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Abstract: The relation between the degree of financial development of an economy 

(measured by the extent in which constraints to credit exist) and fluctuations affecting the 

trend of economic growth, is a relevant theme of discussion in macroeconomics. Some of 

the literature on this field argues that the cyclical behaviour is generated endogenously, 

under the model’s assumptions, for specific levels of credit availability. Following this line 

of reasoning, the paper develops a theoretical framework that places a risk premium over 

the international interest rate as the centre piece of the explanation for the occurrence of 

endogenous business cycles, under particular levels of financial development. The risk 

premium penalizes the borrowing capacity of the less wealth endowed countries. The 

analysis explores both local and global dynamics.     
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1. Introduction 

 

From an empirical point of view, it is well accepted that the level of financial 

development is strongly correlated with economic growth, at least in the short run. This 

result is highlighted, for instance, by Levine (1997, 2005), Demirguç-Kunt and Levine 

(2001) and Christopoulos and Tsionas (2004); these last authors present evidence that 

allow to conclude that the causality runs from finance to growth, and not the other way 

around. This result seems logical: developed financial markets, in which barriers to 

credit are not too relevant, contribute to an efficient allocation of productive inputs 

across economic agents and also in a temporal perspective, allowing for a potentially 

higher level of generated income. 

This simple and intuitive result is relevant when trying to establish a link between 

the long term growth trend and short run fluctuations. Somehow surprisingly, theories 

on business cycles and on economic growth have evolved under separate paradigms 

that rarely intersect each other. Aghion, Angeletos, Banerjee and Manova (2005) stress 

this odd fact, by recognizing that the modern theory of cycles gives relevance to the 

degree of financial development as a source of propagation of productivity shocks, but 

in business cycles analysis these disturbances frequently arise as exogenous; in the 

opposite field, the modern growth theory emphasizes the central role of productivity 

and often considers it as the outcome of an endogenous production process, in order to 

explain growth trends, but it neglects any mechanism of propagation that eventually 

generates short run fluctuations. 

This paper intends to contribute to the literature on the integrated approach to 

growth and cycles in environments where the degree of financial development may 

vary. Such literature has benefited from important contributions, starting with the work 

of Bernanke and Gertler (1989), King and Levine (1993) and Kyotaki and Moore 

(1997).  

Recently, the subject has gained a new impulse with the work of Philippe Aghion 

and his co-authors. Aghion, Banerjee and Piketty (1999) presented the benchmark 

model; in this model, the macroeconomic setup is characterized by the existence of an 

agency problem that limits the access of firms to credit, an element that is modelled by 

assuming a credit multiplier as the one initially proposed by Bernanke and Gertler 

(1989). The capital market imperfections generate endogenous fluctuations that persist 

in the long run. The main economic aggregates (output, investment and the interest 
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rate) will exhibit cycles that are well explained from an economic intuition point of 

view: there is a multiplier effect of investment that conflicts with increasing interest 

rates that higher investment levels produce, that is, the tension of two forces that push 

investment in opposite directions generates and allows to sustain endogenous cycles 

over time.  

The previous work has been extended by Aghion, Baccheta and Banerjee (2004), 

who study the effects of financial development over small open economies, and 

conclude that unstable dynamics (in the case, just period two cycles) arise for 

intermediate levels of financial development, while stability prevails in economies that 

have credit systems that are either underdeveloped or significantly developed. 

In Aghion, Baccheta and Banerjee (2000, 2001), a similar type of analysis is 

undertaken, but in these studies the focus lies in monetary economies characterized by 

the presence of nominal price rigidities. The main conclusions are: (i) in credit 

constrained economies in which debt is issued both in domestic and foreign currencies, 

currency crises are likely to arise; (ii) currency crises generated by the interplay 

between credit constraints and price sluggishness are associated with the presence of 

multiple equilibria.  

Finally, the work by Aghion, Howitt and Mayer-Foulkes (2005) establishes the 

bridge between financial development and growth convergence. Their model proposes 

an explanation of growth where the growth rate of an economy with a high level of 

financial development will converge to the rate of growth of the world technology 

frontier, while all the other economies will systematically grow at a lower rate. 

