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Abstract

This paper proposes a way to allocate students to schools such that conciliates
Pareto efficiency and stability. Taking as a starting point the recent reform
proposed by the Boston School Committee, we propose a marginal modification
to reach our objective redefine how students are prioritize. Our proposal is to
allow schools to prioritize only a small set of students an then use a common
priority order for the rest. Under this condition we propose a score based priority
ranking that makes the output of the new Boston Mechanism Pareto efficient
and stable.
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1 Introduction

On the school choice procedures the way municipalities decide the design in-
strument to allocate student to schools play a key role. In this instruments
the municipalities are forced to establish priorities in order to allow break the
ties that arise when the system takes into account the parents’ interests for the
schools. In this present paper we deal with way in which the schools’ priority
lists are built. We propose a conditions on agents’ characteristics that solve
the efficiency-equity trade off by proposing a priority structure able to reconcile
efficiency and stability.

Municipalities use different criteria to build priority as preference for, oth-
erwise indifferent, centers. When the list of criteria that provides priorities to
students is not enough to break all relevant ties the municipalities are forced to
use a sort of random process to break the ties.

Even though the criteria used by the schools to prioritize students can be
seen as efficiency criteria, the realization of the procedure, to match students and
schools’ places, could induce inefficient allocations. This is due to the particular
procedure employed to allocate the schools’ places among the students.

In this sense, we can mainly find two systems: The centralized ones, that
focus on stability, and the decentralized ones, focusing on Pareto efficiency. The
mechanism used in the Boston area, from 2005, can be seen as a representative
example for the first one, whereas the Boston mechanism, used in the same
area until that date, is a representative example for the second one. The reader
can find a description for both mechanisms in the survey by Sénmez and Unver
(2009). In this paper we concentrate on the former, the Student-Optimal Sta-
ble mechanism, (SOSM hence for) which coincides with the realization of the
deferred acceptance algorithm in which students send proposals to the schools.
This mechanism, introduced by Gale and Shapley (1962), always selects a sta-
ble allocation. Moreover, all the students (weakly) prefer this allocation to any
other stable allocation. Furthermore, when this mechanism is use, students have
no interest on acting strategically.

Along with the Boston area the redesign that has been introduced in several
markets have presented the SOSM as the best option for school markets, i.e. for
one sided-markets with indifferences. However, the fact this mechanism is, in
general, not efficient has trouble scholars (see Kesten, 2010 and Abdulkadiroglu,
Patha, and Roth, 2009). In general it can be shown that the welfare lost due to
select the SOSM can be large. There has been several attends to address this
problem. In general this attempts accommodate any preexisting priority struc-
ture by allowing a final allocation that relax some priorities in order to achieve
efficiency (see Kesten, 2010) or allows the agents to trade their initially stable
endowments until reaching an allocation that can not be justifiably objected by
any student (see Alcalde and Romero-Medina, 2010). In any of those attempts
the initial priority structure is, at some point, either modify or ignored. In
both case it seem a better design approach to build a priority structure that
reconciles efficiency and stability rather than impose priorities that will impose
efficiency lost or, ultimately, will be relax or ignore.



The usual way to prioritize students in most school districts to establish
priorities comes from the use of a scoring rule. In practical terms the way to deal
with the problem of how students would be prioritized is solved by municipalities
building a function that associates each student a score for each school. This
function often depends on two classes of variables: the relationship between
the student and each school includes and the student’s characteristics that are
not related to any school. Among the first, are the distance from the student’s
residence to the school; and the number of siblings, already attending to the
school. Among the second group we can mention the household income, the
student’s household size or the presence of any health condition. Further more,
this criteria is based on continuous variables that are transform into discrete
counterparts in order to be processed. For instance the distance to school is a
continuous criteria that is transform into a discrete one using “attendance area
boundaries” that defines the schools in which each students will be prioritized
based on her address. By its definition the School Attendance Area Policies
assign the same score to students in the same area and forces the procedure to
relay on a lottery drawn to build strict priority list.

