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1 IntrodutionThis paper o�ers a new perspetive on dynami moral hazard problems. Considera risk-neutral prinipal, who an hire a risk-neutral but wealth-onstrained agent.The agent an exert unobservable e�ort, whih inreases the likelihood of suess.In the one-shot problem, there is a well-known trade-o� between e�ort inentivesand rent extration, whih leads to a downward distorted e�ort level ompared tothe �rst-best solution. We extend the standard model by assuming that there isa seond period, in whih the prinipal an make an investment to ontinue theprojet and the agent an again exert unobservable e�ort. It turns out that thereare several interesting insights that so far have esaped the literature on repeatedmoral hazard, whih was foused on the ase of risk-averse agents.In partiular, if the prinipal an ommit not to renegotiate, the seond periodinentives an be used to partially irumvent the limited liability onstraint. In theseond period, the prinipal indues the agent to hoose a partiularly high e�ortlevel following a �rst-period suess and a partiularly low e�ort level following a�rst-period failure. The prospet of a higher seond-period rent following a �rst-period suess motivates the agent to exert more e�ort in the �rst period; i.e., rentsin the seond period at as reward and punishment for the �rst period. It shouldbe emphasized that we assume no tehnologial impat of a �rst-period suess orfailure on the seond-period tehnology. Nevertheless, an optimal dynami ontratexhibits memory. Hene, if an outsider observed today a prinipal-agent pair thatwas suessful and another idential pair that was not suessful, he would be rightto predit that the �rst pair also is more likely to sueed tomorrow. In otherwords, a serial orrelation aross periods, whih we sometimes refer to as a �hothand� e�et, is generated endogenously, merely based on inentive onsiderations.1Just as in the one-shot model, e�ort levels are distorted and not every projetthat would be installed in a �rst-best world will be pursued under moral hazard. It1The term �having a hot hand� originated in basketball and means having a streak of suessesthat annot be attributed to normal variation in performane. It seems to spetators that theprobability of a suess inreases after a row of suesses, even though the trials in question areindependent; see Gilovih, Vallone, and Tversky (1985).2



also is still the ase that the prinipal will always prefer a projet (or, equivalently,an agent) that yields a larger return in ase of suess (among otherwise identialprojets or agents). Somewhat surprisingly, however, the latter observation is nolonger true if renegotiation annot be ruled out.The �hot hand� e�et implies that a prinipal would sometimes like to ommitto terminate a projet following a �rst-period failure, even though tehnologiallythe suess probability of the seond period is not a�eted by the �rst-periodoutome. Yet, the threat to terminate may not be redible if renegotiation annotbe prevented. In this ase, a new kind of ine�ieny ours, that to the best ofour knowledge has not been identi�ed in the repeated moral hazard literature sofar: The prinipal might deliberately hoose a projet that is ommonly known toyield smaller potential returns than another (otherwise idential) projet that isalso available. Similarly, she might deliberately hire an agent that is ommonlyknown to be less quali�ed.The reason that a projet might be �too good� to be funded or an agent mightbe �overquali�ed� is the fat that the prinipal annot resist the temptation torenegotiate if the potential return is too attrative, whih is antiipated by theagent, whose inentives to work hard in the �rst period are dulled. In ontrast, aless quali�ed agent or an agent working on a less attrative projet may well bewilling to exert more e�ort in the �rst period, beause he knows that in ase of afailure he will not get a seond hane. Sine the redible threat to terminate theprojet after a �rst-period failure improves �rst-period inentives, there are indeedparameter onstellations under whih a relatively bad projet is funded, while abetter projet is not.The literature on repeated moral hazard problems and renegotiation has di�er-ent strands. Most papers onsider repeated versions of the traditional moral hazardsetting, where the agent is risk-averse and there is a trade-o� between insuraneand inentives.2 In a pioneering paper, Rogerson (1985) onsidered a two-periodmoral hazard problem and showed that the optimal seond-period inentives de-pend on the �rst-period outome (i.e., the ontrat exhibits memory), even though2For omprehensive surveys, see Chiappori, Maho, Rey, and Salanié (1994) and Bolton andDewatripont (2005, h. 10). 3



the periods are tehnologially independent. However, his result is driven by theonsumption-smoothing motive of the risk-averse agent,3 whih is absent in oursetting.In moral hazard models with a risk-averse agent, renegotiation is an issue evenin the one-shot problem, beause after the agent has hosen an e�ort level, thereis no need to expose him to further risk. Fudenberg and Tirole (1990), Ma (1991,1994) and Matthews (1995, 2001) show that it depends on the details of the rene-gotiation game (spei�ally, who makes the renegotiation o�er) whether or note�ort inentives are redued.4 In ontrast, in our framework there is sope forrenegotiation only if the moral hazard problem is repeated, and the details of therenegotiation game are irrelevant for our results.Although we onsider a repeated moral hazard problem, it is interesting tonote that our results are also related to the repeated adverse seletion literature.5Spei�ally, in a seminal paper Dewatripont and Maskin (1995) onsider a two-period model where the agent has private information about the quality of a projetthat he submits for funding. Ex ante, the prinipal would like to terminate badprojets after the �rst period in order to deter the agent from submitting them(�hard budget onstraint�). Yet, at the beginning of the seond period she istempted to re�nane them (�soft budget onstraint�). The absene of ommitmentpower thus enables bad projets to be funded. However, as has been pointed outby Kornai, Maskin, and Roland (2003, p. 1110), the prinipal would not �nane abad projet if she knew the quality ex ante. In ontrast, in our model a bad projetmay be funded, while a better projet may not be funded, even though the qualityis ommon knowledge.In reent years, there has been a growing interest in repeated moral hazard mod-3Cf. Malomson and Spinnewyn (1988), Fudenberg, Holmström, and Milgrom (1990), and Reyand Salanié (1990).4See also Hermalin and Katz (1991) and Dewatripont, Legros, and Matthews (2003), whoonsider observable but unveri�able e�ort.5The fat that the one-shot moral hazard model with a risk-neutral but wealth-onstrainedagent has some similarities to the one-shot adverse seletion model has already been noted byLa�ont and Martimort (2002, p. 147). 4



els with limited liability to study long-term lender-borrower relationships. Contem-poraneous work in this area inludes Clementi and Hopenhayn (2006), De Marzoand Fishman (2007a, 2007b), and Biais, Mariotti, Rohet, and Villeneuve (2010).6These artiles are onerned with the long-run dynamis of �rm size and survivalrates. It is analyzed how an entrepreneur is best indued to avoid large risks orto reveal private information about the ash �ow, and whether the optimal invest-ment and growth pattern an be implemented with standard �nanial ontrats.For reasons of tratability, these omplex dynami models usually assume thatthe inentive problem of the entrepreneur/�rm is a binary hoie. In ontrast, westudy a simple model with only two periods but haraterize the optimal sequeneof e�ort levels when e�ort levels an be adjusted ontinuously.The remainder of the paper is organized as follows. In Setion 2.1, we intro-due the one-shot moral hazard problem with a risk-neutral but wealth-onstrainedagent, whih now is sometimes alled �e�ieny wage� model.7 This model servesas a benhmark for the dynami analysis. We then introdue the two-period modelin Setion 2.2.8 In Setion 3, we analyze the ommitment senario. In Setion 4,it is assumed that renegotiation annot be ruled out, whih may lead to the �toogood to be �naned� (or �overquali�ation�) e�et. Finally, onluding remarksfollow in Setion 5. All proofs have been relegated to the appendix.6See also Fong and Li (2009) for a related analysis of relational ontrats in an employmentontext.7See Tirole (1999, p. 745) or La�ont andMartimort (2002, p. 174). Moreover, f. the traditionale�ieny wage literature (Shapiro and Stiglitz, 1984) and the literature on deferred ompensation(Lazear, 1981; Akerlof and Katz, 1989), whih are related but have a di�erent fous. In relatedframeworks, Strausz (2006) studies auditing and Lewis and Sappington (2000) explore the role ofprivate information about limited wealth.8Dynami models with risk-neutral agents, hidden ations, and wealth onstraints inludealso Crémer (1995), Baliga and Sjöström (1998), Che and Yoo (2001), and Shmitz (2005). Yet,they rely on features (private information about produtivity, observable yet unveri�able e�ort,ommon shoks, and tehnologial relations between the periods, respetively) whih are absentin the repeated (pure) moral hazard problem studied here. See also the unknown-quality modelof Hirao (1993) and the binary-e�ort model of Bierbaum (2002), who ompare short-term andlong-term ontrats. In related settings, Winter (2006) and Tamada and Tsai (2007) analyzesequential ageny problems. 5