The framework that we propose in the following sections concerns to an 

endogenous growth setup. This has been the main theoretical structure in which the 

problem under discussion has been addressed. This is the case of the previously 

discussed references, as well as of other studies, like Amable, Chatelain and Ralf 

(2004), who analyze how credit rationing affects endogenous growth when debt is 

related to the firm’s internal net worth taken as collateral, Blackburn and Hung (1998) 

and Morales (2003) who concentrate in growth models based on innovation to study the 

relationship between finance and growth, and also Harrison, Sussman and Zeira (1999) 

and Khan (2001) who integrate financial intermediation and growth under an AK 

growth model. The model that we intend to analyze takes as well an AK production 

function.  

Besides the literature on the link between financial development and endogenous 

growth, the paper also connects to the literature on endogenous business cycles that was 
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initially developed by Benhabib and Day (1981), Day (1982) and Grandmont (1985), 

among many others, and that was recovered later essentially by two strands: first, the 

one that searches for non linear dynamics in optimal growth models under competitive 

markets. Here, we can include Nishimura, Sorger and Yano (1994), Boldrin, 

Nishimura, Shigoka and Yano (2001), and related literature. These authors search for 

extreme conditions under which endogenous fluctuations arise in competitive 

frameworks (e.g., too low discount factors or peculiar types of production functions).  

Second, it is relevant to mention the work that has adapted the Real Business 

Cycle model to a completely deterministic setup able to produce long run business 

cycles. This work was initiated by Christiano and Harrison (1999), and further 

developed by Schmitt-Grohé (2000) and Guo and Lansing (2002), among others. These 

endogenous growth models take the structure of the Real Business Cycle models, 

namely, a setup where the representative agent has two types of choices to make 

(between consumption and savings, on one hand, and between leisure and work time, 

on the other hand), and add to it a production function exhibiting increasing returns to 

scale (that can result, for instance, from a positive externality on the production of final 

goods). This framework, that can be contested by the evidence that only too high 

externality levels are able to produce endogenous cycles, is able to generate cycles of 

various periodicities including chaotic motion. See Gomes (2006) for a survey on 

macroeconomic models capable of reproducing cycles as a result just of the non linear 

relation between economic aggregates. 

The model to be presented and discussed is essentially based on the theoretical 

structure developed by Caballé, Jarque and Michetti (2006) [hereafter CJM]. These 

authors propose to present a model of financial development pointing to a set of results 

close to the ones by Aghion, Baccheta and Banerjee (2004), that is, growth related 

instability eventually arises for intermediate levels of financial development and 

stability prevails for both low and high levels of credit worthiness. Nevertheless, the 

type of fluctuations found in the CJM model is much more comprehensive, in the sense 

that it is not limited to period two cycles, but higher order cycles and complete a-

periodicity (including chaos) are obtainable.  

The framework to develop below is based on the structure of the CJM model, 

with two important differences: first, we consider a unique input that is internationally 

available (the CJM model takes a second production factor, which is country specific); 

second, besides a constraint on credit, we include a second limitation that firms in less 

developed countries have when searching for credit in international markets: a risk 
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premium is charged over countries that are less endowed in terms of accumulated 

wealth. This alternative structure is able to generate, for specific values of some 

meaningful parameters, endogenous cycles of various periodicities, including chaotic 

motion. 

The model is analyzed both in terms of local and global dynamics. Locally, one 

identifies the points where bifurcations separate regions of stability (or saddle-path 

stability) from regions of instability; globally, one confirms that stability truly prevails 

on the areas identified locally as such, while in the locally unstable areas, we find a 

region of cyclical behaviour before instability becomes dominant (here, we identify 

instability with the notion of variables diverging to infinity). 

Synthesizing, the paper takes the a model of financial development and growth, 

simplifies its structure in terms of production conditions (a one input AK production 

function is taken), introduces a risk premium over the interest rate, and it proposes to 

analyze this alternative framework about finance and growth. As in the CJM study, 

completely a-periodic cycles are generated. 

The remainder of the paper is organized as follows. Section 2 presents the 

structure of the model. Section 3 studies local dynamics and section 4 global dynamics. 

Section 5 presents an additional feature by introducing endogenous technical progress. 

Finally, conclusions are left to section 6. 

