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Probabilistic Game Approaches
for Network Cost Allocation

Rohit Bhakar, V. S. Sriram, Narayana Prasad Padhy, Senior Member, IEEE, and
Hari Om Gupta, Senior Member, IEEE

Abstract—In a restructured power market, the network cost
is to be allocated between multiple players utilizing the system
in varying capacities. Cooperative game approaches based on
Shapley value and Nucleolus provide stable models for embedded
cost allocation of power networks. Varying network usage neces-
sitates the introduction of probabilistic approaches to cooperative
games. This paper proposes a variety of probabilistic cooperative
game approaches. These have variably been modeled based upon
the probability of existence of players, the probability of existence
of coalitions, and the probability of players joining a particular
coalition along with their joining in a particular sequence. Appli-
cation of these approaches to power networks reflects the system
usage in a more justified way. Consistent and stable results qualify
the application of probabilistic cooperative game approaches for
cost allocation of power networks.

Index Terms—Cooperative games, embedded cost allocation,
probabilistic games, transmission pricing.

1. INTRODUCTION

S the power industry undergoes a restructuring process,

competitive open market policies and unbundling of
utilities into separate generation, transmission, and distribu-
tion companies is in vogue. The restructuring process intends
to establish mechanisms to optimize existing resources and
guarantee the necessary investments to satisfy future electricity
demands at reasonable rates. Transmission and distribution
businesses, due to large fixed costs of the network, follow the
principle of “economics of scale” and, thus, work in a monop-
olistic environment. Hence, regulation is adopted to introduce
the proxy effect of competition.

An important aspect that reflects competitive policy in any
electricity market design is its network pricing model. With
the growing complexity of networks and increased number of
transactions occurring due to deregulation, development of a
fair pricing model has become a contentious issue. Embedded
cost of power networks forms a large part as compared to their
incremental costs, and hence, needs to be allocated by stable
methods. To finance the embedded costs of networks, major
thrust has been to devise methods to allocate this cost on the
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basis of individual network usage patterns [1], [2]. The tra-
ditional MW-Mile method is based on the transacted power
flow on transmission lines in a network. Among the various
usage-based methods, it is difficult to identify the method based
on the fairest criterion. These methods may not necessarily pro-
vide a stable solution. Fair and stable solutions are necessary to
avoid any interest for players to secede the system, that other-
wise would lead to an overall un-optimal situation.

Upcoming market situation would have multiple utilities
using the network; this situation can be better represented as
a game with loads and generators being players in the game.
This has induced the application of cooperative game theory
for network embedded cost allocation. In a game-theoretic
approach, users make rational decisions in a competitive situa-
tion, wherein each participant aims at reaching an outcome that
is as advantageous to him to the maximum possible extent [3].
Nucleolus and Shapley value (SV) solution concepts have been
applied for network embedded cost allocation among the users
and provide a stable solution to all participants. Tsukamoto and
Iyoda [4] introduced the concept of cooperative game theory
for fixed cost allocation to wheeling transactions. Yu et al. [5]
presented a Nucleolus and SV-based method for transmission
embedded cost allocation for line capacity use. Tan and Lie
[6] applied SV for transmission cost allocation. Zolezzi and
Rudnick [7] allocated cost of an existing or expanding network
based on Nucleolus and SV models. Yu et al. [8] allocated the
capacity-use and reliability-based transmission embedded cost
using Nucleolus and SV concept. Stamtsis and Erlich [9] found
SV formulation to be preferable for fixed cost allocation of
power system when the allocation lies inside the core of the
game. Bjorndal er al. [10] presented a method for computing
the nucleolus of a cooperative game by which usage-based
methods may be combined to produce allocations. In an effort
to measure the value of playing a particular role in an n-person
game, Dubey and Weber [11], [12] have described in detail the
probabilistic value for games using SV and Banzhaf value.

Despite that the cooperative game-theoretic approaches have
been applied for the cost allocation of power networks, the in-
herent probabilistic nature of players has not been taken into
account. Individual loads and generations keep on varying with
time, and some of them may not be connected to the system at all
for some duration. It is unrealistic to assume equal usage of net-
work by the loads and generators having equal peak capacities.
Thus, there is a need to assess the value of playing a particular
role in a game, so as to determine an equitable allocation of cost
among the players. This also helps in evaluating the future cost
to be suffered for using a system. The probability factor for such
a cost allocation can be ascertained by accounting for different
practical considerations.