In our model, we do not assume any particular geographical distribution
of students and/or schools, we will assume that schools’ priority lists need not
to be correlated and each school might exhibit any priority list. This is why,
throughout this paper claim that each school is free to decide how it prioritizes
the students. Accordingly, we refer the policy of accurately redesigning each
school attendance area as schools limited freedom to prioritize the students. In
this paper we show that efficiency and equity are compatible if we proceed as
follows: Let us consider two classes of priority lists, namely the local and the
school lists. Then, for a given school, its priority list is used to prioritize (at
most) as much students as it can accept. These students will have priority over
any other student. The remaining students are prioritized by following the local
committee’s list. Following this approach, the general recommendation of this
paper is to restrict, for each school, the number of students belonging to its
influence area. Therefore, what the Local School Committees would do is to
redesign their school attendance areas.

Following, Abdulkadiroglu et al. (2006), the recent reforms in the alloca-
tion mechanisms lies on avoiding the possibility of students’ strategic behavior.
What it seems to be relevant when designing a mechanism for school allocation
problems is to accurately combine stability, efficiency and strategy-proofness.
Let us notice that restricting the possible priority lists that schools can pro-
pose, our results point out that the use of the new mechanism in the Boston
Area always selects stable and efficient allocations and this mechanism is fully
strategy-proof?, i.e. not only students have no interest on misrepresenting their
preferences, but it should be also expected that schools do not prioritize students
in a wrong way.?

IThe result follows from Alcalde and Barbera (1994)

21n Valencia, Spain, the admission process is similar to the Boston mechanism. The schools
prioritize students according to a scoring function that is established by law. Nevertheless,
the score that a school assigns to a student is evaluated by the school, and it is not monitored



As Ergin (2002) shows the conditions that reconciles stability and Pareto
efficiency are very stringent and involves check the preferences and priorities of
agents in both sides of the market. In particular, if each student is free to rank
any school as her best school, it is always possible to find non-scarce problems
having a stable and Pareto efficient matching. Therefore, if conditions are es-
tablished on individual characteristics, it is very hard to have in mind natural
necessary conditions guaranteeing the existence of a stable and Pareto efficient
matching. Our work is closely related to Ergin (2002) and latter extended by
Elhers and Erdil (2010) . They characterize priority structures under which
the constrained efficient assignments are efficient. Our proposal differs from
theirs in the fact that we explore the possibility to propose score based priority
rankings.

The rest of the paper is organized as follows. Section 2 introduces the basic
framework and provides some definitions which are classical in the literature.
Section 3 explores conditions on agents’ characteristics under which efficient
and stable allocations exist. Our conclusions point out a general difficulty to
conciliate both concepts. This difficulty advices us that we should shift the focus
on how the allocation problem could be solved. The solution could be found in
a reconsideration on how the schools give priorities to the students. We propose
a general formulation that can be used as a new way to discuss how the system
should be reformed. The way in which this mechanism is described points out
how the actual Boston system might be re-reformed. Conclusions are gathered
to Section 4. Finally, all the proofs are relegated to the Appendix.

2 The School Allocation Problem

The School Allocation Problem family of problems faces two set of non-empty
disjoint agents to be called Students and Schools. The set of Students is denoted
by S, and has n individuals, i.e. S = {s1,...,8;,...,8,}. The set of Schools is
denoted by C, and has m elements, i.e. C ={c1,...,¢j,...,cm}

Each school has a number of seats (or places), to be distributed among the
students, that will be called its capacity. Let q.; > 1 denote school c¢;’s capacity;
and let Q = {qcl, Qe s qcm} the vector summarizing schools’ capacities.
Schools are also endowed a priorities linear ordering over the set of students.
Let m.; € R" be the students’ ordering for school ¢; and II the (m x n)-matrix
summarizing these priorities. Formally, 7., is described as a n-dimensional
vector such that for each k € {1,...,n} there is a unique student s; for which
Te;s; = kj given this description, the j-th row for matrix IT coincides with vector
e, -

’ Note that, under our description, no school would consider a student to be
inadmissible. Notice that most of the legislative norms impose such a restriction
in the way that the schools rank their potential students. Nevertheless, our
model might capture the possibility of a student to be inadmissible at a low

by the local administration. This lack of monitoring allows the schools to favor some students.
This behavior can be interpreted as a manipulation by some schools administrators.



cost: just by introducing a new variable for each school defining the priority
level of the last admissible student.