   

2. The Model 

 

We consider a small open economy where a large number of households and firms 

interact. In this economy, population does not grow and, hence, all aggregate variables 

may, indistinctively, be considered level or per capital variables. We assume that 

households consume a constant share of the economy’s income, that is, we take c∈ (0,1) 

as the marginal propensity to consume. Firms generate wealth through the production of 

goods given the resources available for investment. 

Basically, we will work with an endogenous growth setup, since the aggregate 

production function to consider is of the AK type, i.e., yt=Akt, with A>0 an index of 

technological capabilities and yt and kt the levels of output and physical capital in a 

given time moment t. Assuming that capital fully depreciates after one period, there is a 

coincidence between investment and the stock of capital, it=kt, and thus output grows 

proportionally with the increase in the resources invested in the productive activity. 
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Firms can borrow funds in the domestic financial markets in order to finance their 

productive projects. The international nominal rate of interest is r>0, but firms have 

access to loans at this rate only if the level of accumulated wealth of the economy is not 

below a given threshold value (wt
*
) imposed by monetary authorities. When the 

economy’s level of wealth, wt, is below the benchmark level, financial markets perceive 

a risk associated to loans and therefore they will charge a higher interest, which is as 

much higher as the larger is the difference between wt and wt
*
. Consequently, for low 

levels of development (relatively low levels of accumulated wealth), the interest rate 

becomes a decreasing function of wealth. Formally, the domestic interest rate on 

productive loans will be 
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In (1), we introduce a time lag by assuming that today’s wealth levels will be 

reflected on tomorrow’s interest rate. Function f is continuous and differentiable, with 

fw<0, 1lim
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
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w
f  and f(0)→+∞, i.e., an infinite interest rate is hypothetically 

applied over loans when the economy is hypothetically endowed with no resources. 

Furthermore, we assume that if ξ=



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


*

t

t

w

w
f , with ξ some positive constant, we can 

compute an inverse function f
-1

, such that *1 )( tt wfw ⋅= − ξ ; the following properties 

should apply: 01 <−
ξf  and ( ) 111 =−f . 

Function f reflects the risk premium on loans. Possibilities of profitable investment 

require considering that the marginal productivity of capital exceeds the lowest possible 

interest rate, i.e., A>r. 

Besides the imposition of a risk premium, the financial sector will be 

characterized as well by placing quantitative constraints on credit. These may reflect, 

for instance, inefficiencies arising from information asymmetries. The level of wealth 

serves as collateral to loans, and firms may borrow at most µwt, with µ>0 a credit 

multiplier that is supposed to translate the level of financial development of the national 

economy. Therefore, our setup assumes two obstacles to credit: first, an interest 
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premium that affects the price of credit; second, a level or quantitative boundary that 

imposes a ceiling on the availability of credit. 

 Wealth dynamics will be given by a simple rule. We just consider that next 

period’s level of wealth corresponds to the non consumed income, with income given 

by output less debt payment. Letting bt be the amount of financial resources that are 

borrowed by firms in moment t, we have 

 

)()1(1 tttt brycw ⋅−⋅−=+ ,  w0 given. (2) 

 

In difference equation (2), the output level may be replaced by an expression 

reflecting the level of investment. Noticing that the economy will invest, on aggregate, 

the level of available wealth plus the borrowed resources, then it=wt+bt, and therefore 

output comes )( ttt bwAy +⋅= . Equation (2) is, thus, equivalent to 

[ ]tttt brAAwcw ⋅−+⋅−=+ )()1(1 . 

Two cases are clearly distinct, in what concerns firms’ behaviour. First, if A≥rt 

then it is profitable to invest in production the largest amount that it is possible to 

borrow. With a marginal productivity above the financial return, firms choose bt=µwt, 

and thus equation (2) becomes  

 

[ ] ttt wrAcw ⋅⋅−+⋅⋅−=+ µµ)1()1(1 ,  (A≥rt). (3) 

 

Second, when A<rt firms borrow only until the point where the productive 

marginal return is equal to the interest rate, that is, ttttt wrbry ⋅=⋅− . Therefore,  

 

ttt wrcw ⋅⋅−=+ )1(1 ,  (A<rt). (4) 

 

It is important to associate the previous wealth expressions with our interest 

condition (1). Observe that under A≥rt we have 
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 obeys to the properties previously stated in this section; 
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particularly, it is true that 11 <






−

r

A
f , and this condition allows to distinguish among 

three different states of the assumed economy, according to the following diagram: 