The paper develops novel probabilistic models based on Nu-
cleolus and SV. These are applied to the power network cost
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allocation problem. The approaches are able to distinguish be-
tween players merely connected to the system and those actually
using it. Thus, instead of reflecting indicative peak usage only,
the models reflect actual network usage and energy usage, which
is economically more justified. This provides a fair cost alloca-
tion approach to the users as compared to that from non-proba-
bilistic models. Also, it helps to understand how the choice of a
way to measure game values affects the stability of allocations
obtained from the various cooperative n-person game models.

II. COOPERATIVE GAME THEORY CONCEPTS

There are numerous methods for cost allocation among the
players of transferable utility cooperative games that allow side
payments to be made among the players. The present work is
broadly based on the two solution concepts of Shapley value
and Nucleolus. These, along with their probabilistic variations,
have been described briefly hence.

Let N = {1,2,3,...n} denote the set of all players in a
game, n being equivalent to | N|. A coalition S of players is de-
fined as a subset of N, S C N that coordinate together. Null
set denotes an empty coalition whereas set N reflects the grand
coalition. The collection of coalitions in NNV is denoted by 2%.
The set of coalitions 2V are mutually exclusive and excluding
in nature. The game on N is a real valued function c: 2V — R
that assigns a worth to each coalition and satisfies ¢(&) = 0.
Characteristic value ¢(.S) gives the maximum cost incurred by
the coalition S by coordination or cooperation between its mem-
bers, irrespective of what other players and coalitions do [8].

The application of cooperative game theory is to suggest an
optimal or a fair allocation of cost among its different players.
Cost allocation is represented in terms of a pay-off vector
X = {z1,z2,23,...2,} such that for the grand coalition,
>, x; = ¢(N). For allocation to be optimal and fair to all
the players, the following three conditions, namely, individual,
group, and global rationalities, need to be satisfied [7]:

x(i) <c(i); i€N ey

z(S) <c(S); SCN 2)

z(N) =¢(N); 3)

with x(S) = T;. 4)
€S

Any pay-off vector satisfying the individual and global ratio-
nality conditions is called an imputation, whereas any imputa-
tion that satisfies group rationality also is said to lie in the core
of the game. Individual rationality requires that no player pays
more than the cost it would have to pay if the system is designed
for his individual use, whereas group rationality ensures that the
cost paid by any group is limited to the cost for the group acting
alone. Global rationality assumes that the sum of cost to all the
n players will be equal to that for the grand coalition.

As cost allocation for any possible combination is less than
the sum of individual allocations, all players are incentivized to
stay in the coalition, leaving no interest for any player to secede.
This makes the solution from such approaches stable. If any
of the rationalities is not satisfied, then the cost allocation to a
player may not be proportional to its marginal cost. This reflects
subsidization, and may create tendencies to disrupt the existing
coalitions and form new ones.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 1, FEBRUARY 2010

A. Probabilistic Values for Games

Let {p4 : S C N\i} be a probabilistic distribution function
over the group of coalitions not containing 7. ¢; gives the prob-
abilistic value of the game [11], [12]:

> psle(Sud) = e(S)). 5)

SCN\i

pi(c) =

In this game, participation by ¢ can be viewed as consisting
merely of joining some coalition S, and having to contribute
for his marginal contribution [¢ (S U ¢) — ¢ (.S)] to the coalition.
If, for each S C N\i, p is the subjective probability that he
joins the coalition .S, then ¢;(c) is his expected cost allocation
from the game. Both SV and Banzhaf values are instances of
probabilistic values.

B. Shapley Value Approach

SV is an a priori value that each entity contributes to the
grand coalition in a game with a particular characteristic func-
tion [5]. To obtain this, all possible permutations are considered.
Depending on the order of entry of each player, his net contri-
bution to the grand coalition is obtained. Considering all such
orders of the players to be equally likely, average of these con-
tributions gives SV allocation.

