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in econometric models, estimates of the asymptotic covariance matrix of
FIML coefficients are traditionally computed in several different ways:
with a generalized Jeast squares type matrix; using the Hessian of the
concentrated log-likelihood; using the outer product of the first
derivatives of the log-likelihoods; with some suitabie joint use of Hessian
and outer product. The different alternative estimators are asymptotically
equivalent in case of correct model's specification, but may produce large
differences in the numericsl application to small samples. The behaviour
of the different estimators of the covariance matrix in standordizing or
normalizing FIML estimated coefficients in the small samples is investigated
in this paper. Monte Carlo experiments are performed on several
small-medium size models, and some systematic behaviours are evidenced.
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1. INTRODUCTION

Great effort has been placed, and ts currently being placed in the
literature on the investigation of parameters’ estimators for simultaneous
equation systems. Analysis based on the joint use of analytical and
simulation methods seems quite useful for discriminating between
estimators with the same asymptotic properties, as is the case of 2StS
and LIML in the recent works by Anderson, Kunitomo and Sawa (1982).
and Morimune (1983). in any case, the fact that asymptotically
equivalent estimators may have quite different distributions for the sample
sizes occurring in practice is so well known that no model builder feels
anymore in trouble when noticing that coefficients obtained By applying
three stage least squares to his model may look quite different from those
obtained by full information maximum likelihood.

Let us now suppose that the model's structure and the length of the
available data allow for the application of some full information estimation
method, such as FIML, and that no problem of multiple maxima occurs in
the feasibility region, so that the model builder gets a univocal vector of
estimated coefficients whichever the starting’ point and whatever the
maximization algorithm he is using.

He will now submit his model to some more or less sophisticated
specification tests. In most cases he will start by testing coefficients one
by one trying to provide evidence against the zero value hypothesis, and
he will probably iterate from the introduction of slight changes in the
model's specification to the reestimation of parameters until he will find "t
ratios” greater than 2 for all the relevant coefficients. What will he use
to compute these "t ratios” or other test statistics? No doubt that he will
use the estimated asymptotic covariance matrix supplied by the computer
program avaitable to him and already used to get the estimate of

coefficients, in other words:
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(1) a generolized least squares type matrix, if maximization is performed
by iterating some suvitable generalized least squares or instrumental
variables algorithms, as in Dagenais (1978), or Hausman (1974);

(2) the inverse of the Hessian of the concentrated log-likelihood, if his
computer program is based on some Newton-like algorithm, like that of
Eisenpress and Greenstadt (1966);

(3) the inverse of the outer product of the first derivatives of the
log-likelihoods, if the program fakes advantage of Berndt, Hall, Hall
and Hausman's (1974) suggestions.

Although perfectly aware that these estimators of the coefficients

covariance matrix are equivalent only for large samples, he would

probably expect that even for his small sample the three groups of
results had to be sufficiently close to one another, specislly because the
three matrices would be in any case computed at the same point. The
numerical exemplification on a well known case study (Klein's model-1)

should convince that this may not be the case.

Table 1

A case study: Klein's model~1. FIML
estimates, hystorical data 1921-1941.

Asymptotic standard errors

Estimated
coeffic. (1) (2) . (3)
Equation 1 18.34 2.485 4,626 12.88
-.2324 .3120 . 3806 1.931
.3857 L2174 3017 1.083
.8018 .0359 .0445 .0842
Equation 2 27.26 7.938 9.53% 21.47
-.8010 .4914 . 8402 2.334
1.052 .3525 4244 1.404
-.1481 .0299 .0468 . 0992
Equation 3 5.7%4 1.804 3.241 4.645
.2341 .0488 .0950 .0953
.2847 .0452 .0629 L0617
.2348 .0345 . 0565 .0776

All the stangard errors (but one) computed from the outer product (3)
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are larger (double or even triple in several cases) than those computed
from the Hessian (2}, and the latter on their turn are all considerably
larger than those computed with the generalized feast squores type matrix
(1). If we perform a test based on the rough computation of the "t
ratios” for all coefficients, the hypothesis of zero coefficient could be
rejected for most of them if the standard errors had been computed with
the generalized least squares type matrix (1), but it could not be
rejected for most of them if the staﬁdard errors had been computed from
the outer product (3).

A result like this might be used to bring evidence against the
hypothesis of correct model's specification, as in White's test (1982} (see
also Hall, 1983). However, this is not necessarily so in the small sample
case. Even in case of exact model's specification (and of exact
specification of the disturbance process), as it is the case of an artificial
model in & Monte Cario experiment, it s quite frequent that we encounter
a phenomencn like the one just observed: for the sample sizes cccurring
in practice (and even for considerably longer samples) the signs of the.
differences already encountered are practically almost systematic. In
other words, standard errors computed from the outer product are almost
systematically larger than those computed from the Hessian, and the iatter
are, on their turn, almost systematically larger than those computed from
a generalized least squares type matrix.

The first purpose of this paper is, therefore, that of warning those
model builders whe are in the fortunate position of affording FIML
estimation: the choice of the estimator of the coefficients asymptotic
covariance matrix is not as neutral as it might be expected.

in principle each of the "t rotio” statistics should be investigated. so
to produce tables of percentiles for the different cases: the critical values
should not always be £2, but it should be chosen case by case from the

apprepriate smaill sample distribution. This would introduce additional
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burden into the already burdensome process of FIML estimation, and
model builders would probably continue in their habit of using *2 as the
critical values good for all circumstances. -

As a npatural alternative, and this is the second purpose of the paper,
one could try to investigate if one of the different estimators of the
covariance matrix could in some way be preferred to the others. In
particular a result quite useful for model builders would be to know which
of the estimators is best for standc;rdiZI'ng or normalizing the coefficient
est:mates, in such a way that one might reliably continue in using the
standard normal as a reference distribution for his test statistics (as is
for the “t ratio” in the linear regression model for the sample sizes

occurring in practice).