 

 

 

The previous scheme reveals that the wealth dynamics equation is a piecewise 

function with three segments, as follows 
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The assumption of an AK production function implies that our setup is an 

endogenous growth framework, in the sense that all the mentioned aggregates (yt, kt, it, 

wt) grow in the steady state at a positive and constant rate. Let this rate be γ>0 and 

assume that the benchmark level of wealth, wt
*
, represents a trend of accumulated 

wealth, such that it grows at rate γ for all t. We define constant 
t

tw
w

)1(
ˆ

*
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≡  and 
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t

t

t

w
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≡ . System (5) is now rewritten for the detrended variable: 
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The dynamic analysis of system (6) requires transforming the one equation / two 

time lags expression into a two equations / one time lag system. This may be done by 

defining variables www tt −≡ ˆ~  and wwz tt −≡ −1
ˆ~ , with w  an equilibrium point of 

system (6). The system that will be subject to analysis is, thus, the one in expression (7). 
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Note that the steady state values of variables tw~  and tz~  are, both, zero. 

The first step to analyze (7) consists in determining the steady state. Two steady 

state points are feasible. The first is valid for *1
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Two steady state points exist under the assumption that ( )⋅−1f  is a constant value. 

The following condition is essential to guarantee a positive long run level of wealth: 
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3. The Analysis of Local Bifurcations 

 

Because system (7) has two equilibrium points, local dynamics must be dissected 

in the vicinity of each one of these points. Let us start by taking 1w . The equilibrium 

point exists for the first equation of the system. Linearizing the system in the vicinity of 

this point, one obtains 
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 In (8), fz represents the derivative of function f in order to tz~ . The sign of fz 

determines the type of dynamics underlying the system. Because tz~  is just a linear 

transformation of tŵ , we must have fz<0. The dynamic behaviour is characterized in 

proposition 1. 

 

Proposition 1. Local dynamics in the vicinity of the first equilibrium point, 1w , are 

expressed on the following conditions: 
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Proof: The trace and the determinant of the Jacobian matrix in (8) are, 

respectively, Tr(J)=1 and Det(J)= 0
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, a condition that applies only for certain 

combinations of parameter values. Thus, stability can only break down in the 

circumstance in which the eigenvalues of J become a pair of complex conjugate 

eigenvalues, i.e., when Det(J)=1, or, yet, a Neimark-Sacker bifurcation occurs. 

Condition Det(J)>1 implies instability. Figure 1 depicts graphically this stability result.    

 

- Figure 1 here - 

� 
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Consider now 2w . This equilibrium relates to the second equation of (7). Once 

again, we linearize the system, to obtain 
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Proposition 2. In the vicinity of 2w , the dynamics of the financial model are given 

by the following conditions: 

i) If 2
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, then a bifurcation occurs. 

 

Proof: Once again, we look at conditions 1-Tr(J)+Det(J)>0, 1+Tr(J)+Det(J)>0 

and 1-Det(J)>0 to characterize stability. The first is never satisfied, thus stability (stable 

node or stable focus) cannot hold; because Det(J)<0, the third condition is always 

verified. Thus, it is through the analysis of the sign of 1+Tr(J)+Det(J) that we can 

distinguish between stability outcomes. When Det(J)<-2, we will have a saddle-path 

stable equilibrium (one of the eigenvalues of the Jacobian lies inside the unit circle, 

while the other does not); Det(J)>-2 implies instability (both eigenvalues outside the 

unit circle). A bifurcation separates the two referred regions, for Det(J)=-2. The three 

previous conditions are equivalent to the ones in the proposition. 

Relatively to the bifurcation observe that for the presented determinant value, the 

two eigenvalues of J are -1 and 2. Note that this cannot be considered a flip bifurcation, 

because although this kind of bifurcation implies that one of the eigenvalues must be 

equal to -1, it also requires that Tr(J)∈ (-2,0) and Det(J)∈ (-1,1), which is not the case. 

Graphically, we have  

 

- Figure 2 here - 
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� 

 

Specific f function. Consider now the following particular function f: 

θ−









=








**

t

t

t

t

w

w

w

w
f , θ>0. This function obeys to the properties previously postulated. 