2 The model2.1 The one-shot ontrating problemAs a useful benhmark, let us �rst take a brief look at the one-shot moral-hazardproblem that will be repeated twie in our full-�edged model. There are twoparties, a prinipal and an agent, both of whom are risk-neutral. The agent hasno resoures of his own, so that all payments to the agent have to be nonnegative.The parties' reservation utilities are assumed to be zero. At some initial date 0,the prinipal an deide whether or not to pursue a projet. If she installs theprojet, she o�ers a ontrat to the agent. Having aepted the ontrat, the agentexerts unobservable e�ort e ∈ [0, 1] at date 1. His disutility from exerting e�ort isgiven by c(e). Finally, at date 2, either a suess (y = 1) or a failure (y = 0) isrealized, where the probability of suess is normalized to equal the e�ort level, i.e.
Pr{y = 1|e} = e. The prinipal's veri�able return is given by yR.Assumption 1. The e�ort ost funtion satis�esa) c′ ≥ 0, c′′ ≥ 0, c′′′ ≥ 0, and c′′(e) > 0 for all e > 0,b) c(0) = 0, c′(0) = 0, and c′(1) ≥ R.The �rst-best e�ort level eFB maximizes the expeted total surplus

S(e) := eR − c(e) (1)and is thus haraterized by
S ′(eFB) = R− c′(eFB) = 0. (2)The prinipal ould attain the �rst-best e�ort level, but in order to do so shewould have to leave all of her returns to the agent. Hene, the prinipal faesa trade-o� between inreasing the pie and getting a larger share for herself. Inthe seond-best solution, the prinipal will not pay anything when no revenue isgenerated.9 If t denotes the prinipal's transfer payment to the agent in ase of9This is a standard result. See e.g. Bolton and Dewatripont (2005, Setion 4.1.2) for asimple textbook exposition of the one-shot moral hazard model with risk-neutrality and resoureonstraints. See also Innes (1990), Pithford (1998), or Tirole (2001) for variants of this model.6



suess, the agent's expeted payo� from exerting e�ort e is et − c(e). If t ≤ R,whih will hold in the prinipal's optimal ontrat,10 the agent's maximizationproblem has an interior solution haraterized by t = c′(e). Beause of this one-to-one relationship between transfers set by the prinipal and the resulting e�ortlevels, we an proeed as if the prinipal ould diretly set the e�ort level, and writethe prinipal's problem in terms of e�ort levels. The prinipal thus maximizes herexpeted pro�t
P (e) := e(R− c′(e)), (3)hene the �rst-order ondition that haraterizes the seond-best e�ort level eSB is

P ′(eSB) = R− c′(eSB)− eSBc′′(eSB) = 0. (4)Our assumptions on the ost funtion guarantee that the funtion P is onave.We also de�ne
A(e) := ec′(e)− c(e), (5)the agent's rent from a ontrat that leads him to hoose e�ort e. By alulat-ing the derivative A′(e) = ec′′(e) we see that A is a stritly inreasing, onvex,and nonnegative funtion. Hene, a higher implemented e�ort level yields higherrents for the agent. In order to redue the agent's rent, the prinipal introdues adownward distortion of the indued e�ort level, eSB < eFB.In the one-shot problem, the prinipal is willing to install the projet wheneverthe installment ost is lower than P (eSB), whih is smaller than S(eFB); i.e., notall projets that would be pursued in a �rst-best world will atually be installed.However, given the hoie between two (otherwise idential) projets with possiblereturns Rg and Rb < Rg, the prinipal will never prefer the bad projet that anyield Rb only.2.2 The two-period modelNow we turn to the full-�edged two-period model. For simpliity, we neglet dis-ounting. At date 0, the prinipal deides whether or not to install the projet. To10Note that o�ering a payment t larger than R would violate the prinipal's partiipationonstraint. 7



Figure 1: The sequene of events.simplify the exposition, we assume that there are no installment osts at this date.11The prinipal makes a take-it-or-leave-it ontrat o�er to the agent. Having a-epted the o�er, at date 1 the agent hooses an unobservable �rst-period e�ort level
e1 ∈ [0, 1], inurring disutility c(e1). At date 2, the veri�able �rst-period return y1Ris realized, where y1 ∈ {0, 1} denotes failure or suess, and Pr{y1 = 1|e1} = e1.The projet may then be terminated (x(y1) = 0) or ontinued (x(y1) = 1), whih isveri�able.12 In order to ontinue the projet, the prinipal must invest an amount
I2 ≤ S(eFB). In this ase, at date 3 the agent hooses an unobservable seond-period e�ort level e2(y1) ∈ [0, 1]. Finally, at date 4 the veri�able seond-periodreturn y2R is realized, where y2 ∈ {0, 1} and Pr{y2 = 1|e2(y1)} = e2(y1). Note thatthe two periods are independent; in partiular, we do not assume any tehnologialspillovers that would make a seond-period suess more likely after a �rst-periodsuess. The sequene of events is illustrated in Figure 1.The �rst-best benhmark solution. Assume for a moment that e�ort wereveri�able. The prinipal would then ontinue the projet regardless of the �rst-period outome (x(0) = x(1) = 1), and she would implement the e�ort levels11We thank an anonymous referee for suggesting this simpli�ation. It is straightforward toextend the model to the ase in whih the prinipal inurs osts I1 > 0 when she installs theprojet.12We assume that it is too ostly for the prinipal to replae the agent at date 2, beause atthat point in time the parties are �loked-in� (i.e., the relationship has undergone Williamson's(1985) �fundamental transformation�). For instane, hiring a new agent for the ongoing projetmight require spei� training, whih makes replaement unpro�table. See Spear and Wang(2005), Mylovanov and Shmitz (2008), and Kräkel and Shöttner (2010) for models in whihreplaement involves no osts. Our model ould be extended to the ase of ostly replaement,but this would make the exposition less tratable without yielding additional eonomi insights.8



