the G  freeness assumption is 

satisfied (provided that ).  

mGL

iy θε= i n

2

W

1, ,i = … m

iy ∈ \

≥ mLTθ +∈ . . .i i i dε ∼ (0, I )mN −Θ

mG LT +=

Assumption 4 holds in standard cases before making a sufficiency reduction of 

the sample space (with possibility that we exclude some “singular” points of zero 

measure from the sample space). See e.g. Bondar (1976), Chang and Eaves (1990) for 

some clarifying discussion. We note that assumption 4 appears under the label “FP” 

in Eaton and Sudderth (1999) and “unitary” in Fraser (1968), p. 49.  

In general there is a possibility to weaken assumptions 3 and 4 by requiring 

that both , for each y , and Sta , for each , are compact subgroups 

of , see e.g. Eaton and Sudderth (2002). However in such a case our lucid 

framework would be lost. In fact assumptions 3 and 4 are critical for our proof 

method of the main theorem. 

Staby ∈ Y bθ θ ∈ Θ

G

Let  be a space of some cross section on . That is W is a subset of Y  

that intersects each orbit of Y  in exactly one point

W Y
3. In other words, a cross section 

is in one–to–one correspondence with the orbit space, see e.g. Wijsman (1986,1990). 

It follows that  is also a space of maximal invariant, see e.g. Eaton (1989), p. 28, 

for definition of the maximal invariant. From assumption 4 it follows that the sample 

space is subject to the following factorization 

W

 

G= ×Y           (1) 

 

Hence there is a bijection , g G , , and a group G  acts on G  

according to the rule 

( , )y g w↔ ∈ w ∈W ×W

( , ) : ( , )g g w gg w=D , for every g G∈  (see e.g. Wijsman 

(1986,1990)). 

                                                 

⊆3 The orbit of  is defined as , for each . Y : { | }Gy g y g G= ∈D Y y ∈ Y
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Since we shall work with measures we must ensure that there is a one–to–one 

correspondence between Borel subsets in  and those in G  (i.e. 

bimeasurability) 

Y ×W

 

Regularity condition (RC):  

a) Let Y  and Θ  be complete separable metric locally compact topological 

spaces (i.e. Polish and locally compact). Moreover, let G  be Polish locally compact 

topological group acting continuously on both  and Θ . Y

b) For each y  define the set . Let the bijective map 

,  be a homeomorphism i.e.  and  are continuous. 

∈ Y : { | }Gy g y g G= ∈D

: { }y G Gyγ × → ( )y g gγ = D y

)

θ

)

Gp w g p g wθ χ θ μ∗= ⋅

yγ
1

yγ
−

 

By RC, it is meaningful to state the next assumption 

 

Assumption 5: A model P is dominated by a product measure  

(remember that we employ our unified notation for measures). 

Gμ η⊗ W

 

The density with respect to  corresponding to  will be denoted as 

. 

Gμ η⊗ W Pθ

( , | )p g w θ

Assumption 5 is very useful in our proof technique of the main theorem, yet it 

holds under our previous assumptions. In fact it can be proved. Here is an informal 

proof in the continuous case. Assume that a model is G invariant. Usually there 

exists a density  with respect to Lebesgue measure i.e. . 

Evidently, Lebesgue measure is relatively left invariant with multiplier  

i.e. , for every g  (just compute the Jacobian). By our RC and 

using Theorem 2 in Bondar (1976), if  is a density with respect to ( , then 

 is a density with respect to , where λ  is some –finite (in 

general not a probability) measure on W . But setting  

where 

−

( | )p y θ∗ ( ) ( | )( )P dy p y dyθ θ∗=

:Gχ +→ \

( ) ( )(d g y g dyχ=D G∈

( | )p y θ∗ )dy

( ) ( , | )g p g wχ ∗⋅ Gμ λ⊗ W W σ

( ) ( | ) (dw p w dwη θ λ=W W

( | ) ( ) ( , | ) ( )dg∫  we can easily verify that 

 is a density with respect to  as 

stipulated by assumption 5. In fact,  is a version of the conditional density 

of g  given w  (and θ ), so as 

( , | ) ( ) ( , | )/ ( | )p g w g p g w p wθ χ θ θ∗= ⋅ Gμ η⊗ W

( , | )p g w θ

 

( , | ) ( ) 1Gp g w dgθ μ =∫         (2) 
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Under assumption 5, the G invariance of a model implies that densities are 

subject to the following identity, see e.g. Zidek (1969) or Dawid et al. (1973) 

−

 

( , | ) ( , | )p g w p gg w gθ θ= D ;  a.e. [ ], for each Gμ η⊗ W g G∈   (3) 

 

III. STRONG INCONSISTENCY 

 Let a model  be fixed. Assume that Bayesian delivers the posterior  using 

some prior  (which may be such that  provided that  a.e. 