On the other side, each student has linear preferences over the set of schools,
so that no student will consider two different schools as equivalent (or indiffer-
ent), and no school is neither considered as inadmissible by any student. Let
ps; denote the schools’ ranking induced by student s;’s preferences,® and ®
the (n x m)-matrix summarizing these rankings. Note that our model assumes
that each student considers all the school as admissible.* Nevertheless, we can
also reformulate this model by assuming that each student might consider some
schools as unacceptable. The essence of this paper is the same in both frame-
works.

Therefore, a School Allocation Problem can be described by listing the el-
ements above: SAP = {S,C;®,II,Q}. We will say that a School Allocation
Problem is non-scarce whenever there is enough places to allocate all the stu-

dents
Z qc; > n.
cj eC

Given a School Allocation Problem, SAP, a solution for it is an application
1 that matches students and schools’ places. Such a correspondence is called a
matching. Formally,

Definition 1 A matching for SAP, a School Allocation Problem, is a corre-
spondence p, applying S UC into itself, such that:
(a) For each s; in S, if u(s;) # s, then u(s;) € C;

b) For each c; inC, u(c;) C S, and ¢j)| < qe;; ° and
(b) j KAy HACj 3

(c) For each s; in S, and any c; in C, pu(s;) = ¢; if, and only if, s; € pu(c;).

The central solution concept used through the literature is stability, as de-
fined by Balinski and Sénmez (1999). This stability notion coincides with the
pair-wise stability introduced by Gale and Shapley (1962). Under our consider-
ations (i.e., each school is acceptable for any student and vice versa), stability
is defined as follows.

Definition 2 A matching for SAP, say u, is said stable if there is no student-
school pair (s;,c;) such that
(@) (8i) = i, OT Ps,e; < Psp(sy); and

(b) [ (ci)| < qe,, OF Teys;, < Teys, for some sy, € p(cj).
Throughout this paper, we adopt the convention that p,, s,y = m + 1 whenever
w(si) = si.

3Le., ps;c; = 3 indicates that student s; considers that ¢; is her third-best school.

4Here, we can also invoke legislative regulations establishing that school attendance is
compulsory for the children of certain ages.

5Throughout this paper |T'| will denote the cardinality of set T



The idea of instability comes basically from the notion of justified envy. (See
Haeringer and Klijn, 2009). Let us consider a matching u, and let us assume
that student s; prefers to study at school c; rather that developing her educative
formation at her actual school p (s;). If s; has a priority higher than that of
some of the actual students attending school c;, or this school is still having
some vacant, she might claim that the allocation process has been unfair.

A second notion that has also been analyzed in this framework is that of
efficiency. To introduce appropriately this concept, let us remember that the
only role for the schools is to provide educational services needed by the students.
Therefore the natural notion of efficiency, as proposed by Balinski and S’onmez
(1999) for this framework, is Pareto efficiency (from the students’ point of view).

Definition 3 Given a School Allocation Problem, SAP, we say that matching
w is Pareto efficient if for any other matching ' there is a student, say s;, such
that

Psip(si) < Psip’(si)-

Note that, for any non-scarce School Allocation Problem, stability and/or
efficiency of a matching p implies that, for each student s;, p(s;) € C.