e1 = e2(0) = e2(1) = eFB with a straightforward foring ontrat, leaving no rentto the agent.Contrats when e�ort is unobservable. In the remainder of the paper, weassume again that e�ort levels are unobservable. We do not impose any ad horestritions on the lass of feasible ontrats; i.e., there is omplete ontrating inthe sense of Tirole (1999).A ontrat spei�es a ontinuation deision (whih may be onditioned on the�rst period outome) and transfer payments from the prinipal to the agent (whihmay be onditioned on the ontinuation deision and the �rst and seond periodoutomes). The transfer payments have to satisfy the limited liability onstraint ofthe agent. The prinipal an also inlude reommended e�ort levels in the ontrat.The ontratual terms must be suh that it is in the agent's own self-interest toobey the reommendations (f. Myerson, 1982); i.e., the reommendations mustsatisfy suitable inentive ompatibility onstraints.Thus, a ontrat spei�es for the possible �rst-period outomes y1 ∈ {0, 1} theprobability of ontinuation x(y1), the �rst-period transfer payments t1(y1) to bemade at date 2, and the seond-period transfer payments t2(y1, y2) to be made atdate 4 in ase of ontinuation.13 The limited liability onstraints are given by
t1(y1) ≥ 0 (6)for the �rst period and by

t2(y1, y2) ≥ 0 (7)for the seond period. Note that the latter ondition presupposes that the agentannot be fored to pay bak payments that he reeived in the past.14 Finally,13While it may well be optimal to randomize between ontinuation and termination, other kindsof randomization annot our. Stohasti transfer payments an always be replaed by theirexpeted value, beause both prinipal and agent are risk-neutral. This also inludes transferpayments that depend on the randomization devie that pins down the ontinuation deision.Moreover, it is straightforward to show that an optimal ontrat will never indue randomizationover e�ort levels.14Otherwise, the limited liability onstraint would read t2(y1, y2) ≥ −t1(y1). It turns out thatour results would not hange if we relaxed the limited liability onstraint in this way. In fat, itwould be without loss of generality to assume that all payments are made at date 4 only.9



the ontrat spei�es reommended e�ort levels e1, e2(0), and e2(1). The inentiveompatibility onstraints for the seond period are
e2(y1) ∈ arg max

e∈[0,1]
et2(y1, 1) + (1− e)t2(y1, 0)− c(e). (8)We denote the ontinuation payo� of the agent one the �rst period outome isrealized by

a(y1) = t1(y1) + x(y1)
[

e2(y1)t2(y1, 1) + (1− e2(y1))t2(y1, 0)− c(e2(y1))
]

. (9)The �rst-period inentive ompatibility onstraint is then given by
e1 ∈ arg max

e∈[0,1]
ea(1) + (1− e)a(0)− c(e). (10)We now show that the lass of ontrats that we need to onsider an be simpli-�ed. In partiular, we show that beause only the di�erene between t2(y2, 1) and

t2(y2, 0) matters for the agent's e�ort hoie in the seond period, ontrats thatreward a failure in the seond period (t2(y1, 0) > 0) an be replaed by ontratsthat speify suitably larger payments at date 2. For any given transfer sheme
(t1, t2) we de�ne

t̃1(y1) = t1(y1) + t2(y1, 0)x(y1),

t̃2(y1, 0) = 0, and
t̃2(y1, 1) = max{t2(y1, 1)− t2(y1, 0), 0}.It is straightforward to hek that the payments (t̃1, t̃2) indue the same seondperiod e�ort levels as (t1, t2), the same ontinuation payo�s a(1) and a(0), andtherefore also the same �rst period e�ort levels. Moreover, they ful�ll the limitedliability requirements, and they lead to the same expeted payo�s.15 It is thuswithout loss of generality to restrit attention to a set C of ontrats for the prini-pal's optimization problem, where elements κ ∈ C are given by κ = (t1, t2, x, e1, e2)with

• x : {0, 1} → [0, 1],15Note that a ontrat that satis�es only the weaker limited liability onstraint t2(y1, y2) ≥

−t1(y1) an be replaed by the sheme (t̃1, t̃2) that onsists of nonnegative payments only.10



• t1 : {0, 1} → R≥0, t2 : {0, 1}
2 → R≥0, t2(y1, 0) = 0,

• e2 : {0, 1} → [0, 1] with e2(y1) ∈ argmaxe∈[0,1] et2(y1, 1)− c(e), and
• e1 ∈ argmaxe∈[0,1] ea(1) + (1− e)a(0)− c(e).Sine the agent an always hoose not to exert any e�ort at all, the limited liabilityonstraint together with the inentive ompatibility onstraint ensures partiipa-tion. Hene, all ontrats in the set C satisfy the inentive ompatibility andlimited liability onstraints and are aepted by the agent. If the prinipal o�ers aontrat κ = (t1, t2, x, e1, e2) ∈ C, her expeted pro�t is given by

Π(κ) = e1

(

R− t1(1) + x(1)
[

e2(1)(R− t2(1, 1))−I2

]) (11)
+(1− e1)

(

−t1(0) + x(0)
[

e2(0)(R− t2(0, 1))−I2

])

.In the solution of the optimization problem it will turn out that t1(0) = 0; i.e., anagent will never be rewarded for a failure. A �rst-period suess may be diretlyrewarded with a bonus payment t1(1), while a seond-period suess may be re-warded with a bonus t2(0, 1) (following a �rst-period failure) or t2(1, 1) (followinga �rst-period suess). As we will see, a �rst-period suess will also be indiretlyrewarded by the prospet of getting a larger bonus for a seond-period suess if itfollows a �rst-period suess, whih will be a driving fore behind our main results.3 The full ommitment aseIn this setion, we assume that the prinipal an ommit not to renegotiate theontrat that is written at date 0. In order to solve the full-�edged two-period modelwe �rst solve the one-period problem of �nding the optimal ontinuation ontratthat leaves the agent with a ertain payo�. While also being of independent interest,this result is then used to �nd the optimal ontinuation payo�s in the two-periodproblem. We denote by π(a) the prinipal's maximum ontinuation payo� whenshe implements the expeted seond-period payo� a of the agent. Reall that theprinipal an implement any seond-period e�ort level e2 by setting t2(y1, 1) =

c′(e2), sharing the seond-period surplus S(e2)− I2 suh that the agent gets A(e2)11



and the prinipal gets P (e2)− I2. In order to haraterize the funtion π, we haveto �nd the ontinuation ontrat (t1, x, t2, e2) with t2 = c′(e2) that maximizes theprinipal's payo� among those that implement a given expeted payo� a of theagent. Before we an state the result, we need the following lemma and de�nition:Lemma 1. If I2 > 0, then there is a unique e�ort level ē > 0 with
S(ē)− I2 =

S ′(ē)

A′(ē)
A(ē). (12)If we de�ne ē = 0 in ase I2 = 0, then the ut-o� level ē is a ontinuous andinreasing funtion of I2, with ē = eSB at I2 = P (eSB) and ē = eFB at I2 = S(eFB).Proof. See the appendix.Beause the right hand side of (12) is nonnegative, the net present value of aprojet with e�ort level ē is also never negative. The so de�ned e�ort level ē playsa role in implementing relatively low payo�s of the agent.Lemma 2. The following table shows the ontinuation ontrat that optimally im-plements a given ontinuation payo� a of the agent, and the resulting ontinuationpayo� π(a) of the prinipal:

t1 e2 x π(a)if 0 ≤ a ≤ A(ē) 0 ē a
A(ē)

x(P (ē)− I2)if A(ē) < a < A(eFB) 0 A−1(a) 1 P (e2)− I2if A(eFB) ≤ a a− A(eFB) eFB 1 S(eFB)− I2 − aThe funtion π(a) is onave and has the derivative π′(a) = P ′(e2)
A′(e2)

.Proof. See the appendix.It beomes lear from the lemma that only projets with positive net presentvalue and e�ort level equal to or greater than ē will be implemented. Moreover,we see that as the agent's payo� a inreases, the expeted total surplus indued bythe prinipal's optimal ontinuation ontrat weakly rises.12