[λ ]). Formal definition of the strong inconsistency is as follows 

P yΠ

π ( )π Θ = ∞ ( )m y <∞

Y

 

Definition 1: A Bayesian inference i.e.  derived under specific π , 

is said to be strongly inconsistent (with a model ) iff there is a bounded, ( )–

measurable function  such that: 

{ | }y yΠ ∈ Y

P Θ×YB B

:φ ×Θ → \Y

inf ( , ) ( | ) sup ( , ) ( | )
y

y P dy y d y
θ

φ θ θ φ θ θ> Π∫ ∫  

 

Strong inconsistency is a very undesirable (finite sample) property first noticed 

by Stone (1976). His ideas were formalized in the form of definition 1 by Lane and 

Sudderth (1983). For interpretation, intuition and discussion see Heath and Sudderth 

(1978), Sudderth (1994), Eaton and Freedman (2004), Eaton and Sudderth (2004), 

Eaton (2008). Moreover, Eaton and Freedman (2004) proved that strong 

inconsistency (in our countably additive setup) is equivalent to de Finetti’s 

incoherence or existence of the Dutch book (that can be made against ). Thus 

throughout the paper we will use the terms “consistency” and “coherence” 

interchangeably. Overall, by the compelling arguments used in the above cited works, 

an avoidance of Bayesian inference that is strongly inconsistent should be 

recommended. 

yΠ

We say that the Bayesian inference is consistent with a model  (in short, 

consistent), or equivalently that the Bayesian inference is coherent, iff for every 

bounded, ( )–measurable function  we have 

P

Θ×YB B :φ ×Θ → \Y

 

inf ( , ) ( | ) sup ( , ) ( | )
y

y P dy y d y
θ

φ θ θ φ θ θ≤ Π∫ ∫      (4) 

 

 8



If  (and  is countably additive)( )π Θ <∞ π 4, the corresponding Bayesian inference is 

coherent, see e.g. Heath and Sudderth (1978). However the converse does not hold. 

There are coherent inferences which are based on improper prior: not every coherent 

inference may be derived from a proper (countably additive) prior see e.g. Lane and 

Sudderth (1983). The problem is to find a class of improper priors subject to some 

constraints on the inferential framework, which result in coherent Bayesian inference. 

This is the aim of our paper. To proceed further we only need the last assumption 

 

Assumption 6:  is G invariant i.e. , for 

every . 

:φ ×Θ → \Y − ( , ) ( ,g y g yφ θ φ=D D )θ

( ))B f Bπ ν −=

                                                

g G∈

 

Assumption 6 is crucial to obtain the main theorem. We note that it is not 

universally acceptable but was also adopted in Eaton and Sudderth (1999,2002). 

 

IV. A PRIOR INDUCED BY THE RIGHT HAAR INVARIANT MEASURE 

Being in our model setup (defined with our assumptions), we know that the 

only class of improper priors that may entail coherent inference is the prior induced 

by the right Haar invariant measure, see Eaton and Sudderth (2002,2004) and Eaton 

and Freedman (2004). To prepare the ground for the next section we should clarify 

the notion of this prior. If a group G  acts transitively and freely on a parameter 

space then there is a bijection between a group G  and a parameter space Θ . 