A matching mechanism is a regular procedure that associates to each School
Allocation Problem a matching for such a problem. A matching mechanism M
is said to be stable if, for any given problem, it always selects a stable matching.
Similarly, we say that a matching mechanism is Pareto efficient whenever its
outcome is always Pareto efficient, related to its input. It is easy to see that there
are stable matching mechanisms. In fact, any of the versions of the deferred-
acceptance algorithms proposed by Gale and Shapley (1962) associates a stable
matching for the related School Allocation Problem. On the other hand, the
now-or-never mechanism introduced by Alcalde (1996) always selects a Pareto
efficient matching when the proposals are made by the students.®

It is a well known result that it might be an impossible task to conciliate
stability and Pareto efficiency, i.e. there is no matching mechanism selecting a
stable and Pareto efficient allocation for each School Allocation Problem. In the
next section we seek the existence of natural conditions on ® and Il guaranteeing
the existence of matching mechanisms being stable and Pareto efficient.

3 On the existence of stable and Pareto efficient
allocations

In this section we explore natural conditions under which stability and Pareto
efficiency are compatible for some matching mechanisms. Given that set of
stable matchings has a lattice structure and one of its extremes can be reached by
applying the student-proposing deferred acceptance algorithm. Therefore, the

6The now-or-never mechanism is also known as the Boston mechanism because it was used
in the Boston school district.



unique stable matching mechanism that could eventually be Pareto efficient is
the so called Student-Optimal Stable mechanism. The question is whether on the
framework of the school choice problem are conditions able to encompass both
the uses of school districts on the priorities matrices under which the students
optimal stable matching is always efficient. To provide a positive answer to the
above question, let us consider the following condition on schools’ priorities:

Definition 4 We say that the schools’ priorities matriz 11 satisfies the Com-
mon Priorities Condition , CPC in short, if, and only if, there is a (fived)
relation of students’ priorities, 7 = (Tsy,...,Ts;,...,Ts, ), such that for each
school cj, and ‘preferred set of students’ for such a school, S7 C S, with
|Sj} < qs,, its priority relation satisfies:

(a) me,s, < qc;, for each s; € S7; and

(b) me,s; = |Sj| + |{$h €S\ S 7, < 7rsi} , for each student s; ¢ S7.

Let us imagine that students are ordered following a common criterion, which
is independent from the schools characteristics and does not depend on the
distance from the students’ residence to the school, neither on whether the
students have or not any sibling at the school, or any similar criteria. Then, once
such common priorities have been fixed, each school can modify it by selecting
its ideal set of students, whose size must be not higher than the number of
its available positions, but the rest of (‘non-ideal’) students must be prioritized
following a common criterion.

We can now establish the following result.

Proposition 5 Let SAP be a School Allocation Problem. If 11 satisfies CPC,
then it has only one matching being stable and Pareto efficient.

We can define a condition, similar to CPC, applying to students’ character-
istics. This is the essence of CRC.

Definition 6 We say that the students’ rankings matriz ® satisfies the Com-
mon Ranking Condition, CRC in short, if, and only if, it is possible to
find a linear order over the set of schools C, described by the ranking p =
(pcl, ce s Pegy e pcm), such that for each student, s;, and school c;,

L+ pe;  if pe, < pe;
. (85) = 7 ; J
Pase; (5:) { Pc; if pey, > Pe;

where ¢y, is such that pg,c, = 1.

To introduce the idea underlying CRC, let us imagine that there is an unam-
biguous way to order the schools (that can be derived from some quality index
that is commonly accepted), but each student has a preferred school due to some
specific criteria (for instance due to its proximity to the student’s residence ad-
dress; or because she has some sibling attending to that school; or because her



parents studied at that school; etc.) CRP says that all the students will share
the same preferences except that they can differ on which her ideal school is.

Unfortunately, as the next example points out, a result similar to Proposition
5 can not be reached just by assuming that students’ ranking satisfies CRC. We
need an extra qualification, which is that all the students share the opinion on
which her ideal school is.