If the agent's payo� a is larger than A(eFB) = S(eFB), then the prinipal willimplement e2 = eFB and transfer the residuum a−A(eFB) to the agent by making apositive payment t1. Otherwise, there will be no suh payment, sine implementinga projet with positive net present value is a better method to reward the agentthan a diret transfer.To see why a positive probability of termination is sometimes optimal for theprinipal, onsider the ase that I2 is lower than P (eSB), so that there exist e�ortlevels that lead to a positive ontinuation payo�, while the required payo� a is so lowthat a projet with e�ort level e2 = A−1(a) would lead to a negative ontinuationpayo� P (e2) − I2 < 0. In suh a ase, it is more pro�table for the prinipal toimplement a higher e�ort level with a positive payo� for herself and ahieve therequired a by adjusting the ontinuation probability x. The e�ort level ē is theresult of a trade-o� between a larger ontinuation payo� P (e)−I2 (whih inreaseswith e up to eSB) and a lower probability of ahieving this payo� (x = a
A(e)

dereaseswith e).There is another ase in whih a positive probability of termination is optimal:Assume that I2 is larger than P (eSB), so that the prinipal's ontinuation payo�is negative for all e�ort levels, and a is so low that a projet with e�ort level
e2 = A−1(a) would have a negative net present value. It is then more pro�tablefor the prinipal to implement a higher e�ort level and sale the projet down toahieve the required ontinuation payo� a. In this ase, the implemented e�ortlevel ē is larger than eSB.The following proposition haraterizes the seond-best solution of the two-period model under full ommitment.Proposition 1. Assume that the prinipal an ommit not to renegotiate. Inthe prinipal's optimal ontrat, the projet is either always ontinued with someprobability and the indued e�ort levels satisfy

eFB ≥ eC2 (1) > eC1 > eSB > eC2 (0) > 0,or the projet is terminated after a failure and the e�ort levels satisfy
eFB ≥ eT2 (1) > eT1 ≥ eSB.13



Proof. See the appendix.This proposition establishes the �hot hand� e�et. Even though a suess in the�rst period has no tehnologial e�et whatsoever on the likelihood of a suessin the seond period, the prinipal implements eC2 (1) > eSB > eC2 (0). Givingthe agent in the seond period partiularly high inentives following a �rst-periodsuess (and partiularly low inentives following a failure) has desirable spillovere�ets on the �rst-period inentives: The agent works hard in the �rst period notonly in order to get the diret reward t1(1), but also in order to enjoy a higherseond-period rent. In fat, the diret �rst-period reward t1(1) will be positiveonly if the prinipal already indues eC2 (1) = eFB, so that implementing an evenhigher e�ort level following a �rst-period suess would redue the total surplus.Sine giving the agent inentives in the �rst period is now heaper than in theone-shot problem, the prinipal implements e1 > eSB.In the next proposition, we explore the dependene of the optimal ontinuationdeisions on the installment ost.Proposition 2. There exist ut-o� levels IC ,IT , and ITT , where
0 < IC ≤ IT < P (eSB) < ITT ≤ S(eFB),suh thata) if I2 ≤ IC, then the projet is always ontinued, x(1) = x(0) = 1.b) if IT ≥ I2 > IC, then x(1) = 1 while x(0) < 1, i.e., the optimal ontrat leadswith positive probability to termination after a failure.) if I2 > IT , then the projet is terminated whenever the �rst period was a failure,

x(0) = 0, and it is ontinued with x(1) = 1 after a suess for I2 ≤ ITT , and withsome probability x(1) ∈ (0, 1) for I2 > ITT .Proof. See the appendix.While for low installment osts it is always bene�ial for the prinipal to on-tinue the projet unonditionally, ontinuing the projet after a �rst-period failuremight not be in the prinipal's interest when her ontinuation osts I2 are su�-iently large. Clearly, if I2 is so large that P (eC2 (0)) < I2, the prinipal is worse14



o� if she ontinues the projet. Even if this inequality does not hold, it an stillbe optimal for the prinipal to ommit to terminate the projet at least with someprobability, beause doing so improves the agent's �rst-period inentives. As I2beomes large, it may also beome optimal to terminate the projet with a positiveprobability after a �rst-period suess. To see why suh a randomized deision
x(1) < 1 may be bene�ial for the prinipal, onsider the ase that I2 is lose to
S(eFB). Sine the prinipal never installs a projet with negative net present value,she will implement a very large e�ort level e2(1) lose to eFB. To implement suh alarge e�ort level she has to leave almost all of the seond-period return to the agentwhile she bears the installment osts I2. She will therefore sale the projet downexept in the ase that the e�et of the agent's large ontinuation payo� on the�rst-period e�ort level o�sets the ost of setting x(1) = 1. This ase ours in thefollowing example of a quadrati ost funtion, whih shows that randomizationdoes not have to our in an optimal ontrat.Lemma 3. If the ost funtion is quadrati (c(e) = αe2), then in the optimalontrat it is always true that x(y1) ∈ {0, 1} for y1 ∈ {0, 1}.Proof. See the appendix.In the one-shot interation, the most severe punishment available to the prin-ipal is not to pay anything to the agent. If a two-period ontrat an be signed,stronger inentives an be provided. The optimal ontrat displays memory; i.e.,it does not oinide with ontrats that ignore the information about the �rst pe-riod outome. As it is bene�ial for the prinipal to make use of the two-periodstruture, she will introdue ertain �milestones� (y1 = 1) that should be ahievedby the agent, whenever this is possible.16The ine�ienies exhibited by the seond-best solution are of a similar natureas the ine�ienies we enountered in the one-shot model. There are downward16See also Gershkov and Perry (2009), who address the value of midterm reviews for a tour-nament designer. A paper that takes this idea to the extreme is Che and Sakoviz (2004), inwhih a hold-up problem an be fully overome in the limit if the parties monitor eah other'sinvestment more and more frequently and an base their behavior in the negotiations on theinvestment observed so far. 15



distortions of the e�ort levels ompared with the �rst-best solution, and as a resultthere are projets that would be installed (and ontinued) in a �rst-best world,but that are not pursued (or at least not ontinued after a �rst-period failure) inthe presene of moral hazard. However, it is still impossible for an investmentopportunity to be �too good� to be pursued, as is stated in the following orollary.Corollary 1. Assume that the prinipal an ommit not to renegotiate. If at date0 the prinipal an hoose between two (otherwise idential) projets with possiblereturns Rg and Rb < Rg, she will never prefer the bad projet that an yield Rbonly.Proof. See the appendix.
4 Renegotiation and the �overquali�ation� e�etAfter the �rst period is over, the prinipal might want to modify the ontratualarrangements, beause at that point in time she would be best o� under the optimalone-period ontrat as haraterized in Setion 2.1. In the following we assume thatthe prinipal annot ex ante ommit not to renegotiate the ontrat.17 In our om-plete ontrating framework, the prinipal an mimi the outome of renegotiationsin her original ontrat; i.e., we an on�ne our attention to renegotiation-proofontrats.18Proposition 3. Assume that the prinipal annot ommit not to renegotiate.a) If P (eSB) > I2, then the projet is always ontinued, x(0) = x(1) = 1. Thee�ort levels satisfy