2. MAIN ASSUMPTIONS AND NOTATIONS

Although experimentations will be performed only on linear or
linearized models, in deriving the analytic expressions of the covariance
matrices we follow the general notation of: Amemiya (1977). It s
particularly useful in case of linearized models, since no explicit
linearization has to be prelimnarily done, but it proves to be quite useful
also for linear models, where the traditional notation, involving the use of
large sparse matrices, increases the risk of computer programming errors.
Reference to Amemiya's paper should also be done for detail on the
underlying assumptions. Let the simultaneous equation model be

represented as

(1) fl. (yt,xt,a/.) = U i=1,2,...,m; t=1,2,...,T

where y, is the mx7 vector of endogenous variables at time ¢, X, s the
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vector of exogenous variables at time t and a, is the vector of unknown
structural coefficients in the Ji-th equation. The mx! vector of random
error terms at time ¢, Ut:(”1t'u2t""’umt)l' is assumed to be
independently and identically distributed as N(0,%), with I completely
unknown, apart from being symmetric and positive definite. The complete
{nx7) wvector of unknown structural coefficients of the system will be
e

The log-likelihood of the t-th observation can be expressed as

L. P ,
indicated as « (07 ay.a

(2) L, = -1/2 log|x, = logiaf,Jay'| - 1/2 f,'17'f

t t

where ft:(f“,fn,...,fmt)’:ut and the Jacobian determinant |aft/3yt’| is
taken in absolute value. The unconcentrated log-likelihood of the whole

sample 1is

(3) Ly = %er

We define, for the i-th equation, git:afit/aai’ which is a column vector

with the same length as a;; we define also, for any / and j, the matrix

=22 ! J¥ G M [ 1 : I 3
gi/'t 3 fit/aal.aa/.. If i¥j, gi/'t is zero; it is zero‘also for /=] if the model is
ltnear in the coefficients (even if nonlinear in the variables). We note,
now, that 9it and Gije may be regarded as functions of Upr Xy and a,

under the standard assumption of a3 one-to-one correspondence between Uy

and V¢ Differentiating with respect to the coefficients of the i-th

eguation we get

— _ )
(%) aLt/aal. = ag/.t/au,.t g efi'o

S i /
(5) 3L, /(27) = 172 8 - 112 Fif,

where use has been made of ag,.t/auit:{agit/ayt')(aft/ayt')'f’, and o

represents the /i-th column of 2-7, and no restriction has been placed on
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L. Considering that Z_I is symmetric, differentiating with respect to its

{,j-th term we get

(6) 3Le/36' = 112 0, - 112 frfy (<2, 0f i#)).

Using ag,.jt/au;.t:(ag”t/ayt')(aft/ayt'),.'7, further differentiation of (4)

gives
(7) V1L f2a8a) = agylauy, - tagft/auit)(agjl;f/auft)
} gi,itftloi ) "ﬁg:‘tg;'tf
(8) 5L, /30 2a, = - gt
(9) 3?L,/20'ag, = - 9ief ¢
(10) ath/ao"faal. = gl
(11) 0L, /3030 = 0 if riioand rij
(12) 37L, /a0 ac™ = - 172 g (x2 if it})
[73) ath/aoffao"s = - 1/2 9O 1/2 GI'.SOF[': if rts [(x2 if i#f).

Under standard assumptiens, by egquating te zero the first order
derivatives of the unconcentrated log-likelihcod with respect to E_? (%),
and substituting back in (2) and (3). we get the concentrated

leg-likelihood function

; -7 1
= LT 1
{14) L ‘t_‘!og|aft/3yr, T/2 log|7 Et ftft"'

Differentiating L+ with respect to the coefficients of the /-th equation,

we hawve

(15)  atpise; = Lagy /vy - TCT 0l N X HIORL



FIML Covariance Matrix 9

which is equal to aLT/aa'., obtained from summing (4) over time, provided

that covariance parameters are replaced with their FIML estimates.
Further differentiation of (15), with respect to the structural

coefficients of equation j, gives the /i,j-th block of the Hessian matrix of

the concentrated log-likelihood

-1
(16) - aZQT/ao’.aal.' = - XY 3g

” i3+ T %gijtft,)( % fefe'd;

-1

LT g /3u) (g 0]+ TCE N0 (S g0y

’ -7 iy 7 U

‘ -1 ' ' -1 [
TS TS 8t ST (S 190

For models which are linear in the coefficients (even if nonlinear in the

variables), and its derivatives are zero, so that the first and third

gi/'t
term on the right hand side of equation (7) and the first two terms on
the right hand side of equation (16) vanish. Moreover, 9i¢ is nothing
but the vector of values, at time t, of the explanatory variables of the
i-th equation. Therefore. the numerical evaluation of all the above
equations requires only one order of differentiation, that is the
computation of derivatives of the explanatory endogenous variables in the
i-th and j-th equations with respect to the error terms of the same
equations; furthermore, since ag,.t/aul.t=(ag;t/ayt')(aftlayt’)’.-1, this
differentiation could even be performed analytically without any particular
difficulty. The use of equations (7-13) and (16) for the computation of
the Hessian matrices (unconcentrated and concentrated, respectively) is
therefore a sufficiently manageable matter even for medium-large models.
As far as our computational experience s concerned, their use with
numerical calculation of the first derivatives of the g;t's usually ensured

quite accurate results, while the rough second order numerical

differentiation of LT and 27— (which, on their turn, involve a further
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order of differentiation to calculate the Jacobian determinant) is well
known to produce inaccurate results at higher computational costs (see,
for example, Eisenpress and Greenstadt, 1966, p.860 and also the
discussion in Parke, 1982, p.94 on the difficulty of obtaining a positive
definite matrix from calculating the Hessian with numerical
differentiation).

The formulae given above can be used to build most of the matrices
used in this study, that is alt the matrices based on the Hessian of the
concentrated likelihood, the Hessian of the unconcentrated likelihood, and
the outer product of the first derivatives of the likelihoods. We still
need to introduce one more matrix, and a simple way of doing it is fo
follow Amemiya's instrumental variables approach.

Introducing the Txm matrix F, whose t,/-th element is fi(yt’xt'ai):uit’
and the matrix G, whose t-th row is g.'. then the wvector of first

derivatives (15) can be rewritten 3s

-1 P ; =1, -7
(17) aQT/aa’. = [T %(agit/aut )F! - G/.} F{T FF)I. .
We define, now,

2 _ -1 ,
(18) 6,6, -T F%(agit /ou,)

and build the block diagonal matrices G and &, whose m diagonal blocks

are Gi and éi’ respectively. Moreover, evaluating all terms at o, we
have

RN
(73) T 'F'F = ¢

To compute FIML estimates, we must solve the nonlinear system obtained
by equating to zero the gradient of the concentrated likelihood (17).