Example 7 Let us consider a School Allocation Problem involving three stu-
dents and two schools, having one vacant each. Let us assume the ranking and
priorities matrices are

1 2
d=1|2 1 |;and H:[igé]
2 1

Note that this School Allocation Problem satisfies CRC. Nevertheless, the unique
stable matching is described as p, where p(s1) = co; p(s2) = c1; and p(s3) =
s3, which is inefficient. What this example might suggest is that the non ex-
istence of a stable and efficient matching is related to the fact that this School
Allocation Problem is scarce. Nevertheless, it is not true. Just to show it, let is
imagine that there is a new school, cs and the new problem, consistent with the
previous one, is described by

1 2 3 2 3 1
=121 3|;and W=]|1 3 2
2 1 3 3 2 1

Note that, for any q., > 1, the unique stable matching is p', where ' (s1) = ca;
(' (s2) = c1; and p' (s3) = cs.

The next result proposes conditions that, when imposed on students’ rank-
ings, guarantee the existence of a stable and Pareto efficient matching.

Proposition 8 Let SAP be a School Allocation Problem. If ® satisfies CRC,
and all the students exhibit the same ranking, then there is a unique stable and
efficient matching.

Let us mention that the CRC was proposed by Alcalde and Barbera (1994)
as an example for Top Dominance, a condition guaranteeing the existence of
strategy-proof stable matching mechanisms for the marriage problem.” It is
also easy to check that, given the close (formal) relationship between the School
Allocation and the Marriage Problems, CPC is also related to the fulfillment of
Top Dominance by the schools’ declared preferences (or priorities).

7A marriage problem, as modeled by Gale and Shapley (1962), can be described as a School
Allocation Problem in which all the colleges have just a vacant position.



Definition 9 Let R; be a set of possible rankings for student s;. We say that
R satisfies Student Top Dominance if for each c; and ¢ in C, and any two
Tankings Ps; and p;i inR; Zf Psic; < Ps;ci and p;ick < plsicj then

{en €C: psien < psie, N {en €Ciply, <P} =0.

Definition 10 Let c; € C be a school, with admission quota q.,, and P; be a
set of possible priorities for such a school. We say that P; satisfies School Top
Dominance if there is a set of students ST C S, with |Sj’ < qc; — 1, such that
for each s; and sy in S, and any two priorities 7., and Wéj in Py if meys, < Teysy
and 7 . <, then

CjSq

{sh€8:me;s, <mes b N {sh €S: Wéjsh < wéjsf} C &I,

The idea that schools have some freedom on how to order their chosen stu-
dents is behind School Top Dominance. But such a freedom is not full range
in the sense that the student which is prioritized to fulfill the college’s quota
(i.e. 7e;s; = qc;) determines which the priority for the rest of students is. In
particular, let us observe that, when g; = 1 for each school ¢;, the School Top
Dominance introduced in Definition 10 coincides with the Top Dominance as
defined by Alcalde and Barbera (1994).

The next example points out a general difficulty to generalize the notions
of CPC and/or CRC having positive results similar to the ones proposed in
Propositions 5 and 8.

Example 11 Let us consider a School Allocation Problem involving three stu-
dents and three schools, having one vacant each. Let us suppose that schools
priorities are described by matriz, satisfying School Top Dominance,

3 21
m=1]2 1 3
1 3 2
Now, let us assume that all the students agree that school co is their worst

option. In such a case, and when imposing Student Top Dominance, we have
the following two possibilities:

(a) All the students exhibit the same ranking, and

(b) Students might have opposite opinions on how to rank schools ¢1 and c3.

Note that if the first case holds Proposition 8 applies and thus, there is a unique
(assortative) stable matching, which is also Pareto efficient. Nevertheless, if it
is not the case, the rankings matriz might be

1
o= |3
3

— =W
N DN N



and the unique stable matching that this problem has is not Pareto efficient.
As a conclusion we can say that when the students exhibit rankings satisfying
Top Dominance and there is a common opinion on ranking some school as the
best one (or the worst one) we can have any of the following two conclusions:

(7) If we add an anonymity condition, as Alcalde and Barbera (1994) proposed,
to the Top Dominance idea, all the students will exhibit the same rank-
ing. Therefore, the conclusion is that there is a unique (assortative) stable
matching which is also efficient, as established in Proposition 8.