eFB ≥ ēC2 (1) > ēC1 > ēC2 (0) = eSB.17See Bolton and Dewatripont (2005) for extensive disussions of the assumption that rene-gotiation annot be ruled out. See also Wang (2000) and Zhao (2006), who study renegotiationproblems in more general frameworks.18Note that, in partiular, this means it is inonsequential how the renegotiation surplus wouldbe split at date 2. The prinipal an ahieve the same outome that would be attained if she hadall bargaining power in the renegotiation game by designing the appropriate renegotiation-proofontrat at the outset. 16



b) If P (eSB) ≤ I2 , then the projet is terminated whenever the �rst period wasa failure, x(0) = 0, and the ontrat is the same as under full ommitment.Proof. See the appendix.As we have seen in the previous setion, if the projet was ontinued under fullommitment, the prinipal implemented a seond-period e�ort level smaller than
eSB when the �rst period was a failure. The resulting smaller seond-period rentated as an indiret punishment of the wealth-onstrained agent for the �rst-periodfailure. This is no longer possible if renegotiation annot be ruled out, beauseat date 2 the prinipal would prefer to implement eSB in order to maximize herseond-period pro�t. While thus the �stik� is no longer available, the prinipalan still make use of the �arrot;� i.e., she an indiretly reward �rst-period e�ortby implementing an e�ort level larger than eSB following a �rst-period suess.19As a result, it is still heaper for the prinipal to motivate the agent to exert �rst-period e�ort in the two-period model than in the one-shot benhmark model, sothat ēC1 > eSB.Just as in the full ommitment regime, for su�iently large investment osts I2,the prinipal would be better o� if she terminated the projet whenever the �rst-period was a failure. However, if renegotiation annot be ruled out, at date 2 theprinipal prefers to ontinue the projet as long as she an make a positive seond-period pro�t by doing so. Her threat to terminate the projet after a �rst-periodfailure is no longer redible, unless her expeted seond-period pro�t in ase ofontinuation would atually be negative.In other words, the prinipal would like to ommit to termination following a�rst-period failure, but she annot do so. This observation has peuliar implia-tions with regard to the projet that the prinipal will hoose at the outset, as ishighlighted in Corollary 3 below. A new kind of ine�ieny ours, whih we saw19Note that the prinipal would like to redue her promised payment t2(1, 1) after a �rst-periodsuess has ourred (in order to implement eSB in the seond period), but in this ase there isno sope for mutually bene�ial renegotiation. The agent would insist on the original ontrat,whih gives him a larger rent. 17



Figure 2:This �gure shows the jump in the prinipal's maximal payo� at
I2 = P (eSB), where the termination ontrat beomes feasible. Thedashed line shows the payo� with ommitment.neither in the well-known one-shot problem nor in the two-period model with fullommitment.Corollary 2. Assume that the prinipal annot ommit not to renegotiate. For

I2 < P (eSB) the prinipal's expeted pro�t, denoted by Π̄C(I2, R), is dereasing in
I2. For I2 ≥ P (eSB) it is denoted by ΠT (I2, R) and again dereasing in I2. At
I2 = P (eSB) there is an upward jump, whih is bounded from below by eSBA(eSB),as illustrated in Figure 2.Proof. See the appendix.Corollary 2 says that the prinipal an be better o� if her ontinuation osts I2are inreased, whih may be surprising at �rst sight. Yet, this result follows imme-diately from the fat that the optimal ontrat with ommitment is renegotiation-proof for I2 ≥ P (eSB), while for smaller investment osts renegotiation-proofness isa binding onstraint. Hene, the prinipal's expeted pro�t makes an upward jumpat I2 = P (eSB). This e�et an be so strong that she would even prefer to havehigher investment osts in both periods, or similarly, she would prefer to install aprojet that an only yield a smaller revenue R.18



Corollary 3. Assume that the prinipal annot ommit not to renegotiate. Ifat date 0 the prinipal an hoose between two (otherwise idential) projets withpossible returns Rg and Rb < Rg, she may prefer the bad projet that an yield Rbonly.Proof. See the appendix.For example, let c(e) = 1
2
e2, I2 = 0.12, Rb = 0.68, and Rg = 0.7. It isstraightforward to show that the prinipal's expeted pro�t is Π ≈ 0. 147 if sheinstalls the �good� projet that an yield Rg, while it is Π ≈ 0. 157 if she installsthe �bad� projet that an yield Rb only (and is otherwise idential). Note that ifthere is a �rst-period installment ost I1 = 0.15, this even means that while theprinipal would be willing to install the �bad� projet, the �good� projet wouldnever be funded.Intuitively, pursuing a bad projet that an yield a relatively small return (or,similarly, hiring a less quali�ed agent who an generate only a small return or whorequires higher investments by the prinipal) ats as a ommitment devie. Theprinipal knows that if she hooses the more attrative alternative, then at date 2she annot resist the temptation to ontinue after a �rst-period failure. For thisreason, a projet an be just �too good� to be funded or an �overquali�ed� agentmay not be hired.2020Lewis and Sappington (1993) have also pointed out that employers will sometimes not hireappliants who are �overquali�ed,� even when their salary expetations are modest. However, theirmodel is quite di�erent from ours; they onsider an adverse seletion problem with ountervailinginentives due to type-dependent reservation utilities. Note that in our model a more produtiveagent might not be hired even if his reservation utility is not higher than the one of a less quali�edagent. Similarly, Axelson and Bond (2010) also report a �talent sorned� e�et in a model that issimilar to ours. However, they endogenize the agent's outside option in the model, and the resultthat less quali�ed agents an be preferred is due to the fat that they have lower outside options.
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5 Conluding remarksIn this paper, we have extended the literature on repeated moral hazard prob-lems to over hidden ation models in whih the agent is risk-neutral but wealth-onstrained. We have ompared the indued e�ort levels aross periods and states.It has turned out that the optimal ontrat exhibits memory, even though the pe-riods are tehnologially independent. Moreover, we have identi�ed a novel kind ofpotential ine�ieny that has esaped the previous literature.The present ontribution seems to be su�iently simple to be used as a buildingblok in more applied work. As has been pointed out in the introdution, ourmodel shares some features with dynami adverse seletion models. It might thusbe applied in �elds whih previously have been studied from the perspetive ofthe literature on preontratual private information and soft budget onstraints.Spei�ally, appliations of our model ould help to explain the funding of inferiorprojets (e.g., in the ontext of development aid), even if the projet quality isommonly known. Our model ould also be applied in the �eld of orporate �nane,where moral hazard problems with risk-neutral but wealth-onstrained agents areubiquitous (see Tirole, 2005).It is straightforward to relax several assumptions that were made to keep theexposition as lear as possible. For example, if it is required by an appliation, onemight easily generalize the model by allowing di�erent ost funtions and di�erentreturns in the two periods. Moreover, one an dispense with the assumption thatthe prinipal has all bargaining power. Regardless of the bargaining protool, theprinipal would only be willing to partiipate if her investment osts were overed.Hene, qualitatively our main �ndings would still be relevant. One ould alsoonsider the ase in whih the agent's wealth or his reservation utility may bepositive. As long as the agent is not wealthy enough to �buy the �rm,� the e�etshighlighted in our model ontinue to be relevant.
20



AppendixProof of Lemma 1.We de�ne for e > 0 a funtion
F (e) := S(e)− I2 −

S ′(e)A(e)

A′(e)
, (13)whih has the derivative

F ′(e) =
A(e)

A′(e)2
(−S ′′(e)A′(e) + S ′(e)A′′(e)). (14)Reall that for e�ort levels e ≤ eFB, the funtion S is inreasing and onave, and