Equating (17) to zero, and combining all equations for i=7,2,...,m, we

gel
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(20) G5 e 1) vecF = 0

where the left hand side is a compact and computationally simple
expression of the gradient of the concentrated log-lokelihood.

A Taylor expansion of the gradient would give the usual Newton's
iterative procedure. An alternative procedure to get the maximum
likelihood estimate of a is obtained from a Taylor expansion of vecF as a
function of the coefficients wvector, a. The simple iterative method which

resulfs is

-k =T

(21) R L o

]® [YvecF.

® )] 1&nE”
A more convenient iterative method is obtained if the square matrix
which appears in brackeis on the right hand side of (21) is replaced by

the matrix

(22) R = [C(i e 1)C]

which has the advantage of being svmmetric and positive definite, and is
asymptotically equivalent to the previous one.

A forther simplification can be introduced into the above formulae if
the mode! is linear both in the wvariables and in the coefficients. In this

case, in fact, ag“/au}.r is no more time varying: if the model is

(23) Ay, + Bx, = u

t t t

then the vector agjt/au[.t, for any t. is made up of zeros [(corresponding
to the exogencous components of git) and of elements of Al
(corresponding to the endogencus components of git)' The endogenocus
elements of G would simply be the vaiues of the endogenous expianatory

variables computed from the simuitanecus solution of the system at each

iteration. Each iteration s, therefore, an iteration of Brundy and
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Jorgenson's (1871) full information instrumental variables method, as

shown in Hausman (1974). For tinear models we have also

(24) - plim T"1[EJZQ7-/E)<JE\G’]Go = plim T‘IC’(iq@ 1)G
T e T

thus ensuring that matrix R can consistently replace the Hessian in the

test of hypotheses on linear models. .

3. ESTIMATORS OFf THE ASYMPTOT(C COVARIANCE MATRIX

Using the formulae of the previous section, we can build several
estimators of the asymptotic covariance matrix. This can be done either
for the model's unknown structural coefficients only, or for all unknown
structural parameters, including the elements of the matrix 2_7. We may
1

stack the estimated coefficients a and the elements of the estimated I

into a column vector of estimated parameters

Toa 1

a

(25) P
-1
._veCE J

Since §-7 is symmetric, the vector p would contain couples of elements
equal to one another, corresponding to symmetric terms of i1 for modets
with more than one stochastic equation. Any estimator of the whole
information matrix would therefore be singular, as couples of rows (and
columns) related to symmetric elements of 2-7 would be equal.

1t is necessary to shorten properly the parameters vector p, we may
still use the notation of equation (23}, provided that vecf-’ 15 considered
as the vector obtained by stacking only the columns of the upper

triangular part of & I In this way, if we consider the whole vector of
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parameters p, its length is ntm(m+1)/2, n being the number of unknown
structural coefficients, and m the number of stochastic equations; the
whole information matrix (and the asymptotic covariance matrix) has
dimensions [n+*m(m+1)/2]x[n+m{m+1)/2]. In those cases in which the
asymptotic covariance matrix is related only to the structural coefficients,
dimensions of the matrix will be nxn.

We shall consider nine different estimators of the asymptotic covariance
matrix: six will be related to the \;ector of coefficients only, while three

will be related to the whole vector of structural parameters.

3.1. Generalized least squores type motrix

The inverse of matrix R, as given in equation (22), can be used as an
estimator of the asymptotic covariance matrix of the vector of estimated

1). it has

structural coefficients & (without the elements of matrix I
been used to compute the first column of standard errors in the example
of Table 1. Matrix R has the typical form of the matrix involved in
generalired least squores estimation processes, being & the block diagonal
matrix of observations, after cleaning explanatory endogenous variables of
their component correlated with the error process (eq.18). It is by far
the simplest to compute, among all traditioral estimators. Its expression
is also the most straightforward and natural estimator of the matrix R in
Rothenberg and Leenders (1964, p.67), and its inverse is the most
straightforward estimator of the lower bound for the asymptotic covariance
matrix of consistent estimators of the coefficients., as it is given in
Rothenberg (1973, p.67). Numerical exemplification of this estimator can
be found 1n Hendry {1871), and in Hausman (1974).

Consistency cof this estimator (under correct model’'s specification) is
ensured only for linear models. The equality (24). in fact, does not hold

for nonlinear models, even if linear in the coefficients; the /,j-th block of
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the matrix c“;'(i"@ 136 should be replaced by a more complicated

expression (see Amemiva, 1977, egs. 3.14 and 4.10)
_ ,,-1 ~
(26) Gi’(Z‘ ® ”Gi + f %(ag’.t/aujt){ag;t’/auft)]

o 3 (3g;/3u) 11 2 (39! 3]

Numerical examples related to nonlinear models, however, are not given in

this paper.
3.2. Hessian of the concentrated log-likelihood

Eguation (16) provides the 7,j-th block of the Hessian matrix of the
concentrated log-likelihood. As already cbserved, the first two terms on
the right hand side are identically zero for linear models (and even
models nonlinear in the wvariables, but the latter will not be considered in
this paper). If computation is performed, as we do, at the values of
coefficients a which maximize the likelihood, positive definiteness of this.
matrix is ensured.

lts inverse is one of the traditional estimators of the asymptotic
covariance matrix of the vector of estimated structural coefficients of the
model, & {without the elements of matrix E_I), and consistency is ensured
also for nonlinear models, under correct model's specification. Numerical
applications of this estimator are rather frequent in the literature; see for
example Chernoff and Divinsky (1953), and Klein (1969). This matrix
has been wused to compute the second column of standard errors in the

example of Table 1.
3.3. Hessian of the unconcentrated fog-fikelihood

Equations (7-13), with the minus sign and summed over the sample
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period, provide the elements or the blocks of the

[rmem(m+1)/2]x{n+m(m+1)/2] Hessian matrix of the unconcentrated

log-tikelihood
(27) - 82LT/3pap’ = - 2 ath/apap’
t
razLT/aaaa' azLT/aaa{vec)Z_;)’.'
32l /3 a0 32 -1 S
L T {vect ")iaa 3 LT/B(vecE Ja{vect "},

The inverse of the matrix (27), computed at the maximum likelihood point,

provides an estimator of the asymptotic covariance matrix of the whole

vector of estimated structural parameters of the model. Consistency is
ensured for linear and nonlinear models wunder correct model's
specification. Numerical applications of this estimator are quite rare in

the iiterature; an example is given in Calzolari (18833},

It must be recalled that, given the way in which the expression of T is
substituted into the likelihood te obtain the concentrated likelihood, the
first nxn block of the inverse of matrix (27) is equal to the inverse of
the Hessian of the concentrated likelihood discussed in section (3.2).
Therefore there is no difference between the two estimators as far as the
covartance matrix of coefficients is concerned, but only the inverse of
(27) can be used to estfmaté the asymptotic variances-covariances related

to the elements of E_I.