With a particular functional form, one is able to present explicit expressions for the 

steady states. They are 

*

/1

1
ˆ

1

)1(
w

rc
w ⋅









+
⋅−=

θ

γ
 and *

/1

2
ˆ

1

1
)1(

w

c
A

r
w ⋅



















−
+−+⋅

⋅=

θ

γµ

µ
. 

According to system (7), we must have 12 ww > , which is equivalent, under the 

specific case in consideration, to 
c

A
−
+<

1

1 γ
. Combining this relation with the constraint 

that allows for a positive 2w , we can present the following boundary values for the 

economy’s growth rate: ( )1)1()1(;1)1( −−⋅⋅+−−⋅∈ cAcA µγ . The growth rate is 

bounded given the level of technology, the marginal propensity to consume and the 

level of financial development. This last parameter is particularly relevant, because it 

establishes a relation between constraints on credit and growth: the lower are the 

constraints, the higher is the potential pace of growth. 

Local dynamics can be addressed under the specific risk premium function. The 

Jacobian matrices are, for each one of the equilibrium points: 

 








 −
=

01

1
1

θ
J  for 1w ; 























 −
+
−⋅+⋅⋅=

01

1
1

1
)1(1

2 γ
µθ c

A
J  for 2w .  

 

Matrices J1 and J2 are particular cases of the matrices in (8) and (9). In the first 

case, a unique bifurcation parameter exists: θ<1 implies stability and θ>1 instability. A 

Neimark-Sacker bifurcation occurs at θ=1. For 2w , the combination of parameters 

separating the region of saddle-path stability from instability is 

θ
θ

γ
µ 2

1

1
)1(

+=
+
−⋅+⋅ c

A ; we conclude that the higher the degree of financial 

development, the more likely will be the situation in which the system falls into the 

instability region. 
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The analysis of global dynamics will allow to clarify the apparent paradox that the 

previous arguments enclose: first, we have stated that a higher degree of financial 

development allows for a potentially higher growth rate, which seems an intuitive 

result; second, high values of parameter µ are associated with instability (this result 

clearly arises in the global analysis of the section that follows). This result may be 

justified under the idea that a too high level of µ means too few constraints on credit, or 

too low collateral requirements on loans. This, in turn, can increase the risk of failure in 

paying the loans by the borrowers, what can lead to situations of strong decline in the 

confidence underlying the financial system that may culminate in financial crises. 

Instability for high values of µ can therefore be associated to credit availability that is 

not constrained by any precautionary measures.   

 

4. Global Dynamics 

 

The study of global dynamics requires the consideration of a specific form of the 

system (we consider a same f function as in the final part of the previous section) and to 

assume some benchmark values for parameters. The following are chosen as reasonable 

values: c=0.75, γ=0.04 and r=0.03; we take as well the indexes 1ˆ * =w  and A=3. The 

remaining two parameters, θ and µ, will assume several different values in the analysis. 

Note that although system (7) may be analyzed in terms of global dynamics, it is a 

different system for different equilibrium values. Hence, we should study dynamics 

taking, alternatively, 1w  and 2w . Let us start by considering 1w . In this case, local 

dynamics has pointed to a Neimark-Sacker bifurcation occurring at θ=1. For values of θ 

below one, stability prevails (in this case, the global dynamics result is coincidental with 

the result found locally), while for values of θ above 1 a region of endogenous cycles 

will arise before instability sets in.
1
 

One of the values of θ for which cycles are present is θ=1.3. For this value, we 

draw a bifurcation diagram concerning parameter µ. One observes that fluctuations 

indeed prevail for a given set of values of the credit multiplier. Note that µ is bounded 

                                                 
1
 A bifurcation diagram for parameter θ would confirm these dynamic properties. Since we are essentially 

concerned with the role of the credit multiplier, we omit the presentation of this diagram. 
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from above, given condition 
c

A
−
+>+⋅

1

1
)1(

γµ . Figure 3 displays the bifurcation 

diagram.
2
 

 

- Figure 3 here - 

 

Recall that tw~  is a variable that is modified twice. First, it was detrended and then 

it was normalized to a zero steady state. The original variable has a positive detrended 

equilibrium value and follows an upward sloping trend. The modified variable follows, 

for a specific value of µ for which fluctuations are evident (µ=1.5), the time path 

displayed in figure 4. Figure 5 presents, for the same value of µ, the long term attracting 

set of the relation between tw~  and tz~ . 