A is positive, inreasing, and stritly onvex. Hene, F is stritly inreasing for 0 <

e ≤ eFB. If I2 > 0, then for su�iently small e�ort levels e it holds that S(e) < I2,and therefore F (e) < 0, while for e = eFB it holds that F (e) = S(eFB) − I2 ≥ 0.Hene, there exists a unique zero ē > 0 of F . It follows immediately that ē = eFBfor I2 = S(eFB). In addition it holds that
F (e) = P (e)− I2 −

S ′(e)A(e)− A′(e)A(e)

A′(e)
= P (e)− I2 −

P ′(e)A(e)

A′(e)
. (15)This equality also implies

P (ē)− I2 =
P ′(ē)A(ē)

A′(ē)
, (16)whih shows that ē = eSB if I2 = P (eSB).Taking the derivative with respet to I2 on both sides of equation (12) whihde�nes ē yields

∂ē

∂I2
= −

A′2(ē)

A(ē)(S ′′(ē)A′(ē)− A′′(ē)S ′(ē))
> 0. (17)Hene, ē is inreasing in I2. For I2 = 0 it holds that lime→0 F (e) = 0, whih impliesthat ē approahes 0 as I2 → 0.Proof of Lemma 2.The prinipal solves

max
t1,e2,x

x(P (e2)− I2)− t1 (18)s.t. t1 ≥ 0,

t1 + xA(e2) = a,

x ∈ [0, 1].21



We transform this problem by replaing t1 by a− xA(e2):
max
e2,x

x(S(e2)− I2)− a (19)s.t. a ≥ xA(e2),

x ∈ [0, 1].First, we onsider the ase a ≥ A(eFB). In this ase, the required payo� of theagent is greater than the possible gross surplus S(eFB) = A(eFB) and an thereforeonly be ahieved with a nonnegative transfer t1 = a− A(e2). That is, the limitedliability onstraint annot be binding, and performing the maximization in (19)without this onstraint yields x = 1 and e2 = eFB. Sine at these values the limitedliability onstraint is equal to a ≥ A(eFB), it follows that the limited liabilityonstraint is binding if and only if a ≤ A(eFB).For the ase a < A(eFB) it must therefore be true that A(e2)x = a. If a = 0 thenit is easy to see that x = 0 is optimal, with the e�ort level remaining unspei�ed.Sine for a > 0 it holds that x > 0 and A(e2) > 0, the limited liability onstraintan be transformed to x = a
A(e2)

, and the onstraint x ≤ 1 beomes A(e2) ≥ a.Hene, for the ase a < A(eFB) we get the optimization problem
max
e2>0

S(e2)− I2
A(e2)

(20)
s.t. A(e2) ≥ a.The Lagrangian for this problem is L(e2, λ) = S(e2)−I2

A(e2)
+ λ(A(e2)− a) with λ ≥ 0.In the optimum it holds that

S ′(e2)A(e2)

A′(e2)
− (S(e2)− I2) = −λA(e2)

2 (21)and we have the omplementary slakness ondition λ > 0 ⇒ A(e2) = a. Theleft-hand side of this equation vanishes at e2 = ē, and it is shown in the proof ofLemma 1 that it is dereasing in e2. Hene we either have that
S ′(e2)A(e2)

A′(e2)
− (S(e2)− I2) < 0 (22)and A(e2) = a, whih is true if and only if a > A(ē), or we have that the e�ortlevel e2 = ē is implemented and the payo� is �ne-tuned by adjusting the ontin-uation probability x = a

A(ē)
. To summarize, the heapest way for the prinipal toimplement ontinuation payo� a is given by22



• x = 1, t1 = a−A(eFB), e2 = eFB , with π = S(eFB)− I2 − a, if a ≥ A(eFB),

• x = 1, t1 = 0, e2 = A−1(a), with π = P (e2)− I2, if A(eFB) > a > A(ē), and
• x = a/A(ē), t1 = 0, e2 = ē, with π = x(P (e2)− I2), if A(ē) ≥ a ≥ 0.It remains to show that the funtion π is ontinuously di�erentiable with weaklydereasing derivative π′(a) = P ′(e2)

A′(e2)
, whih then implies onavity of π. For a >

A(eFB) we have π′(a) = −1 = P ′(eFB)
A′(eFB)

, and for a < A(ē) we have π′(a) = P ′(ē)
A′(ē)

.Beause π is ontinuous, this inludes a = 0 exept for I2 = 0. Both expressionsare independent of a. For the intermediate ase, A(eFB) > a > A(ē), the derivativeis π′(a) = P ′(e2)
A′(e2)

with e2 = A−1(a). It has the limits −1 as a → A(eFB) and P ′(ē)
A′(ē)as a → A(ē), whih due to ontinuity of π is su�ient for di�erentiability at thepoints A(ē) and A(eFB). Moreover, on this interval we have

π′′(a) =
P ′′(e2)A

′(e2)− P ′(e2)A
′′(e2)

A′(e2)3
=

S ′′(e2)A
′(e2)− S ′(e2)A

′′(e2)

A′(e2)3
< 0. (23)Proof of Proposition 1.As shown in Lemma 2, no e�ort level greater than eFB will be implemented, hene

e2(1) ≤ eFB. To show how the e�ort levels ompare aross periods and states, wehave to solve the prinipal's maximization problem. Reall that a(1) denotes theagent's ontinuation payo� in ase of a suess and a(0) the agent's ontinuationpayo� in ase of a failure, so that in the �rst period the agent hooses an e�ortlevel e1 = argmaxe ea(1) + (1 − e)a(0) − c(e). As desribed in Lemma 2, theprinipal an hoose any pair of nonnegative ontinuation payo�s a(0), a(1) andget the payo� e1(R+ π(a(1))) + (1− e1)π(a(0)). Beause setting a(1) ≤ a(0) with
e1 = 0 is dominated by repeating the optimal one-period ontrat,21 we an omitthe onstraint a(1) ≥ 0 and use the �rst order ondition c′(e1) = a(1) − a(0) toharaterize the inentive ompatible �rst-period e�ort level. Hene, we an statethe prinipal's optimization problem in terms of e1 and a(0) as

max
e1,a(0)

e1(R + π(c′(e1) + a(0))) + (1− e1)π(a(0)) (24)
s.t. a(0) ≥ 0.21Unonditionally repeating the optimal one-period ontrat yields 2P (eSB)− I2, while e1 = 0yields P (eSB)− I2 at best. 23



The Lagrangian for this problem is
L(e1, a(0), λ) = e1(R + π(c′(e1) + a(0))) + (1− e1)π(a(0)) + λa(0),with λ ≥ 0. Reall that A′(e) = ec′′(e) to see that in the optimum it must holdthat

R + π(a(1))− π(a(0)) + A′(e1)π
′(a(1)) = 0, (25)and

e1π
′(a(1)) + (1− e1)π

′(a(0)) = −λ, (26)with either a(0) = 0, whih orresponds to the termination ase in the proposition,or a(0) > 0 and λ = 0.We start with using the �rst order onditions to show that in the optimum
e1 < e2(1). First, in the ase a(1) ≤ A(eFB), note that

c′(e1) = a(1)− a(0) ≤ a(1) ≤ e2(1)c
′(e2(1))− c(e2(1)) < c′(e2(1)).Seond, for the ase a(1) > A(eFB) we have π′(a(1)) = −1 and π(a(1)) < 0 (seeLemma 2), so that the �rst order ondition (25) tells us that A′(e1) < R. On theother hand, A′(e1) = e1c