3.4. Quter product of the unconcentrated first derivatives

Equations (4-6} provide the first derivatives of the unconcentrated
log~likelihoods  with  respect to all the wnknown structural form
parameters. We may get an estimate the whole information matrix by

computing the outer product of the first derivatives
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(28) S (3L /ap)(aL,/ap’)
t

"(aL,/30) (3L, /3a") (aLt/aa)[aL(/a(vecz'7)'}‘
= 2
t

L[aLtla(vecZ_7)}(aLt/aa’) [aLt/a(vecz'7))[aLt/a(vecz"

Y1,
where all derivatives are computed at the value of o and I that maximize
the likelihood. We then invert the whole [n*m{m+1)/2]x[nem(m+1)/2]
matrix, obtaining an estimate of the covariance matrix of the whole vector
of estimated structural parameters, including coefficients and elements of
3‘.-’. The first nxn block of the inverse is an estimator of the asymptotic
covariance matrix of the structural coefficients g. Consistency is ensured
for linear and nonlinear models under correct model's specification.

We must notice that, even If we are interested in computing only the
nxn covariance matrix of the coefficients, here we build ancd invert the
whole [nem{m+1)/2]=<{n+m{m+1)/2] information matrix, and then use only
the first block of the inverse.

As a necessary condition for the invertibility of the whole matrix, the
sampie perijod length T should not be less than the total number of
structural parameters n+*m(m+*1)/2 (see, for example, Hatanaka, 1978,
p.333). This condition is more restrictive than the conditions which
ensure existence and positive definiteness of the Hessian or of matrix R,
and become more and rmore restrictive with the enlargement of model’s
dimensions, since the minimum length of the sample period increases
quadratically with the number of stochastic equations. This may be one
of the reasons which prevent from a large use of this estimator in
practice. Numerical exemplifications are, in fact, quite rare (see, for
example, Artus, Laroque and Michel, 1982,p.21). This matrmix has been
used to compute the third column of standard errors in the example of

Table 1.



FIML Covariagnce Matrix 17

3.5. Outer product of the concentrated first derivatives

The gradient of the concentrated log-likelihood, whose i-th subvector
aaT/aaI. is given In eguation (15), can be regarded as the sum of the T

terms

(291 3g;e/8u;, = Tg;f "N %ftft’)i-?'

each of which s equal to the corresponding derivative of the
unconcentrated log-likelihood {4) when both are computed at the maximum
likelihcod point. We can, therefore, indifferently use (29) or {4) to

compute the nxn outer product matrix as

(30) 771 3 (at saa)(eL f2a").
t

Berndt, Hall, Hall and Hausman (1974} propose the use of this matrix in
gradient algorithms to maximize the likelihood function.

We can also use the inverse of this matrix as an estimator of the
coefficients covariance matrix. The matrix is equal to the first block of
matrix (28), but inversion would provide numerical results generally
different from those obtained from the inversion of matrix {28), since the
(1,2) and (2,1) blocks of matrix (28) are generally different from zero.
Hatanaka (1978, pp.332 and 345) shows that, in the simultaneous
equations case, such a difference does not vanish asymptotically, so that
this estimator of the coefficients covariance matrix is in general
inconsistent. Our simulation results, however, show that in the small or
medium sizes of the samples usually occurring in practice (and even for
longer samples) the behaviour of this estimator is often better than the

behaviour of some other estimators, theoretically more appealing.
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3.6. Quasi maximum likelihood type matrices

In quasi moaximum likelihood estimation theory, the joint use of Hessian
and outer product is recommended as a strongly consistent estimator of
the asymptotic covariance matrix of model's parameters, even in cases of
misspecification (see White, 1982, and Gourieroux, Monfort and Trognon,
1982). If the model is correctly specified, this matrix would be
asymptotically equivalent to all thelother matrices discussed in section 3

(except 3.5, as already observed). The matrix is obtained as

(31) (-a’LT/apap’)'7[ 2 (aLt/ap)(aLt/ap')}(-azLT/apap')‘7
t

and is an estimator af the [n*m(m+71)}/2]x{N+*m(m+1)/2] covariance matrix
of all the model's parameters. |f we are (nterested in estimating the
covariance matrix only of the structural coefficients, we can compute only
the first nxn block of matrix (31).

Alternatively, we might use in the first and third term of (31) the nxn
Hessian of the concentrated likelihood, whose inverse is equal to the first'
block of the inverted Hessian of the unconcentrated likelihood. For the
intermediate term we can adopt the following method, which surely avoids
the inconsistency problems that might arise by simply using equation
(30}. We compute the outer product matrix of unconcentrated first
derivatives, invert the whole matrix, take the first nxn block of the
inverse, re-invert such an nxn matrix and use the result to replace the
intermediate outer product in (31). Under correct model’'s specification,
we get a3 different nxn consistent estimator of the coefficients covariance

matrix.
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4. DESIGN OF THE MONTE CARLO EXPERIMENTS

A wide set of Monte Carlo experiments has been performed con several
small-medium size models. The models, taken from the Iliterature,
maintain the structure of real world models.

For each model, we start from a given set of true parameters
(coefficients and covariance matrix of the structural disturbances, held
fixed over all the replications), We fix a sample period length and
generate random values of the exogenous variables over the sample
period. We use a multivariate normal generator, with given means and
covariance matrix (taken from the historical sample). The results,
however, should not be particulariy sensitive to the choice of the
distribution used to generate exogenous variazbles, provided that their
covariance matrix 1s finite. and in faect the results do not significantly
differ {from the ones obtained with fixed wvalues of the exogenous in all
the repiications (like those discussed in Calzolari and Panattoni, 1983).

Independently of the exogenous. we then generate random values of

the disturbance terms, u over the sample period. Obviously this

¢
distribution must be multivariate normal with’ zero mean and the given
covariance matrix. Values of the endogenous variables are finally
computed with stochastic simutation over the sample period.