(i) On the contrary, if such an anonymity is not demanded, we cannot guar-
antee the existence of a stable and Pareto efficient matching.

We proposes a way to reformulate how students would be prioritized. As
we have mentioned before students are prioritized following a scoring function
that can be seen as a function which is separable on two classes of variables.
The first type of variables lies on the relationship between any student and
each school. Following this conception, it is expected that each student obtains
different scores from two schools and also that each school assigns different
scores to any two students. Relative to the second class of variables, they are
not related to any school. Therefore, we can identify the score that each student
obtain, from a school, relative to the first scoring function, with its score by that
school;® whereas the score assigned to each student, that does not depend on
their relationship with any school, can be seen as a score assigned by the Local
School Committee. The above interpretation allows us to define two scoring
functions, to be called the School Scoring Function, C'S, and the Local Scoring
Function, LS.

The last question that we deal with, related to this score-based way to build
schools’ priority list, lies on how to combine the School Scoring Function and the
Local Scoring Function to define a Global Scoring Function. Following the idea
beyond the procedure used by the Seattle School Board, let us define, for each
school, its Priority students as those for which the School Scoring Function
is the relevant function for deciding their score. Therefore, we can formally
describe the Global Score for an student as follows.”

Definition 12 Let S and C be the sets of students and colleges respectively.
We define the Global Score Function induced by the School Scoring Function
CS : §xC — Ry; the Local Scoring Function LS : S — R4 ; and the Priority

8Let us remember that the scores are determined by the Local School Committees, and
also that schools do not determine their priority lists. Thus, we are abusing interpretation
when saying that the school determines the score. We hope the reader not to be induced to
confusion due to such an abuse.

9The reader can think on different ways to describe a Global Scoring Function by, for
instance, adding the Local and the School Scoring Functions. Nevertheless, what it is rele-
vant to reach our positive results formalized in Theorem 14 is not related to the particular
composition but on the fact that it induces schools priorities satisfying CPC.



Function P : C — 2% as the function GS : S x C — R, assigning each
student-school pair the value

LS (51) +CS (51‘7 Cj) Zf sieP (Cj)
GS (Si, Cj) =
LS (s;) otherwise

To introduce the next definition, for a Local Scoring Function, LS, let M
denote the maximum score allocated to a student,

M= glg)s( LS (s;) (1)
Definition 13 Let S and C be the sets of students and colleges respectively,
and let Q be the vector summarizing school’s capacities. Given the Scoring
Functions LS, CS; and P, we say that the Scoring Function GS, satisfies the
Limited Freedom Condition , LFC henceforth, if it fulfills:

(a) For each school cj, and student s;,
cSs (SZ‘,CJ') > M.
(b) For each school c;,

|P (¢;)| < g, and

(¢) For any two students s;, Sp, S; # Sh,

LS (s;) # LS (sp) .

Note that, under LFC, the induced priority ordering for a school, if it chooses
the function CS, allows the school to decide which its best students are, to fulfill
its available places. Nevertheless, once some student has been declared not to
be one of the g.;-top students, the school’s opinion is not taken into account to
determine such a student’s priority.

A second aspect that we want to remark is that, even though in our model
each priority ordering is linear, Definition 13 allows that some students, in the
qc, first positions, share the same priority. Note that this fact does not influence
the stability of any matching, even though if it considers that all those students
are equaled prioritized. The reader is refer to Ehler and Erdil (2010) for a full
characterization of Stable and Efficient allocations in this environment.

Theorem 14 Let S and C be the sets of students and colleges respectively, and
let Q) be the school’s capacities vector. Then for each Scoring Function GS that
satisfies LFC, and any SAP = {S,C; ®,11,Q}, where priorities are induced by
GS, there exists a unique stable and Pareto efficient matching.