 

- Figures 4 and 5 here - 

 

The presence of chaotic motion is well demonstrated through the graphical 

examples, but we can reemphasize the idea by computing Lyapunov characteristic 

exponents (LCEs). These are a measure of chaos and they indicate the presence of this 

type of dynamic behaviour if, in a two dimensional system as the one we consider, at 

least one of the two LCEs is positive. LCEs evaluate the exponential divergence of 

nearby orbits, that is, they search for sensitive dependence on initial conditions, a 

property that is accepted to characterize the presence of chaotic motion. Sensitive 

dependence basically means that if a same deterministic system initialized in two 

distinct points (even though these may be located very close to each other) it produces 

long term time series that have no identifiable common features.  

Table 1 presents the computation of LCEs and the fractal dimension of the 

attractor, for various values of parameters θ and µ.
3
 The fractal dimension of the 

attractor is given by the formula 
1

21
λ
λ

+=D , according to the definition by Kaplan and 

Yorke (1979), where λ1 is the negative LCE and λ2 the positive one. If both LCEs are 

                                                 
2
 All the figures concerning global dynamics presented in this paper are drawn using IDMC software 

(interactive Dynamical Model Calculator). This is a free software program available at 

www.dss.uniud.it/nonlinear, and copyright of Marji Lines and Alfredo Medio. 
3
 iDMC software is also used to compute LCEs. 
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positive, a circumstance that eventually occurs and that is generally designated by hyper 

chaos, then the attractor dimension is 212 λλ ++=D , with both λ1 and λ2 above zero.
4
 

 Evidently, the fractal dimension can only be computed for chaotic systems; 

otherwise, the dimension of the attractor in an order 2 system is equal to 1, that is, the 

fractal dimension has correspondence on the Euclidean dimension. The non integer 

dimension that one finds when chaos exists can be thought of as a measure of the degree 

of chaos. We will have D>1, and the higher is D, the stronger is the chaotic nature of 

the system, in the sense that the divergence of nearby orbits is more intense.    

 

µµµµ θθθθ LCEs Fractal dimension 

1.5 1.3 0.08; 0.20 2.28 

1 

0.5 

1.5 

1 

0.5 

1.5 

1 

0.5 

1.3 

1.3 

1.27 

1.27 

1.27 

1.32 

1.32 

1.32 

0.02; 0.16 

-0.01; 0 

0.09; 0.18 

0.03; 0.14 

-0.02; -0.02 

0.08; 0.22 

0.01; 0.17 

-0.02; 0 

2.18 

1 

2.28 

2.17 

1 

2.30 

2.18 

1 

 

Table 1 – LCEs and fractal dimensions for system (7), with 1ww = . 

 

In table 1, we consider three possible values for µ and θ. The dynamics are very 

sensitive to the value of θ; and therefore we consider three values of this parameter that 

are close together and that involve the presence of chaotic motion. We observe that for 

µ=0.5, chaos is ruled out, independently of the value of θ, while µ=1 and µ=1.5 

correspond to cases of hyper chaos for the selected values of the parameter θ. In these 

cases we compute a fractal dimension higher than 2. 

Consider now the alternative case, where 2ww = . As one has observed through 

the local analysis, the system now undergoes a different type of bifurcation. Thus, we 

will certainly obtain distinct dynamic results. In this case, we consider θ=1.1, a value 

that leads us directly to the region of endogenous fluctuations. Figure 6 respects to the 

bifurcation diagram regarding the credit boundary variable,  

 

                                                 
4
 See Medio and Lines (2001), chapter 7, about definitions on LCEs and attractor dimension. 
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- Figure 6 here - 

 

Once more, cycles of no identifiable periodicity are observed for a given interval 

of values of the credit parameter. The wealth variable is subject to business cycles, as it 

can be confirmed by looking at the diagrams in figures 7 and 8 (observe the similarity 

between the strange attractors in figures 5 and 8). 

 

- Figures 7 and 8 here - 

 

Chaotic motion is confirmed through the computation of LCEs and presentation of 

table 2, which has a same type of contents as table 1. 