Intuitively, the parameter space is just a group (seen as a space). Since by our RC a) 

a group G  possesses a unique (up to a constant) right Haar invariant measure it is 

natural to find the induced measure on . To this end, let us define a continuous 

bijective function  defined as , where  may be chosen 

arbitrarily. If G  is second countable (e.g. a subspace of , which will usually be the 

case in applications) then by our RC a) it follows that  is a 

homeomorphism (see e.g. lemma 2.3.17 in Wijsman (1990)). In such a case we are in 

a position to define the induced measure (i.e. a prior) on . If  denotes the right 

Haar measure on G , the induced prior measure π  on Θ  is defined as 

, for all B . Then 

Θ

:f G → Θ 0( )f g g θ= D 0θ ∈Θ
n\

:f G → Θ

Θ Gν

1( ) : (G Θ∈ B

 

 
4
 The requirement of the countable additivity should be emphasized. Indeed, not every finitely additive (proper) 

prior has a posterior for a given model, see e.g. Heath and Sudderth (1989). 

 9



1 0
( )

( ) ( ) ( ) (G
g f B B

h g dg h d
θ

θ ν θ π θ
−∈ ∈

=∫ ∫D )

)

      (5) 

 

where h  is any integrable function, see e.g. Lehmann (1986), p. 43. We note that the 

induced prior measure  is the same for any  used in  mapping (see e.g. 

Lehmann and Casella (1998), pp. 249–250). In fact when a group G  acts transitively 

and freely on , then the only measure that is independent of the reference point  

is the right invariant Haar measure, see Villegas (1981). This constitutes the 

additional self–evident virtue of the right Haar invariant measure. Thus we may 

indifferently set  (this remark will be used in section VI). Putting  in 

(5) we have 

π 0θ ∈Θ f

Θ 0θ

0 eθ = B = Θ

 

0( ) ( ) ( ) (G
G
h g dg h dθ ν θ π θ

Θ
=∫ ∫D        (6) 

 

Then we say that the prior  is induced by the right Haar invariant measure. The 

formula (6) will prove essential in analytical integral manipulations. 

π

 

V. MAIN RESULT 

It is hard to talk about coherence in the case when the Bayesian inference is 

improper. One may say that propriety is a prerequisite of any Bayesian inference (not 

only a coherent one). The following lemma provides very useful property of the prior 

induced by the right Haar invariant measure. Namely, Bayesian inference derived 

under such a prior is proper 

 

Lemma (Bondar (1977)): Under assumptions 1, 2, 3, 4, 5 and RC: 

0( | ) ( )Gp y g dgθ ν < ∞∫ D  a.e. [ ]  λY

 

We are in a position to state the main result in our paper 

 

Theorem: Let a model  be given. Under assumptions 1, 2, 3, 4, 5, 6 and RC, 

the Bayesian inference derived under the prior induced by the right Haar invariant 

measure on G  is consistent with a model  (coherent). 

P

P

Proof: see appendix. 
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VI. STONE’S EXAMPLE 

It is inevitable in the context of our theorem to discuss the Stone’s (1976) 

example B. The reason is that this example, when superficially taken, may be 

considered as a counter–example to our theorem. In fact this example convinced 

many researchers that amenability of a group is needed to reach the coherence of 

Bayesian inference. We argue that this is not true. Instead what is crucial for 

coherence (consistency) of Bayesian inference (except the transitivity assumption) is 

the G  freeness assumption. −Θ

Stone (1976) in his example B considers the following model 

 

i iy uθ= ,          (7) 1,2.i =

 

where  is vector of observations and . Moreover,  is 

assumed to be nonsingular. Let us write . Then the data sampling 

density with respect to Lebesgue measure reads 

1 2( , )i i iy y y ′= 2(0, I )iu N∼ 2 2θ ×∈ \

1 2[ , ]y y y= ∈ Y

 

( | )p y kθ = ⋅ 2 1
2| | etr{ ( ) }yyθ − ′ ′− 1θθ −

⋅

y

= 2g GL∈

θ 2

      (8) 

 

where k  is a normalizing constant and et . As a natural group acting in 

the model (7) we take . Evidently, (7) is invariant with the action of 

 on the sample space defined as  and on the parameter space 

, . The prior induced by the right (= left) Haar invariant 

measure on  is . To see this, put  in (6) (  is the 

identity element in the group ) and note that  and 

 (see e.g. Eaton (1989), p. 9). In this case the posterior 

distribution of  is 

r : exp{ {}}tr=

2G GL= 2GL −

2GL :y g y g=6 D

:g gθ θ θ6 D

2GL ( )dπ θ = 2| | ( )dθ −
0 Ieθ = ≡ 2I

2GL :g e g=D 2I g=

2
( )GL dgν = 2| | ( )g dg−

θ

 

( | )d yθΠ ∝ 4 1
2| | etr{ ( ) }( )yy dθ θθ− ′ ′− 1 θ−       (9) 

 

Denote the posterior density with respect to Lebesgue measure as 

 

( | )p yθ ∝ 4 1
2| | etr{ ( ) }yyθ − ′ ′− 1θθ −        (10) 
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Now Stone uses a one–to–one decomposition , where  and . 