We now perform a least squares estimation of the coefficients for all
the equations of the model, in such a way as to get a reasonably good
starting point for the maximization process. Then we perform the first
iterations of FIML wusing a gradient algorithm based on matrix R, which
usually proved to be computationally more efficient (see Calzolarl and
Panatten), 1983). Intermediate iteraticns are then made using 3 Newton
iike alaorithm based on the Hessian of the concentrated likelihood followed

by a search of the maximum in the chosen direction. The last iterations

are performed using Newten s method. Since the purpose of this paper is
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not to compare the computational efficiency of different maximization
algorithms, but to compare the behaviour of different estimators of the
covariance matrix, all computed at the same point, it seemed worthwhile to
ensure an extremely accurate computation of the maximum point by
choosing a very tight convergence criterion: 70_9 as a relative tolerance
on all coefficients.

! (the vector B)

Upon convergence we compute, at the values @ and I
which maximize the likelihood, all the covariance matrices discussed in
section 3. Six of these matrices have dimensions nxn and can be used to
standardize or normalize the vector of coefficients errors d-g (where o is
the wvector of true coefficients). The other three matrices have
dimensions [n*m(m+1)/2]x[ntm{m+1}/2] and can be used to standardize or
normalize the wvector of all structural parameters errors p-p (where p
includes g and the elements of Z_’). This is the last step of each Monte
Carlo replication.

For each model and for each sample period length we perform a few
hundred replications of the Monte Carlo process (500 for short and.
medium lengths of the sample periods, 200 for the longest cases),
obtaining six small sample distributions for reach of the standardized
coefficients, and three small sample distributions for each of the
standardized parameters. For each coefficient or parameter we may now
investigate how closely its standardized distributions approximates the
standard normal, or how fast it converges to the standard normal, when
the sample period length increases.

The number of distributions which should be examined becomes quickly
very large. For a small model like Klein-}, in fact, we have 6
distributions for each of the 12 structural coefficients, and 3 more
distributions for each of the 18 structural parameters. For a medium size
model, like Klein-Goldberger, there would be 6 distribulions for each of

the 54 coefficients, and 3 more distributions for each of the 190
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structural parameters. All these distributions must be re-examined for
several lengths of the sample period (and possibly for different choices of
the true structural parameters and of the distribution of the exogenous
variables). This would make the analysis extremely dispersive, or even
impossibfe in practice. We can make it feasible in two different ways.

We may select one or two parameters of interest and confine the
analysis to them, disregarding all the others. Alternatively, we can
combine all the coefficients errors, or parameters errors, into a single
random vartable, and examine how close the 9 small sample distributions
are to their asymptotic distribution, We have followed this second
approach.

Let ¥ be one of the nxn estimators of the coefficients covariance

matrix; then

(32) (6-0)' ¥ (5-a)

is asymptotically distributed as x? with n degrees of freedom.
Analogously, if ¢ is one of the [n*m(m*1)/2]x[n+m(m+1)/2] estimators of

the parameters covariance matrix, then

(33) (5-p) &7 (p-p)

is asymptotically distributed as x? with n+m(m+1}/2 degrees of freedom.
For each model and each sample period length, we get 6 distributions
to be compared with x’(n), and 3 distributions to be compared with
XZ[n*m(m‘?)/.?]‘ In the tables which follow, the six variables whose
distribution is asymptotically approximated by xz(n) will be indicated by
numbers 1-6 as follows.
V - In equation (32) the covariance matrix has been computed from the
generalyzed least squares type matrix R, as in section 3.1.

2 ~ The covariance matrix has been computed from the Hessian of the
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concentrated log-likelihood, as in section 3.2.

3 - The covariance matrix is the first nxn block of the inverse of the
outer product of the unconcentrated first derivatives, as in section
3.4.

4 - The covariance matrix has been computed from the outer products
of the concentrated first derivatives, as in section 3.5.

5 - The first nxn block of the [ntm{(m+1)/2]x{n+m{m+71)/2] quasi
maximum likelihood type matri-x {31) is used.

& - The Jiast wversion of quasi maximum likelihood type matrices
described in section 3.6 is used.

The three variabies whose distributions are asymptotically approximated

by xz[ ] will be indicated by numbers 7, 8 and 9, as follows.

nrm{m+i)/2

7 - The covariance matrix to be used in equation (33) has been
computed from the Hessian of the unconcentrated likelihood, as in
section 3.3.

8 - The outer preduct of unconcentrated first derivatives has been
used as in equation (28).

8 - The whole [n+m{m+13/2]x{n+m{m+1}/2] quasi maoximum Iikelihood

type matrix (31) has been used for computation of the covariance

matrix to be inserted into (33).

2. EXPERIMENTS ON SMALL-MEDIUM SIZE MODELS

Monte Carfo experiments have been perfoermed on five small linear
models and on a linearized medium size model.

Random data have been generated for several sample period tengths.
For each small linear model, the figures display results related to a
short, a medium lengtn and a relatively long sample period. Simulations

over longer sample periods are not reproduced, since most of the
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cumulative distributions collapse over the corresponding x? distribution.
However, simulations could not be done for sample periods shorter than
the total number of parameters given the singularity problems that would
arise for the outer product matrices, as observed in section 3.4. This
fact, and the computational problems arising from the joint use of medium
size models and long sample periods, limited the experiments with the
linearized medium size model to a couple of cases in which the sample
period was not many times longer than the total number of parameters.

All these results are summarized in the figures | to 17. Each set of
figures relevant to a given model is preceded by a table containing the
principal characteristics of the model, the bibliographic reference and the

model specification (this last has been omitted for the medium size model).

6. REMARKS ON SOME SYSTEMATIC BEHAVIOURS

Consistency of the estimators for the asymptotic covariance matrices
ensures that, increasing the sample period lengths, the cumulative
distributions in Figures 1-17 collapse over the corresponding x? curves.
This does not hold for distribution 4 (outer product of concentrated first
derivatives), as it is particularly evident from Figures 3, 6 and 17.
However, for sample periods not very much longer than the total number
of parameters, the outer product of concentrated derivatives {(distribution
4) behaves better than the guasi maximum likelihood type matrices
(distributions 5,6 and 9; see, for example, Figures 4, 11, 13 and 14).
Of course this does not touch the merits of these last matrices in the
very important case of misspecification.