 

µµµµ θθθθ LCEs Fractal dimension 

3 1.1 0.09; 0.14 2.23 

2 

4 

3 

2 

4 

3 

2 

4 

1.1 

1.1 

1.09 

1.09 

1.09 

1.12 

1.12 

1.12 

0.06; 0.12 

0.09; 0.16 

0.08; 0.13 

0.06; 0.11 

0.11; 0.14 

0.10; 0.15 

0.06; 0.13 

0; -- 

2.18 

2.25 

2.21 

2.17 

2.25 

2.25 

2.19 

Instability 

 

Table 2 – LCEs and fractal dimensions for system (7), with 2ww = . 

 

 The analysis of table 2 indicates the presence of different ‘degrees’ of chaos for 

several values of the parameters, with θ above but close to unity. Note that cases of 

hyper chaos, that is, attractors with dimensions higher than two are, once again, 

observed.  

As regarded, assuming one or the other equilibrium value, implies getting 

different dynamic results, but in both cases we find regions of chaotic motion for some 

values of the level of financial development, meaning that endogenous business cycles 

may arise as the result of a combination of quantitative constraints on credit and a risk 

premium that injures the capacity of poorer countries to access credit. 
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5. An Extension: Endogenous Technological Progress 

 

The model in the previous sections may be extended in several directions. In what 

follows, we consider that the generation of technology is endogenous, through two 

assumptions that do not change significantly the qualitative nature of the model, but that 

allow to find additional results concerning non linear long run behaviour. The two 

assumptions are: (i) technology is the only input in the production of additional 

technology; (ii) decreasing marginal returns are assumed in order to obtain a stable 

equilibrium point.  

The dynamic behaviour of the technology variable is given by  

 

)(1 tt AgA =+ , with A0 given, g>0, g’>0 and g’’<0. (10) 

 

Endogenous technology growth implies two changes in our framework: 

equilibrium values 1w  and 2w  will depend on the steady state value of A, and the 

conditions that characterize the different states (i.e., At<rt and At≥rt) are now dependent 

on the evolution of the technology variable. 

In what concerns local dynamics, we do not find too pronounced changes. Steady 

state values are the same as before, with a slight difference in 2w : A is replaced by the 

corresponding steady state value. Linearized systems in the vicinity of steady states are 

respectively, for 1w  and 2w : 

 

















−

⋅



















 ⋅⋅⋅
+
−

=
















−+

+

+

AA

z

w

Ag

wfr
c

AA

z

w

t

t

t
z

t

t

t

~

~

)('00

001

0
1

1
1

~

~ 1

1

1

1 γ
 (11) 

 

















−

⋅



















 ⋅+⋅
+
−⋅⋅⋅⋅

+
−−

=
















−+

+

+

AA

z

w

Ag

w
c

wfr
c

AA

z

w

t

t

t
z

t

t

t

~

~

)('00

001

)1(
1

1

1

1
1

~

~ 22

1

1

1
µ

γ
µ

γ
 (12) 

 



Nonlinear dynamics in a model of financial development with a risk premium 18 

 

In both cases, one of the eigenvalues of the Jacobian matrix is )(' Ag , and the 

other two are the same as in the dimension 2 system. If )(' Ag  is below unity, local 

dynamics are characterized precisely in the same way as previously: for both steady 

states a bifurcation separates a region of stability (or saddle-path stability) from a region 

of instability, where fluctuations are eventually observed. 

Consider the specific f function of previous sections, and take φ
tt ABAg ⋅=)( , 

B>0 and )1,0(∈φ . With these functions, we briefly analyze global dynamics. Take the 

same array of values as before for c, γ, r and *
ŵ ; consider θ=1.3 (for 1w ), θ=1.1 (for 

2w ), B=1.05 and φ=0.25. Figures 9 and 10 present the bifurcation diagrams for the 

system considering, respectively, 1w  and 2w , and taking µ as the bifurcation parameter. 

 

- Figures 9 and 10 here - 

 

Similar attractors to the ones in figures 5 and 8 can be found in this case. Table 3 

discusses the degree of chaoticity that various combinations of parameters allow for.  