SV, denoted by ;(c) for a player i, assigns to the player a
share of the joint cost which is in proportion to the marginal
contribution of this player to the grand coalition:

wi(c) = Z ISI'(|N|—|S] - 1)!

(S Ui)—e(S)] ©)

, |N|!
SCN—1
where
S coalition excluding ¢;
(SUi) coalition obtained by including 7;
|S] number of entities in the coalition S;
|N| total number of players in the game;
c(9) characteristic value associated with coalition S.

First part of the expression (6) gives the probability of a par-
ticular player joining that coalition across all orders and the dif-
ference part gives the marginal contribution that any particular
player makes to the coalition by his joining. SV arises from the
belief that the coalition that he joins is equally probable to be of
any size t(0 < t < |N| — 1); this is represented as

.t
PSZW(|N|—t—1)! (7

forall S C N\i, where t = |S|.

SV assigns an n-vector allocation for every n-person game.
This value provides an equitable cost allocation wherein the
defining property of an allocation is its efficiency, i.e., the sum
of individual allocations does not exceed the allocation attained
through cooperation of all the players [11], [12]. SV may or may
not lie within the core.

C. Nucleolus Approach

The concept of Nucleolus, as introduced by Schmeidler in
19609, is characterized by two features; every game has one and
only one nucleolus, and unless the core is empty, nucleolus lies
in the core [13].
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Fig. 1. Various cost allocation game algorithm.

A measure of inequality of an imputation X for a coalition S
is defined as the excess

e(X,S):Za:i—c(S). (8)

i€S

This excess gives an indication of the amount by which a
coalition surpasses its maximum potential ¢(.S) in the imputa-
tion X [8]. Since core is defined as the set of imputations such
that ¢ () > >, i, an imputation X in this case lies within
the core if and only if all the excesses are negative or zero. Coali-
tion that objects most to the suggested pay-off vector X is the
one with the largest excess and, hence, represents its dissatisfac-
tion. To obtain Nucleolus, dissatisfaction for every coalition is
minimized until the solution becomes fair and acceptable to all
the coalitions and individual players. Initially, the largest dis-
satisfaction is evaluated and reduced, and thereafter, the next
largest dissatisfaction is taken up. This can be solved as a solu-
tion of a set of linear programming problems [14].

III. MODELING OF PROPOSED PROBABILISTIC APPROACHES

The approaches are broadly based on the existence probability
of players and coalitions. Existence probability of any player is
the probability of that particular player to exist in the up-state in
a system. Existence probability of any coalition is the product of
existence probabilities of all the players in that coalition. In this
paper, four new formulations, viz., probabilistic SV, probabilistic
Nucleolus, generalized SV, and Banzhaf value, have been mod-
eled for cost allocation. Algorithm for all these approaches is pre-
sented in Fig. 1, that will be explained in Section I'V. For these
approaches, participation of playersin the game, after considering
the probabilities, are scaled to obtain 100% cost allocation. Also,
a predefined split in overall cost allocation between the genera-
tors and loads is preserved.

A. Probabilistic SV and Probabilistic Nucleolus Approaches
Existence probability of a coalition S is defined as the product
of existence probabilities of all players in that coalition:

Pepistence (S) = H Pegistence (L) . ©)
i€S

CH 18

L1 L2

Fig. 2. Simple example.

For evaluating probabilistic SV and probabilistic Nucleolus
allocations, the characteristic values are evaluated by multi-
plying power flow in a line by existence probability of the
particular coalition causing that power flow. The so evaluated
characteristic values are called the probabilistic characteristic
values. After evaluating the probabilistic characteristic values,
SV and Nucleolus approaches, as explained in Section II,
are used to evaluate the percentage allocations for the line.
The so evaluated SV and Nucleolus allocations are termed as
probabilistic SV and probabilistic Nucleolus.

Probabilistic SV approach takes into account multiple prob-
abilities, first being the existence probability of a coalition and
second being the inherent probability of a player joining a coali-
tion, as explained in (6). However, probabilistic Nucleolus ap-
proach takes into account only the existence probability of a
coalition, as remaining calculations are based on dissatisfaction
of each coalition.