Inserting y  into (10) we get 

y TC= 2T LT +∈ mC O∈

TC=

 

( | , ) ( | )p T C p Tθ θ= ∝ 4 1
2| | etr{ ( ) }TTθ − ′ ′− 1θθ −

θ

    (11) 

 

Then Stone pretends that the model is  

 

11
1 221 22

0
[ , ]

y
y T u uy y θ⎡ ⎤≡ = =⎢ ⎥

⎣ ⎦
        (12) 

 

and argues that the prior for θ  induced by the right Haar invariant measure on  

leads to strong inconsistency of Bayesian inference. There are two closely related 

flaws in this reasoning. The first one was suggested in a comment on Stone’s article 

i.e. Pratt (1976). That is the model (7) is unidentified i.e. , for all 

. In a rejoinder, Stone (1976) comments on Pratt’s remark: “Pratt asks about 

the significance of the nonidentifiability of . I am sure it is what makes the example 

work”. In our opinion, this is only partially true. We believe that it is 

nonidentifiability together with unrecognizing the effect of changing the pattern of 

the data matrix y  (to the triangular one) that makes the example work. Let us 

clarify this claim. Leaving the nonidentifiability of θ  aside, when  it is no 

longer true that the natural group operating in the example is still . When the 

sample space is , the only group that preserves the pattern of the data is  

(or its subgroup). Hence we must assume that the model is invariant. Then 

nonidentifiability of  enters the scene. Essentially, being in our invariance 

framework, there is only way to deal with it. We should assume that , which 

makes the model identified. Then we arrive exactly at our setup i.e.  acts 

freely on the sample space and transitively and freely on the parameter space. In such 

a case the prior induced by the right Haar invariant measure on  (see below for 

an explicit formulation) makes the Bayesian inference consistent. This is ensured by 

our theorem. But it is so not because the group  is amenable (which is), but 

because its action on the parameter space is free. 

2GL

( | ) ( | )p y p y hθ =

mh O∈

θ

2y LT +∈

2GL

2LT +
2LT +

2LT + −

θ

2LTθ +∈

2G LT +=

2LT +

2LT +

When  we could alternatively parameterize the density  in 

terms of positive definite covariance , which is isomorphic to . Thus 

2LTθ +∈ ( | )p y θ

θθ′Σ = 2LTθ +∈

 

( | )p y kΣ = ⋅ 1 1
2| | etr{ }yy− ′Σ − Σ 1−       (13) 
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It may be useful to find the implied prior for Σ  from that for θ  (which in turn is 

induced by the right Haar invariant measure). Since it is of some interest we derive 

the prior in the general case where y m , hence . In 

order to satisfy the G  freeness assumption we must have n  and 

. Note that , where  are diagonal 

elements of  (see e.g. Eaton (1989), p. 17). The Jacobian from  to 

 is given by 

1: ( ) [ , , ]nn y y× = ∈… Y

⋅

mLTθ +∈

−Y m≥

rank( )y m= ( 1)

1
( ) ( )

m

m m i

iiLT i
dg g dgν +

− − +

=
=∏ iig

mg LT +∈ mLTθ +∈

mPDΣ ∈ ( 1)

1
( ) 2

mm m i

iii
J θ θ− − − +

=
→ Σ = ⋅ =∏

1
2[1 ]

1

mm

i=
2 | |i −− ⋅ Σ∏ 6 , where 

[1 ] : ( )i

jkσΣ =6 ;  (  is a leading principal submatrix of Σ  consisting 

the first i  rows and columns of Σ ). Then using results from section IV and by the 

usual integral transformation technique 

, 1, ,j k i= … [1 ]iΣ 6

 