′′(e1) ≥ c′(e1), beause c′′ is weakly inreasing. Sine forany e1 ≥ eFB it holds that c′(e1) ≥ R, it must in fat be true that e1 < eFB = e2(1).Next, we show that e1 > eSB. Using the equality a(1) − a(0) = c′(e1) we anrewrite the �rst order ondition (25) as follows:
P ′(e1) = a(0) + π(a(0))− (a(1) + π(a(1)))− A′(e1)(π

′(a(1)) + 1).Note that π′(a(1)) ≥ −1 (see Lemma 2), and beause the seond period surplusrises in the implemented agent's payo�, we see that P ′(e1) ≤ 0 and hene, e1 ≥ eSB.Moreover, e1 = eSB an only hold if a(0) = 0, a(1) + π(a(1)) = 0, and π′(a) = −1,whih an only be true in the boundary ase I2 = S(eFB).It remains to be shown that, in ase of ontinuation, e2(0) < eSB. From Lemma 2we know that π′(a) = P ′(e2)
A′(e2)

is dereasing in a, hene we have that π′(a(1)) ≤

π′(a(0)). In the ase that a(0) > 0 and λ = 0 it must be true that π′(a(1)) and
π′(a(0)) have opposite signs for equation (26) to be ful�lled. Hene, it holds that
P ′(e2(1)) < 0 < P ′(e2(0)), whih implies e2(0) < eSB < e2(1).24



Proof of Proposition 2.First, we show that for installment osts smaller than P (eSB) it holds that x(1) = 1in the optimal ontrat, while for installment osts larger than P (eSB) it holds that
x(0) = 0. To see this, note that Lemma 2 implies that if x(1) < 1 then e2(1) = ēand that if x(0) > 0 then e2(0) ≥ ē. Moreover, Lemma 1 and Proposition 1 tell usthat for I2 ≤ P (eSB) it holds that ē ≤ eSB < e2(1), whih ontradits x(1) < 1,while for I2 ≥ P (eSB) it would hold that ē ≥ eSB > e2(0) in ase x(0) > 0, whihis a ontradition.Next, we show that there exists a threshold IC > 0 as in the proposition. Tosee what happens for very low installment osts I2 → 0, reall from the proof ofProposition 1 (equation 26), that an optimal ontat must satisfy the ondition
e1π

′(a(1)) + (1 − e1)π
′(a(0)) ≤ 0. Lemma 2 and Lemma 1 imply that if in theoptimal ontrat x(0) < 1 then π′(a(0)) = P ′(ē)

A′(ē)
, so that π′(a(0)) → ∞ as I2 → 0while π′(a(1)) ≥ −1. This shows that for su�iently low levels of I2 a ontratwith unonditional ontinuation (x(0) = x(1) = 1) is optimal.Note that the e�ort levels indued by this unonditional ontinuation ontratdo not depend on I2, whih implies that the derivative of the prinipal's maximumpro�t with respet to I2 is equal to −1 for low installment osts. In general, themaximum pro�t is dereasing and weakly onvex in I2. Consequently, there mustexist an investment level IC > 0 suh that to always ontinue the projet is optimalfor all I2 ≤ IC , but not for any I2 > IC .Sine we have already shown x(0) = 0 for all I2 ≥ P (eSB), there must existan investment level IT with IC ≤ IT ≤P (eSB) suh that a termination ontrat(eT1 , eT2 , xT , tT1 , t

T
2 ) with xT (0) = 0 is optimal for all I2 > IT . Next, onsider the(possibly empty) range of installment osts between IC and IT for whih the op-timal ontrat features x(0) ∈ (0, 1). Equation (26) in the proof of Proposition 1tells us that the �rst period e�ort level indued by this ontrat is

e1 =
P ′(ē)

P ′(ē)− π′(a(1))A′(ē)
. (27)Sine at I2 = P (eSB) this ondition reads e1 = 0, but e1 lose to zero wouldontradit e1 > eSB , it must hold that IT < P (eSB).Finally, we show existene of the threshold ITT . If the agent's ontinuation25



payo� after a suess, whih is equal to c′(eT1 ) in the termination ontrat, is smallerthan A(ē), then the projet is ontinued with probability xT (1) < 1 only, else itis ontinued with probability xT (1) = 1 (this is again Lemma 2). As proved inLemma 1, the threshold ē is inreasing in I2. Moreover, it is straightforward toshow that eT1 , whih is impliitly haraterized by
R + π(c′(eT1 )) + A′(eT1 )π

′(c′(eT1 )) = 0,(see equation 25, with a(0) = 0), is dereasing in I2. Consequently, there must exista ut-o� level P (eSB) < ITT ≤ S(eFB), suh that for all I2 > ITT it holds that
A(ē) > c′(eT1 ) and xT (1) < 1, and for all I2 ≤ ITT it holds that A(ē) ≤ c′(eT1 ) and
xT (1) = 1.Proof of Lemma 3.First, note that for a quadrati ost funtion c(e) = αe2 our assumptions implythat 2α ≥ R. For suh a ost funtion, it holds that eFB = R

2α
and S(eFB) = R2

4α
,while eSB = R

4α
and c′(eSB) = R

2
. It is thus the ase that A(eFB) ≤ c′(eSB). Sinethe prinipal's optimal ontrat will always lead to a �rst-period e�ort level thatexeeds eSB, it must hold that e2(1) = eFB and x(1) = 1 for all possible installmentosts.Next, assume that for some I2 there was an optimal ontrat with x(0) ∈ (0, 1).Going bak to equation (27) in the proof of Proposition 2 we see that this ontratwould implement the �rst period e�ort level

e1 =
P ′(ē)

S ′(ē)
=

P (ē)− I2
S(ē)− I2

, (28)where we used π′(a(1)) = −1 (see Lemma 2) for the �rst equality, and the de�nitionof ē in equation (12) together with equation (16) for the seond. Taking into aountthe inentive onstraint for e1, c′(e1) = a(1)− a(0), we an rewrite the prinipal'spro�t from suh a ontrat as
P (e1) + e1(S(e

FB)− I2)− e1x(0)(S(ē)− I2) + x(0)(P (ē)− I2). (29)Plugging in the value for e1, we see that it is equal to
P (e1) + e1(S(e

FB)− I2) ≤ max
e

P (e) + e1(S(e
FB)− I2) = ΠT (I2, R), (30)26



where ΠT (I2, R) denotes the prinipal's payo� from a termination ontrat. Hene,a ontrat with x(0) ∈ (0, 1) is never optimal.Proof of Corollary 1.Consider the optimal ontrat in the ase of the bad projet with return Rb. In thease of the good projet with return Rg > Rb the prinipal ould simply o�er thesame ontrat. Then the agent's behavior would be the same, but the prinipal'sexpeted pro�t would be stritly larger. By optimally adjusting the ontrat in thease of the good projet, the prinipal's payo� an only improve.Proof of Proposition 3.The prinipal now has to take into onsideration additional renegotiation-proofnessonstraints. First, we present the version of the renegotiation-proofness priniplethat applies here (f. Hart and Tirole, 1988). Renegotiation-proofness is simple inour setting due to omplete ontrating and the fat that renegotiation an ouronly between the two periods.22 In partiular, we do not need bakward indutionto de�ne the set of renegotiation-proof ontrats. Beause the arguments are wellknown, we only sketh them here.If there is a ontrat κ = (e1, e2, x, t1, t2) ∈ C in plae, then at date 2, when theoutome y1 is realized, this ontrat would lead to a ontinuation payo�
a(y1) = t1(y1) + x(y1) (e2(y1)c