For the smaller models, the outer product of unconcentrated
derivatives (distribution 3) seems to behave better than all the other

matrices. This is no more so for the larger models, but still seems to
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hold when all the structural parameters are considered (distribution 8).
However, since model builders are usually interested in tests related to
coefficients and rarely in the covariance parameters, our experiments do
not provide a univocal indication of superiority of one estimator over all
the others. This problem still needs further investigation.

Some other behaviours, which occur in all the experiments, might be
probably considered systematic.

First of all we notice that the' random variables obtained from the
generalized [least squares type matrices and from the Hessians have
distributions (1 and 2) rather close to one another, but when the two
curves are distinguishable, the latter curve is systematically on the left.
This means that matrix R tends to be larger (in matrix sense) than the
Hessian and therefore, after inversion, that the variances of coefficients
computed from matrix R tend to be smaller than those computed from the
Hessian. The fact that the two curves are rather close to each othar
suggests that the standard errors of coefficients, even if different, are
on the average not so different as they are for Klein-1 model with.
historical data (Table 1).

Both curves are systematically on the right of the x* distribution,
suggesting that both matrices provide estimates of the covariance matrix
which tend to be too small,

If we now extend the comparison to the outer product of the
unconcentrated first derivatives, we notice that the corresponding
distribution is further left shifted from the Hessian, both when oniy the
coefficients are considered (3), and when all the structural parameters
are considered (8). This suggests that the covariance matrix computed
from the outer product tends to be larger than that computed from the
Hessian. The former, when only coefficients are considered, gives a
curve (3) which is neither systematically on the left, nor systematically

2

on the right of the theoretical x? for all sample sizes, except for the
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largest models, for which it is systematically on the left (thus suggesting
that variances computed from the outer products tend to be too large).
The behavicur of the quasi moximum likefihood 4ype matrices is a
natural consequence of the behaviour of Hessian and outer product
matrices. Roughly speaking, if we look at equaticn (31) and remind that
the inverted Hessian tends to be smaller than the inverted ocuter product,
and that the outer product (not inverted) tends to be smalier than the
Hessian {(not inverted), as a result-of the product (31) we get a matrix
which tends to be even smaller than the inverted Hessian. The
corresponding curves (9, © and 9) are, therefore, expected to be right
shifted with respect to those obtained from the Hessian. The fact that

z

they are so much shifted and far from the theoretical x? is, however,

remarkabie and would be worthwhile further investigation.

6.1. Hessian versus generolired least sguares type matrix

The behaviour of the Hessian matrix when compared with the
generalized least squares type matrix R can be partially explained as
follows.

In case of the linear system (23). let

fnTo=-A B and il = ~A 75’ its FIML estimate
o= 7! thxt’ and M its probability limit
¢
(34) -
No= T ) xru{_’ with zero probability limit

i =77 Zutur' and I its probability limit.
t
The matrix Gi’ which consists of T rows and as many columns as the

number of explanatory variables in the i-th equation, can be obtained by

properly selecting columns of the matrix
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r y]: ; X1r 1 r X?" 1 r “1’ )l
}/2' ; X2' X2" UZI
(35) . - = . [1‘[! : ‘{] + . [Ai_y ; 0]
Yy s o xgt L Xyl LUt

and the matrix Ci’ of equation (18}, can be obtained from properly

selecting columns of the matrix

(36) . (1]

The /,j-th block of the matrix R can be obtained from properly selecting
rows (corresponding to the explanatory variables of equation /) and
columns (corresponding to the explanatory wvariables of equation j) of the

matrix

The formulas which follow become simpler if we avoid to represent
matrices like (37) in partitioned form. This can be simply accomplished
by properly augmenting the vector of endogencous variables of the system
with the inclusion of all variables which multiply structural coefficients in
any stochastic equation and that are either predetermined or functions of
endogenous variables. Such a representation of model (23) simply needs
the addition of definitional equations, and all the unknpown structural
coefficients become elements of the matrix A, while no unknown coefficient
appears any more in the matrix B. Since all explanatory variables on the
right hand side of any stochastic equation are, now. formally represented
as endogencus, we can drop the rightmost part of the partitioned matrices

(35) and (36}, whiie the whole matrix (37) can be represented as
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(38) T [fmirje

As above, we must select rows and columns of matrix (38) in order to
build the 7,j-th block of the matrix R. The /,j-th block of the Hessian of
the concentrated log-likelihood (16}, -azer/aafaai', calculated at the FIML
estimate of g, can be built starting from the last four terms on the right
hand side of equation (16) (the first two terms are zero in our case).
As above, for any i and j, we must select the same rows and columns of

the matrices which will be given below.

~ 3rd term of the concentrated Hessian:

7

(39) T A ;I.ff'ﬁ'"’}

where f’. and f’. are the i-th and j-th columns of the mxm unit matrix.

- 4th term of the concentrated Hessian:

7 ?Nfﬁr + A_?’E‘A?r—]l] af',"

(40) T oM - IRAT + A
- 5th term of the concentrated Hessian:

(47) - T (RNGIE N - fiNal AT

where use has been done of Ea’:f]. and 6"’f:."l.’.

- 6th term of the concentrated Hessian:

NATT . AT

2

=
*

=13

(42) - T (RN "R - ATT5A Ty S

When summing the matrices (39), {40}, (41) and (42), several terms

cancel;, we get
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-7 i

(43)  TRARS - TRRETTRRGY - TRRGIE AR AT AT s )
The first term of (43) is the matrix (38)}). The other terms, given the
presence in each of them of the matrix N, whose probability limit is zero,
asymptotically wvanish as expected. For small samples, however, the
second term of (43) contributes to make the resulting matrix smaller (in
the wswual matrix sense); in fact, if we build the entire matrix whose
i,j-th block is obtained from seleéting rows and columns of the second
term of (43), we would get, by defining an appropriate matrix Z, a
matrix of the form f’(i_?® 1}Z, that is positive semidefinite, and this
matrix should be subtracted from R. The last term of (43), in brackets,
has, however, a quite different behavior, Each block has, in fact, a
maximum rank equal to one, since the block is obtained as the product of
a column vector with a row vector. Moreover, several elements of the
matrix, made up of these blocks, would be zero if caliculated upon
convergence of the FIML estimation and in particular all the elements of
the diagenal blocks would be zero. This follows from considering that,.
from equation (20}, the subvector of the gradient, corresponding to the
coefficients of the Ji-th equation, could be obtained from properly
selecting elements from the wvector ﬁNaf; since this subvector is zero at
the optimum, the matrix in brackets on the right hand side of eguation
(43) is zero when 7=/

We must now invert R and -BZQT/aa‘.aal.’ to get two of the estimators of
the asvmptotic covariance matrix of structuratl coefficients. If the Hessian
were derived only from the first two terms of {43), the inverted Hessian
I

would be always greater than R Although this inequality is not exact,

given the presence of the last term in (43), it hoids in most cases.
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6.2. Outer product versus Hessian

The systematic behaviour of the Hessian matrix versus the outer
product of unconcentrated first derivatives has a simple explanation in a
particular single equation case. Let Ye be distributed as N(0,0?). We can

represent the model with the notation (1) as
(44) Yy 8 = uy
and the vector of unknown parameters as

(45)  p=la. o).