0( | ) ( ) ( | ) ( )
m mLT LT

p y g dg p y g dgθ ν θ ν+ =∫ ∫D 0 +

Σ

)d

)

      (14) 

( | ) ( )
mLT

p y g dgν += ∫   [definition of the right Haar integral, see e.g. Eaton (1989), p. 7] 

( 1) [1 ] 1

1 1
( | ) ( ) ( | ) ( ) 2 ( | ) | | ( )

m
m m

m mm i m i

iiLT i iLT PD
p y d p y d p y dθ ν θ θ θ θ+

+

− − + − −

= =
≡ = ⋅ = Σ ⋅ Σ∏ ∏∫ ∫ ∫ 6

 

It follows that the prior for the covariance  (induced by the right Haar 

invariant measure on ) is 

mPDΣ ∈

mLT +

 
[1 ] 1

1
( ) | | (

m i

i
dπ −

=
Σ ∝ Σ Σ∏ 6        (15) 

 

When used in Stone’s example B and assuming , (15) can not lead to strong 

inconsistency. In particular, (15) is exactly the prior recommended by Eaton and 

Sudderth (2010), proposition 4.1, for an m variate normal model with mean 0 and 

covariance  (written in a more elegant form). The use of (15) makes Bayesian 

inference consistent with a multivariate normal model, yet as emphasized by Eaton 

and Sudderth (1998) and evident from (15), it can not be cast in the form 

, for any  ( ). Needless to say, staying within 

theoretical framework of Eaton and Sudderth (1998,1999,2002), the Jeffreys’ prior i.e. 

2LTθ +∈

−

Σ

( )dπ Σ ∝ | | (dαΣ Σ α ∈ \ 1m >

( )dπ Σ ∝
1
2( 1)| | (m

d
− +Σ )Σ , is prohibited being strongly inconsistent (incoherent). 

However as noted by Eaton and Sudderth (1999,2010) themselves, there is one 

conundrum connected with the above reasoning (which was also noticed much earlier 

by Stone (1965)). When one parameterizes the model (7) with , it becomes 2LTθ +∈
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only –invariant. In particular since permutation matrix does not belong to , 

the prior (15) is not invariant under the permutation of variables in the model. But 

this is an absolute minimum we require from the prior that possesses any attribute of 

invariance. Hence the prior (15) is consistent only with a model that is –

invariant. The reason why the available theory is helpless to resolve satisfactorily this 

puzzle is the fact that  is not amenable (for ) and amenability of a group 

is among the most important conditions to get the coherent inference. Since the 

amenability plays no role in our framework one may hope for some resolution. 

Indeed, this is the case. 

2LT +
2LT +

2LT +

mGL 1m >

We will demonstrate that standard Jeffreys’ prior for Σ  may be consistent and 

that nonidentifiability of a model has nothing to do with the consistency. Without 

loss of generality, consider a variant of the model (7) in the form 

 

i iy uβ = ,          (16) 1,2.i =

 

where  is nonsingular. Clearly, if juxtaposed with (7), we identify . 

Incidentally, (16) is the model considered by Villegas (1971) and more importantly a 

simplistic version of the Structural VAR (SVAR) model (with no lags). Since (16) 

accommodates the SVAR specification, from the economic standpoint, (16) is more 

natural parameterization than (7) is. The model (16) is still invariant with the 

same action on the sample space as in (7) but the (left) action of  on the 

parameter space is defined as , where . Of course (16) 

remains unidentified. Now the data sampling density with respect to Lebesgue 

measure reads 

2 2β ×∈ \ 1β θ−=

2GL −

2GL

1:gβ β β −=6 D g 2g GL∈

 

( | )p y kβ = ⋅ 2 1
2| | etr{ }yyβ ′ ′− β β

g

m

       (17) 

 

As before, let us consider the general case of (16) where 

, hence . Moreover, to have a free action of  

on the sample space we assume n  and . Since  

 (see e.g. Eaton (1989), p. 9), denoting W  we get 

1: ( ) [ , , ]ny m n y y× = ∈… Y mGLβ ∈ mGL

m≥ rank( )y m= ( )
mGL dgμ =

( )
mGL dgν= = | | ( )mg d− β β′=

 

0( | ) ( ) ( | ) ( )
mGL GLp y g dg p y g e dgβ ν ν=∫ ∫D D   [see section IV]  (18) 