′(e2(y))− c(e2(y1)))for the agent and a ontinuation payo�
p(y1) = −t1(y1) + x(y1) (e2(y1)(R− c′(e2(y))))for the prinipal. We ould assume any renegotiation proess that is desribed bya funtion that maps the urrent pair of ontinuation payo� a(y1), p(y1) to a pairof expeted payo�s aRP (y1), p

RP (y1) suh that aRP (y1) ≥ a(y1), pRP (y1) ≥ p(y1),22The only other points in time when new information arrives are at date 4, when y2 realizes andonly payments remain to be made, and when the ontinuation deision realizes. Note, however,that if an expeted payo� (xa, xp) is Pareto-optimal, then the realized termination payo�s (0, 0)or ontinuation payo�s (a, p) are Pareto-optimal as well.27



and the pair aRP (y1), p
RP (y1) is Pareto-optimal in the set of attainable ontinua-tion payo�s. As an example for suh a proess, one an imagine that the agent(resp., the prinipal) makes a take-it-or-leave-it o�er of a new ontinuation on-trat (e′2, x′, t′1, t

′
2,) with probability α (resp, 1−α), and the other party aepts orrejets. Clearly, the ontrat κ = (e1, e2, t1, t2, x) is renegotiation-proof if and onlyif it already spei�es a Pareto-optimal seond-period outome for both y1 ∈ {0, 1}.If the ontrat κ is not renegotiation-proof, it will not lead to the spei�ed e�ortlevels. Instead, seond period outomes are determined by renegotiation, whihis antiipated by the agent when he hooses the �rst-period e�ort level suh that

c′(eRP
1 ) = aRP (1)− aRP (0). The prinipal's payo� if the ontrat κ is written andrenegotiated thus is

ΠRP (κ) = eRP
1 (R + pRP (1)) + (1− eRP

1 )pRP (0). (31)Let C denote the set of all possible ontrats as de�ned in Setion 2.2 and let
CRP denote the set of renegotiation-proof ontrats. Furthermore, Π(κ) denotesthe prinipal's payo� if she an ommit to the ontrat κ, and ΠRP (κ) denotes theprinipal's payo� from a ontrat κ if there is renegotiation. The version of therenegotiation-proofness priniple that applies in our framework says that

max
κ∈C

ΠRP (κ) = max
κ∈CRP

Π(κ). (32)It follows by de�nition of renegotiation-proof ontrats that ΠRP (κ) = Π(κ) for all
κ ∈ CRP , and therefore maxκ∈C ΠRP (κ) ≥ maxκ∈CRP Π(κ). The other diretion fol-lows beause with omplete ontrats any Pareto-optimal alloation an be reahedby a ontrat in C.23 With renegotiation every ontrat κ ∈ C leads to Pareto-optimal ontinuation payo�s aRP (y1), p

RP (y1), and a ontrat κ′ that spei�es theontinuation payo�s a′(y1) = aRP (y1) and p′(y1) = pRP (y1) from the outset is thenrenegotiation-proof with ΠRP (κ) = Π(κ′).23By working diretly with the set C, we use the same initial simpli�ations to the set ofontrats as in the full ommitment ase. The reason why we an do this is that all that mattersfor renegotiation are the ontinuation payo�s of the two parties, and the simpli�ations thatwere made to the set of ontrats have the property that all possible ontinuation payo�s stayattainable with the redued set of ontrats. 28



Pareto optimal one-period outomes an be found by maximizing the prinipal'spayo� under the onstraint that the agent gets at least a ertain payo�, a problemthat we already partially solved with Lemma 2. The Pareto frontier must onsist ofpairs (a, π(a)) of the form desribed in the lemma, but not all of these payo�s areindeed Pareto-optimal. The funtion π is inreasing as long as e2 ≤ eSB, and thendereasing. Consequently, all pairs (a, π(a)) with e2 ≥ eSB are Pareto-optimal,while all pairs with e2 < eSB are Pareto-dominated.Consider �rst the ase I2 < P (eSB). In this ase, ē ≤ eSB, and therefore ofall ontinuation ontrats desribed in Lemma 2 only those with a ≥ A(eSB) arerenegotiation-proof. The prinipal solves
max

a(1),a(0)
e1 (R + π(a(1))) + (1− e1)π(a(0)), (33)subjet to a(0) ≥ A(eSB), and where e1 is given by c′(e1) = a(1)− a(0).This is solved by a(0) = A(eSB) and ēC2 (0) = eSB as well as ēC1 , ēC2 (1) impliitlyde�ned by c′(ēC1 ) = a(1)− A(eSB) and

R + π(a(1))− π(A(eSB)) + A′(ēC1 )π
′(a(1)) = 0.The omparison of e�ort levels follows as before. We denote the prinipal's expetedpro�t in the ase of unonditional ontinuation by

Π̄C(I2, R) = P (ēC1 ) + ēC1
[

S(ēC2 (1))− S(eSB)
]

+ P (eSB)− I2. (34)To get this expression for the pro�t we used that a(1) − c′(ēC1 ) − A(eSB) = 0 andthat with unonditional ontinuation a(y1) + π(a(y1)) = S(e2(y1))− I2.Consider next the ase I2 ≥ P (eSB). In this ase, ē ≥ eSB, so that all ontinu-ation payo�s desribed in Lemma 2 are Pareto-optimal.Sine then I2 > IT , the termination ontrat haraterized in the proof ofProposition 2 solves the prinipal's maximization problem. This ontrat is renegotiation-proof. The prinipal's pro�t in ase of termination is
ΠT (I2, R) = P (eT1 ) + eT1 x

T (1)(S(eT2 (1))− I2).

29



Proof of Corollary 2.Let Π̄C(I2, R) and ΠT (I2, R) be the pro�t from a renegotiation-proof ontinuationontrat and from a termination ontrat, resp., as de�ned in the proof of Propo-sition 3. The funtions Π̄C(I2, R) and ΠT (I2, R) are ontinuous and dereasing in
I2 (with derivatives −1 and −eT1 , resp.). At I2 = P (eSB) > IT , we know that
ΠT (I2, R) > Π̄C(I2, R). Hene, at I2 = P (eSB) the prinipal's expeted pro�t asharaterized in Proposition 3 is disontinuous, and the size of the jump is givenby

ΠT (P (eSB), R)− Π̄C(P (eSB), R)

= P (eT1 ) + eT1
[

S(eT2 (1))− P (eSB)
]

−
(

P (ēC1 ) + ēC1
[

S(ēC2 (1))− S(eSB)
])

> P (ēC1 ) + ēC1
[

S(ēC2 (1))− P (eSB)
]

−
(

P (ēC1 ) + ēC1
[

S(ēC2 (1))− S(eSB)
])

> eSBA(eSB).

Proof of Corollary 3.Fix R and I2 = P (eSB). Beause P (eSB) is inreasing in R, Proposition 3 impliesthat any Rb < R leads to the expeted pro�t ΠT (I2, Rb), while any Rg > R leadsto the expeted pro�t Π̄C(I2, Rg). Corollary 2 shows that ΠT (I2, R) > Π̄C(I2, R)+

eSBA(eSB). Sine ΠT (I2, R) and Π̄C(I2, R) are ontinuous in R, one an �nd an Rgslightly larger than R and an Rb slightly smaller than R, suh that ΠT (I2, Rb) >

Π̄C(I2, Rg), i.e., the prinipal prefers Rb to Rg.
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