In this model g~ 1 for all t, and the sum of residuals is zero at the
maximum likelthood point. Therefore, from equations (27) and (6-13), it

follows that the Hessian of the unconcentrated log-likelihood is simply

(46} - a’LT/apap’
T3 0"
0 75472,

while the outer product of first derivatives of the unconcentrated

log-likelihoods becomes

(47) Z(aL[/ap)(aL(/ap')
t
T ? 3,1/
.t
. %‘at’/z (,tza;-r'ah)/qj'

Inverting the Hessian, we get &%/T as its element /,7. Inverting the

outer product, we get for its element 7,17
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(48)  [( Za,t-Te")u] /(T8 2( Z6,-Ta")/4 - ( Z0,°/2)%].
t ¢ t

If the sum over time of GU,’ is zero, we get 5/T as from the Hessian; if
this sum is not zero (as it can be for the small sample residuals), since
we are subtracting its square at the denominator, we get a value which is
smaller than 52/T.

Summarizing, the element 7,7 of the inverse of the outer product is
always greater or equal to the corresponding element of the inverted
Hessian. In other words, for the variance of &, we always get from the
outer product an estimate which is greater or equal to the estimate
computed from the Hessian,

The experimental results displayed in section 5 suggest that something
similar should hold also for systems of simultanecus eguations. Although
the sign of the inequality between variances does not occur in all the
Monte Cario replications, it occurs 1n a very high number of cases (from
90% to 100%. depending on the model and on the coefficient inside the
model ). Reminding that the random wvariable whose distribution is.

2 is obtained inverting the estimated

asymptotically aporoximated by ¥
covariance matrix, we get for such 3 variable 'smaller vatues when using
the outer product, and the corresponding curve (3) always appears on

the left of the Hessian curve (2).
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Table 2

Multiplier-accelerator model

Yi = 91¥3 T 9yYy -1 T 93 7 Uy

Yy T 0¥y ¥y ¢oq) FAYy g 96t

Yo

Y3 = ¥y P Yyt Xy

Number
Number
Number
Number

of
of
of
of

equations = 3.

stochastic eguations m = 2.

structural unknown coefficients n = 6.
structural unknown parameters n+*m{m+*71}/2 = §.

The meaning of the wvariables and an example with empirical data for the
U.S. economy (1949-1967) can be found in Dhrymes (1970, pp.533-334).

Fig.1. Multipiier-acceierator model. T7=20; n=6; ntm{m+1)/2=9.
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Fig.2. Multiplier-acceierator model. T=50; n=6; ntm(m+11}/2-9.
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To
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Fig.3. Multiplier-accelerator model. 7T=200; n=6; n+m{m+1)/2=9.



FIML Covarionce Matrix 33

Table 3

Klein-1 mode!

Oy 7 ay¥s * g5 e P aulyzreg) + ooy

95 ' O6Ys T O7Ys5 ¢y T 9gYE,e-1 T Y2

1oty >y xg) * 03y e1™X0 o177 1,010 T 912%;
Yyt ¥yt Xy T %)

Yy = Y3 T X

Ye,e-1 © Y2

+

Y3

Number of equations = 6.

Number of stochastic equations m = 3.

Number of structural unknown coefficieats n = 12,

Number of structural unknown parameters n-m(m+1)/2 = 18.

The meaning of the wvariables and emoirical data for the U.S. economy
1921-1941 can be found, for example, in Rothenberg (1973, ¢ch.5).

Fig.4. Klein-I model. T=30; n=12; n*m{m+1)/2=18.
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Fig.6. Klein-lI model.
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Fig.5. Klein-| model. 7T=700; n=12; n+m{m+71)/2=18.
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T=200; n=12; n+m(m+1}/2=18.
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Table 4

A model for consumption and price of food

Yy =Gy, T gy T azxy T Uy
Yy T ay¥y "G5 T dgXy fapXg U,

Number of equations = 2.

Number of stochastic equations m = 2.

Number of structural unknown coefficients n = 7.
Number of structural unknown parameters nrm{m+1)/2

5

10.

Model, wvariable names and a set of historical data for the U.S. economy
1922-1941 can be found in Kmenta (1971, pp.563-565).

0 ) 10 i5 20

Fig.7. Food consumption and price model. T7=20; n=7; a+m{m+1}/2=10.
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Fig.8. Food consumption and price model.
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T=50; n=7; n+m{m+1)/2=10.
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Fig.9. Food consumptiion and price model.

T=200; n=7; n+m{m+1)/2=10.
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Table 5
A model for the italian economy
Yy 7oy P aplygrxgrxy) toglygrxg) tooylyg gtxg poq) T
Yy 795 T GeYg 47 T Vs T OgYy 41 T )
Y3 T a9 P ayplyyty,) faggx, toug
Yy T 97y 7 Op3(yytye) * Oguys t G1eXs t OpeYy o T Uy
Ys = a5; 7 glyytyy s gtV pepd P09ty 1372V p0) U
Ye T Y7 T Yy T Xy T X3 T X
Y7 T Yyt Yy T ¥z T Xy T Xg P Xy
Number of equations = 7.
Number of stechastic equations m = 5.
Number of structural unknown coefficients n = 79.
Number of structural unknown parameters n+tm(m+1}/2 = 34.
Model, meaning of the wvariables and data for the Italian economy

1952-1971 can be found in Sitzia and

Tivegna (1975},

, I
.8 .T
! .8t
.4 .aF
|

.2[ -
o %
1 I ir

F e
Xy,

.8 . 8r
&4 .8
4l .4
Ll 2}
[ I
% 10 20 10 40 %

Fig.10. Mode! for the |talian economy. 7=50; n=19; n+m(m+1}/2=34.