1( | ) ( )
mGLp y g dgν−= ∫      [ , ] 1:g gβ β −=D Ime ≡
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( | ) ( )
mGLp y g dgμ= ∫       [see e.g. Nachbin (1965), p. 80] 

( | ) ( )
mGLp y dβ μ β≡ ∫  

21 1 1
2 2 2( 1)1

2( | ) | | ( ) [ ( )] ( | ) | | ( )
m m

m m mm
m

GL PD
p y d p y W W dWβ β β β π− −−′= = Γ ⋅∫ ∫ +  

 

where the last equality follows by noting that  is only a function of β β  and 

using Hsu lemma (see e.g. Anderson (2003), p. 539), where  denotes the 

multivariate gamma function i.e. 

( | )p y β ′

()mΓ ⋅
1
4 ( 1) 1

21
( ) ( )

mm m i
m i

a π − −
=

Γ = Γ −∏ a . Further, since the 

covariance matrix is equal to  i.e. , taking into account the Jacobian 

, we obtain 

1W − 1W −Σ =

( )J W → Σ = ( 1)| | m− +Σ

 
21

2 ( 1)1
2( | ) ( ) [ ( )] ( | ) | | ( )

m
m

m m
GL m

PD
p y d p y dβ μ β π − +−= Γ ⋅ Σ Σ∫ ∫

1
2 m Σ

β

  (19) 

 

The formulas (18) and (19) may be summarized as follows. The right Haar invariant 

measure on  in extension of (16) to m variate case, induces the left Haar 

invariant prior on the parameter space i.e. . The latter implies the 

Jeffreys’ prior 

mGL −

( )dπ β ∝ | | ( )m dβ −

( )dπ Σ ∝
1
2( 1)| | ( )m

d
− +Σ Σ  in an m variate normal model with mean 0 

and covariance Σ . More importantly, since the conditions of our theorem hold, both 

the prior  and the implied Jeffreys’ prior 

−

( )dπ β ∝ | | ( )m dβ − β ( )dπ Σ ∝
1
2( 1)| | (m

d
− +Σ Σ)

β

t T

)

                                                

, 

lead to coherent Bayesian inference5. Needless to say, in contrast to (15) both 

 and the implied Jeffreys’ prior are invariant with respect to 

permutation of the variables in a model. To the extent that the formal arguments for 

use of the Jeffreys’ prior in a multivariate model with zero mean and unknown 

covariance “justify” its adoption in general linear regressions, SEM and VAR models, 

our coherence arguments “justify” the use of the prior 

 in the general SVAR model 

( )dπ β ∝ | | ( )m dβ −

1( , , , )pdA dA dAπ ∝… 1| | ( )( ) ( )m

pA dA dA dA− …

 

1 1t t p t pAy Ay A y ε− −= + + +" ;      (20) 1, ,t = …

 

where ,  nonsingular,  and . m

ty ∈ \ : ( )A m m× : ( )iA m m× 1 2| , , (0, It t t my y Nε − − …∼

 

 

 
5 The assertion applies to a generalization of (16), when , . The corresponding 

priors for (16) proper are given by setting . 

1: ( ) [ , , ]ny m n y y× = ∈… Y mGLβ ∈

2m =

 15



VII. CONCLUSION 

We have established conditions which guarantee that Bayesian inference is 

consistent and coherent. In comparison with analogous conditions available in the 

literature we have replaced the technical requirement of the group amenability with 

more pleasant G  freeness assumption. In consequence our conditions allow us to 

cope with cases where the underlying group operating in a model is not amenable 

(e.g. a group of general nonsingular matrices). In this sense, our framework may be 

more useful in practice.  

−Θ

In the course of our analysis we reexamined the Stone’s (1976) example 

pointing to some flaws in his arguments. In the context of this example we 

encountered the prior for multivariate normal model recently proposed by Eaton and 

Sudderth (2010). The latter was given in more intuitive terms than in the original 

source. Lastly, we demonstrated that the Jeffreys’ prior in the multivariate normal 

model may be coherent. This last (seemingly innocent) conclusion is in fact quite new 

in the literature. We also proposed the prior for the Structural VAR models that 

result in the coherent inference. 

We think that attractiveness of our approach lies also in its simplicity. 