10



Note that Theorem 14 establishes that LF(C' is a sufficient condition to guar-
antee the existence of matchings conciliating the notions of stability and Pareto
efficiency. Let us remark that the usual way to prioritize students comes from
the employ of some scoring rule. These functions are usually expressed as the
addition of two scoring functions. The first one just takes into account the
particular characteristics of the students, isolated from the schools, whereas the
second one lies on each student’s characteristics related to the considered school.
This additively separable functional form follows the shape used in Definition
13.

We would like to point out that it is very hard to find a result establishing
necessary conditions conciliating stability and Pareto efficiency. In particular,
if each student is free to rank any school as her best school, it is always possi-
ble to find non-scarce problems having a stable and Pareto efficient matching.
Just, consider that students rankings are such that, for each school ¢; the num-
ber of students for which this school is the first-ranked, i.e. ps,, = 1, is not
greater than g.,. In such a case, no matter which the matrix II is, the matching
that associates each student her best school is both stable and Pareto efficient.
Therefore, if conditions are established on individual characteristics, it is very
hard to have in mind natural necessary conditions guaranteeing the existence
of a stable and Pareto efficient matching.

4 Concluding Remarks

Let us start this section by quoting the paper by Abdulkadiroglu et al. (2005).
Recent Developments Section.

“A memorandum from Superintendent Payzant in December 2004
states that BPS plans to change the computerized process used to
assign students to schools. Although the task-force report recom-
mended that BPS adopt the TTC assignment algorithm, the School
Committee is interested in simulations of both mechanisms and
in understanding the extent of preference manipulation under the
Boston mechanism. They are also thinking through their philosoph-
ical position on the trade-off between stability and efficiency.”

This interest for defining a philosophical approach on the trade-off between
stability and efficiency is at the origin of a modification in the mechanism used
in the Boston Area, decided by July 2005, see Abdulkadiroglu et al. (2006).
As these authors mention, the solution was to adopt a deferred acceptance
mechanism because it is strategy-proof. Nevertheless, as we have pointed out
in the present paper, this solution is far from solving the trade-off which is at
the origin of this reform. In fact the employ of such a solution can be justified
because it considers that stability is the central issue. If, moreover, the best
that agents can do is to reveal their true characteristics, it is straightforward
to conclude, as the Boston School Committee did, that the Student-Optimal
Stable mechanism would be adopted.

11



The main conclusion of this paper is to provide a ways to avoid the efficiency-
equity dilemma. It allows to slightly modify the last reform introduced by the
Boston School Committee, comes from redefining how the schools influence on
designing which students are prioritized. In this sense, the solution comes from
the use of scoring rules that, applied to the students’ characteristics, fulfill our
Limited Freedom Condition.

Appendix

I. Proof for Propositions 5 and 8. To prove Propositions 5 and 8, let us start
by establishing some claims that will be helpful to understand the structure of
stable and efficient matchings.

Claim 15 Let SAP be a School Allocation Problem. Then it has, at most, one
stable and efficient matching.

Proof. First of all, and following Martinez et al. (2001), let us note the set of
stable matchings has a lattice structure. The operators proposed by Martinez
et al. (2001) to prove such a structure are just the students’ rankings and the
schools’ priorities. Therefore, if a stable matching p is efficient for SAP, it must
be the student optimal stable matching. m

Claim 16 Let SAP be a School Allocation Problem, and i be a stable matching
for it. Then u is efficient if, and only if, there is no (non-empty) ordered set of
students

{sl,...,si,...,sk} C S, such that
(a) p(s*) €C forall s' € S, and

(b) each student s ranks her mate as worse than her next-in-the-order stu-
dent’s mate,

Psip(sitl) < Psip(st) for each i < k, and Pskp(st) < Pskp(sk)-

Proof. First of all, let us note that if there exists a set of students fulfilling the
statement of Claim 16, it is easy to see that the matching is not efficient. To see
that, given a matching p, let us construct u' such that p’ (s;) = p(s;) for each
s; ¢ {s',...,s",...,s"} and for any student s’ in such a set, p’ (s*) = p (s"*1),
modulo k. Note that p/ Pareto dominates p. On the other hand, let us assume
that p is a stable matching that fails to be efficient. Then, there should be
another matching p’ that dominates p. This is equivalent to say that u’ # pu
and, for each student s; such that p' (s;) # 11(8;), Pspr(ss) < Psip(ss)- Let s' bea
student such that ' (s) # p (s'). Note that, by the Decomposition Lemma,'°