38

GC.Cololari gnd L .Ponattoni

—

.6t
L4y
¥
4
1
8
.6
.4
2
% 5 20 30 a0 % 20 a0 &0
Fig.11. Model for the ltalian economy. T=100; n=19; ntm(m+1)/2=34.
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Model for the ltalian economy.

T=200; n=19: n+*m{m+*1}/2=34.
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Table 6
Linearized Klein-Goldberger model
Number of equations = 20,
Number of stochastic equations m = 76.
Number of structural unknown coefficients n = 54.
Number of structural unknown parameters n+m{m+7)/2 = 190.
For brevity's sake, the equations of‘the model are not reproduced. Model

and data for the U.S. economy are described in Klein (1969).

Fig.13.

Linearized Klein-Goldberger moedel.

100 150 200 250 300

T=300; n=54; n+tm{m+1)/2=190.
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2 50 100 D) 150 200 750 760

Fig.14. Linearized Klein-Goldberger model. T=600; n=54; n+m{m+1)/2=790.
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Table 7

A simple Keynesian model

YT Yy T Yy
Yo T Y1 T Xy

Number of equations = 2. .

Number of stochastic equations m = 7.

Number of structural unknown coefficients n = 7,

Number of structural unknown parameters n+m(m*71)/2 = 2.

FIML estimates are obtained for this model by means of simpie algorithms,

like indirect least squares, and simulation is fast enough even for very
long sample periods.

Fig.15. Simple Keynesian model. T=5; n=1; n+m{m+1)/2=2.
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2 4 6 o 5 10

Simple Keynesian model. T=20; n=1; n*+m{m+1}/2=2.

. 8t 2
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Simple Keynesian model. T=300; n=1; n m{m+1)/2=2.



FIML Covariance Matrix 43

REFERENCES

Amemiva,T. (1977), "The Maximum Likelihood and the Nonlinear
Three-Stage Least Squares in the General Nonlinear Simultaneous
Equation Model”, Econometrica 45, 955-968.

Anderson, T.W., N.Kunitome, and T.Sawa (1982), "Evaluation of the
Distribution Function of the Limited Information Maximum Likelihood
Estimator’, Econometrica 50, 1009-1027.

Artus,P., G.lLaroque, and G.Michel (1982), "Estimation of a Quarterly
Model with Quantity Rationing”. Paris: INSEE, discussion paper
No.8209, presented at the Ewuropean Meeting of the Econometric
Society, Dublin.

Berndt,E.K., B.H.Hall, R.E.Hall, and J.A_.Hausman (1974), "Estimation
and Inference in Nonlinear Structural Models", Annals of Fconomic
and Social Measurement 3, 653-665.

Brundy,J.M., and D.W.Jorgenson (1871}, "Efficient Estimation of
Simultaneous Equations by Instrumental Variables”, The Review of
fconomics and Statistics 53, 207-224.

Caizolari,G. (1983), "Asymptotic Distribution of Power Spectra and Peak
Frequencies in the Stochastic Response of Econemetric Models",
Journal of Economic Dynamics and Control 5, 235-247.

Calzolari,G., and l..Panattoni (1983), "Hessian and Approximated Hessian
Matrices in Maximum Likelihood Estimation: A Monte Carlo Study'”.
Pisa: Centro Scientifico [IBM, -discussion paper presented at the
European Meeting of the Econometric Society, FPisa.

Chernoff,H., and N.Divinsky (1953), "The Computation of
Maximum-Likelihood Estimates of Linear Structural Eguatiens”, in
Studies in Econometric Method, ed. by W.C.Hood and T.C.Koopmans.

New York: John Wiley & Sons, Cowles Commission Monegraph No. 14,
236-302.

Dagenais,M.G, (1978), "The Computation of FIML Estimates as Iterative
Generalized Least Sqguares Estimates in Linear and Nonlinear
Simultanecus Equations Models", Econometrica 46, 1351-1362.

Dhrymes,P.J. (1973), Econometrics: Statistical  Foundations  and
Applications. New York: Harper & Row.

Eisenpress,H., and J.Greenstadt (1966), "The Estimation of Nonlinear
Econometric Systems’, Econometrica 34, 851-861.



44 G.Calzolari and L .Panattoni

Gourieroux,C., A.Monfort, and A.Trognon (1984), "Pseudo Maximum
Likelihood Methods: Theory”, Econometrica 52, 681-700.

Hall,A.R. (1983), “"The Information Matrix Test for the Linear Model".
University of Warwick: discussion paper presented at the furopean
Meeting of the Econometric Society, FPisa.

Hatanaka,M. (1978), "On the Efficient Estimation Methods for the
Macro-Economic Models Nonlinear in Variables"”, Journal  of
Econometrics 8, 323-336.

Hausman,J.A. (1974), "Fuil Information Instrumental Variables Estimation
of Simultaneous Equations Systems", Annals of Economic and Social
Measurement 3, 641-652.

Hendry,D.F. (1971), "Maximum Likelihood Estimation of Systems of
Simultaneous Regression Equations with Errors Generated by a

Vector Autoregressive Process”, [International Economic Review 12,
257-272.

Klein,L.R. (1969}, "Estimation of Interdependent Systems in
Macroeconometrics', Ecomometrico 37, 171-192.

Kmenta,J. (1971), Elements of Econometrics. New York: The Macmillan
Company.

Morimune, K. (1983), "Approximate Distribution of k-Class Estimators when
the Degree of Overidentifiability is Large Compared with the Sample
Size", Econometrica 51, 821-841.

Parke ,W.R. (1982), "An Algorithm for FIML and 3S5LS Estimation of Large
Nonlinear Models”, Econometrica 503, 81-95.

Rothenberg, T.J. (19?3), Efficient Estimation with A Priori Information.
New Haven: Yale University Press, Cowles Foundation Monograph
No.23.

Rothenberg, T.J4., and C.T.Leenders (1964}, "Efficient Estimation of
Simultanecus Equation Systems”, Econometrico 32, 57-76.

Sitzia,B., and M.Tivegna (71975), "Un Modello Aggregato dell'Economia
ltaliana 1852-1971", in Contributi alla Ricerca £conomica No.4.
Roma: Banca d'italia, 195-223.

White, H. (1982), "Maximum Likelihood Estimation of Misspecified Models"”,
Econometrica 50, 1-25.