Compare the analogous framework in Eaton and Sudderth (1999,2002). Of course this 

happens at the cost of our restrictive G  freeness assumption. −Θ
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APPENDIX: 

We denote with a bar above those elements in integrals that are fixed with 

respect to the integration process. This will facilitate to keep track of the algebraic 

manipulations used below. We need to prove (4). To this end we have 

0 0

0

(( , ), ) ( , | ) ( )
( , ) ( | )

( , | ) ( )

G

G

g w g p g w g dg
y d y

p g w g dg

φ θ θ ν
φ θ θ

θ ν
Π =

∫
∫

∫
D D

D
  [by (6)] 

Note that the denominator exists by our lemma so that  is proper which means 

that 

yΠ

( , ) ( | )y d yφ θ θΠ <∫ ∞ . Continuing  

0 0

0

(( , ), ) ( , | ) ( )
( , ) ( | )

( , | ) ( )

G

G

g w g p g w g dg
y d y

p g w g dg

φ θ θ ν
φ θ θ

θ ν
Π =

∫
∫

∫
D D

D
 

1 1
0 0

1
0

(( , ), ) ( , | ) ( )

( , | ) ( )

G

G

g g w p g g w dg

p g g w dg

φ θ θ ν

θ ν

− −

−
=
∫

∫
   [by (3) and assumption 6] 

0 0

0

(( , ), ) ( , | ) ( )

( , | ) ( )

G

G

gg w p gg w dg

p gg w dg

φ θ θ μ

θ μ
=
∫

∫
   [see e.g. Nachbin (1965), p. 80] 

1
0 0

1
0

( ) (( , ), ) ( , | ) (

( ) ( , | ) ( )

G

G

g g w p g w

g p g w dg

φ θ θ μ

θ μ

−

−

Δ ⋅
=

Δ ⋅

∫
∫

)dg
  [see e.g. Eaton (1989), p. 7] 

0 0

0

(( , ), ) ( , | ) ( )

( , | ) ( )

G

G

g w p g w dg

p g w dg

φ θ θ μ

θ μ
=
∫

∫
 

In the next to last line,  denotes the right hand modulus of G , see e.g. 

Eaton (1989), p. 7. 

:G +Δ → \

By expression (2) 

0 0( , ) ( | ) (( , ), ) ( , | ) ( ) ( )Gy d y g w p g w dg f wφ θ θ φ θ θ μΠ = ≡∫ ∫  

From the latter we conclude ( , ) ( | )y d yφ θ θΠ∫  does not depend on g , hence 

0 0
,

sup ( , ) ( | ) sup (( , ), ) ( | , ) sup (( , ), ) ( , | ) ( )G
y g w w

y d y g w d g w g w p g w dφ θ θ φ θ θ φ θ θ μΠ = Π =∫ ∫ ∫ g

Since 

0 0( , ) ( | ) (( , ), ) ( , | ) ( ) ( )Gy P dy g w g p g w g dg dwφ θ θ φ θ θ μ η= =∫ ∫ D D W  

1 1
0 0(( , ), ) ( , | ) ( ) ( )Gg g w p g g w dg dwφ θ θ μ η− −= ∫ W   [by (3) and assumption 6] 

0 0(( , ), ) ( , | ) ( ) ( )Gg w p g w dg dwφ θ θ μ η= ∫ W    [see e.g. Eaton (1989), p. 6] 

0 0( , ) ( | )y P dyφ θ θ= ∫  

It follows that  does not depend on  (  was arbitrary). Thus ( , ) ( | )y P dyφ θ θ∫ θ 0θ
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0 0inf ( , ) ( | ) ( , ) ( | ) (( , ), ) ( , | ) ( ) ( )Gy P dy y P dy g w p g w dg dw
θ

φ θ θ φ θ θ φ θ θ μ η= =∫ ∫ ∫ W ≤

y

 

0 0 0 0{sup (( , ), ) ( , | ) ( )} ( ) sup (( , ), ) ( , | ) ( )G G
w w

g w p g w dg dw g w p g w dgφ θ θ μ η φ θ θ μ≤ ⋅ =∫ ∫ ∫W  

sup ( , ) ( | )
y

y dφ θ θ= Π∫      Q.E.D. 
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