10See, for instance Gale and Sotomayor (1985). Note that Martinez et al. (2000) pointed
out that this results is still valid in our framework.
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and provided that u is stable, it must be the case that p (sl) # s'. Let denote
' (s') = c' € C. Since p is stable, and psi1 < pgip(s1), it must be the case that
|,u (cl)’ = @.1. Therefore, there should be a student, say s? € p (cl) \ o/ (cl).
Since p’ Pareto dominates u, and u (32) #* U (52), there should be an school,
say c? such that g’ (82) = ¢%. Note that if u (81) = ¢? the result is proved.
Otherwise, there should be a student, say s> € u (02) \ o/ (02). Let us observe
that if u (03) =pu (cl), the result follows. Otherwise, since the set of students
is finite, an iterative argument yields the desired result. m

We can now proceed to prove Propositions 5 and 8.

Proof of Proposition 5.

Let SAP be a School Allocation Problem. Let us assume that II satisfies CPC.
By Claim 15 we now that, if there is a stable and Pareto efficient matching, it
must be 59, the student optimal stable matching. Since p5¢ is stable, let us
assume that it is not efficient.

Then, by Claim 16, there must be a matching u', and an ordered set of
students, say {s',...,s’,...,s"} = &, such that for each s’ € &, Psip (st <
Psipso(siy, with g/ (s') = p59 (s"1) for each i < k—1, and p/ (s*) = p59 (s*).

Since ;° is stable, we have that, for each student s° € &',

(a) TSO (sit1)gi > (SO (si+1); and

(b) THSO(Si+1)S'i > W#SO(SH»I)S'L+1 .
where sFt1 = g1,

By CPC; there must be a priorities order 7 such that, for each school ¢; € C,
and any two students s;, s such that min {mc,,,, 7¢,s, } > qc,, it holds that

[Wcjsz‘ < 7TC_7’Sh] & [ms, <75,
Therefore, by CPC and stability of u, we have that
Tgl < v < Tgi < Tgitr < v o0 < Tge < Tlgl,

which contradicts that m might represent a priorities order.

Proof of Proposition 8.

Let SAP be a School Allocation Problem. Let us assume that ® satisfies CRC,
relative to p, which is the ranking that all the students exhibit. Note that, in
such a case it is straightforward to see that there is a unique stable matching,
which is also Pareto efficient.

This matching can be obtained in a simple sequential way. If we denote by
¢t € C the t-th college according p, we proceed as follows:

(1> IU’S (cl) = {Si €S Tels, < qcl};
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(2) ps (02) is the set containing the g.» prioritized students, according to 7.z,
that are not in p% (c'); ...

(t) u? (ct) is the set containing the g.: prioritized students, according to 7.,
that are not in p¥ (") for any h < t.

It is easy to see that this assortative matching is both stable and efficient.

II. Proof for Theorem 14.
To prove Theorem 14, let us consider a School Allocation Problem. Let us
assume that there is a ‘scoring function’ GS : § x C — R inducing the priorities
matrix II. Note that this is equivalent to say that for each c¢; € C, and any two
students s; and sp, in S, 7¢,s, < T¢;s, Whenever GS (s;,cj) > GS (sp,c;j).
Let us assume that G.S satisfies LFC. Then there are three functions LS : S —
Ry, P:C — 25 and CS : S x C — R, decomposing GS as established in
Definition 13.

For function LS given, let us define the ‘common priority’ 7 as

Ty = |{8h €S : LS(Sh) > LS (Sl)}‘

Then, since G'S satisfies LFC, and, for each ¢; € C, m.; is induced by LFC, it
follows that II satisfies CPC related to w. Thus, as Proposition 5 establishes,
SAP has a unique stable and efficient matching.
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