 

 µµµµ θθθθ B φφφφ LCEs Fractal dimension 

1w  3 1.3 1.05 0.25 -1.39; 0.03; 0.18 2.15 

2w  8 1.1 1.05 0.25 -1.39; 0.07; 0.11 2.13 

1w  3 

3 

2 

2 

1.3 

1.3 

1.3 

1.3 

1.05 

1.2 

1.05 

1.2 

0.5 

0.25 

0.5 

0.25 

-0.69; 0.03; 0.17 

-1.39; 0.04; 0.19 

-0.69; 0.01; 0.17 

-1.39; 0.01; 0.17 

2.29 

2.17 

2.26 

2.13 

2w  8 

8 

6 

6 

1.1 

1.1 

1.1 

1.1 

1.05 

1.2 

1.05 

1.2 

0.5 

0.25 

0.5 

0.25 

-0.69; 0.09; 0.12 

-1.39; 0.08; 0.12 

-0.69; 0.08; 0.12 

-1.39; 0.08; 0.11 

2.30 

2.14 

2.29 

2.14 

 

Table 3 – LCEs and fractal dimensions for the system with endogenous technology. 

 

Note that now we are dealing with a three dimensional system, and therefore three 

LCEs are jointly computed. Note, as well, that the third equation that we have 

introduced relates to a process of knowledge accumulation under decreasing returns, 

and thus stability prevails in what concerns the new dimension we add. As a result, one 

of the LCEs is always negative, while the other two give similar results to the ones 
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found in the exogenous technology case. In table 3, various combinations of parameters 

to which chaotic motion exists are considered, and we find, for all of them, that despite 

taking an additional dimension into the system, the dimension of the attractor continues 

to be given by a value slightly above 2. In this case, the Lyapunov dimension or fractal 

dimension is given by the formula 
3

212
λ

λλ +
+=D  , where the LCEs in the numerator 

are the positive ones and the exponent in the denominator is the negative LCE. 

Since the dynamics of technology are independent of wealth and decreasing 

marginal returns prevail in the accumulation of knowledge, the technology variable 

converges to a long term fixed point, independently of parameter values. Wealth 

dynamics will vary with the values of the credit multiplier and other parameters, as 

before, but the introduction of the technological sector reveals new possibilities for 

endogenous fluctuations. 

 

6. Conclusions 

 

We have examined a model of financial development where constraints on credit 

and a risk premium over the less wealth endowed are considered. As a result, we have 

concluded that a high level of financial development has a favourable effect over the 

potential to grow; nevertheless, the results also point to a perverse impact of a too loose 

policy concerning credit availability, because this can lead to instability. In the proposed 

framework, instability can be interpreted as a state where excess of credit conducts to a 

failure of the financial system to maintain the mutual confidence in the credit market 

that allows for loans with low collateral requirements. 

For some levels of the credit constraint parameter, endogenous business cycles 

were found, an observation that confirms the results on other studies in the field 

(namely, the CJM model). We identify a link between the functioning of the credit 

market and the volatility of some fundamental economic aggregates, with this link 

arising from the nonlinear nature of the relation between variables, namely from the 

piecewise relation between a constant marginal returns value and a varying interest rate. 

Introducing an endogenous technology generation process, we have confirmed the 

richness of possible long term results on a model that never loses its endogenous growth 

character; the economy’s long run growth rate is always constant on average (because 

constant marginal returns on production hold in every analyzed case), even though some 
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circumstances of the financial markets push the setup to a long term result where the 

time path of the growth rate fluctuates around a constant mean.    
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Figures 

 

 

Figure 1 – Local dynamics around 1w . 

 

 

Figure 2 – Local dynamics around 2w . 
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Figure 3 – Bifurcation diagram ( tw~ ;µµµµ), for 1ww = . 

 

 

Figure 4 – Time series of tw~  (µµµµ=1.5), for 1ww = . 

 

 

Figure 5 - Attractor tw~ , tz~  (µµµµ=1.5), for 1ww = . 
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Figure 6 – Bifurcation diagram ( tw~ ;µµµµ), for 2ww = . 

 

 

Figure 7 – Time series of tw~  (µµµµ=3), for 2ww = . 

 

 

Figure 8 - Attractor tw~ , tz~  (µµµµ=3), for 2ww = . 
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Figure 9 – Bifurcation diagram ( tw~ ;µµµµ), for 1ww =  and with endogenous technology. 

 

 

Figure 10 – Bifurcation diagram ( tw~ ;µµµµ), for 2ww =  and with endogenous technology. 

 

 

 