B. Generalized SV Approach

Generalized SV is a weighted sum of marginal cost arising
from the fact that the probability of a player 7 joining a coalition
S be calculated as

Pis — { Pezistence (L) ) 1=1

. 10
Pem’istﬁn(‘ﬁ (Z) ers Pﬁxistence (k) ) ( )

1> 1
where k are the players already existing in the coalition .S be-
fore the player : joins it. The method believes that all orders of
players are not equally likely to occur, and thus, their contribu-
tion must depend on the existence probabilities of the various
players [15].

C. Banzhaf Value Approach

Banzhaf value also assigns an expected marginal allocation
to the players. For any individual player ¢, Banzhaf value arises
from the subjective belief that a player is equally likely to join
any coalition of the size (0 < t < |[N| — 1), that is p§ =
1/2»=1 for all S ¢ N\i [11], [12]. Thus, for a three-player
game, the probability of any player joining a particular coalition
is taken equally to be 0.25.

IV. METHODOLOGY

To understand the proposed probabilistic cooperative game
models, a two-bus system with two loads and two genera-
tors connected by a transmission line, as shown in Fig. 2, is
taken for analysis [7]. The peak load and generation values
are L1 = 120 MW; L2 = 150 MW; G1 = 300 MW; and
G2 = 280 MW.

The variable cost of G1 is assumed to be less than that of G2
and the line losses are neglected. As the loads are to be supplied
power at the most economic cost, G1 meets the demand when
it exists in a coalition. Assuming peak load and generation, the
line flows for various possible coalitions between loads and gen-
erators are shown in Table I. The capacity factor of generators
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TABLE I
LINE FLOWS FOR VARIOUS COALITIONS (IN MEGAWATTS)

Gl G2 G1G2
L1 0 120 0
L2 150 0 150
L1L2 150 120 150
TABLE II
CAPACITY/LOAD FACTORS OF PLAYERS
Gl G2 L1 L2
0.6 0.75 0.7 0.8
TABLE III
COALITION EXISTENCE PROBABILITIES
Gl G2 G1G2
L1 0.42 0.525 0.315
L2 0.48 0.6 0.36
L1L2 0.336 0.42 0.252

and load factor of loads are assumed as shown in Table II. These
factors reflect the probability of players to be in the up-state.
A player collaborates and interacts during its up-state to join a
game. Thus, these up-state probabilities are also their existence
probabilities in the game. For any coalition, the product of ex-
istence probabilities of individual players in the up-state (from
Table II) gives its coalition existence probability as shown in
Table III.

The problem is formulated to allocate the embedded costs of
the network over the set of loads and generators connected to
it. Loads and generators are represented as players in the game.
Rationality considerations would incentivize all the players to
join in and form the grand coalition. Thus, for each coalition
between loads, all the possible coalitions between generators
are taken. The game models discussed hence have been broadly
outlined with the help of algorithms in Fig. 1.

Using the line flows in Table I, normal characteristic values
for the load and generator cooperative games are obtained as dis-
cussed hence. Two streams of calculations are conducted, one
each for loads and generators. For the load stream, line flows
are multiplied by 0.77 while for the generator stream, they are
multiplied by 0.23 to reflect the line flows and hence the cost to
be associated to the two types of players. The coefficients 0.77
and 0.23 represent the global split of costs between demand and
generation in the system. This creates a new set of line flows.
For each load coalition, summation of new line flows across
all the generator coalitions provides the characteristic value for
that specific case. Similarly, for each generator coalition, sum-
mation of new line flows across all the load coalitions provides
the specific characteristic value (in Table IV). Normal SV and
normal Nucleolus cost allocations (in Table VII) are obtained
from normal characteristic values of Table IV, on the basis of
SV and Nucleolus calculations, rationalized to their overall al-
location percentages.

The probabilistic characteristic values are obtained for the
two streams of loads and generators as hence. Original line
flows (in Table I) are multiplied by the corresponding existence
probabilities (from Table III) of the coalition causing the flow.
The resultant line flows are multiplied by 0.77 or 0.23 to obtain
the line flows corresponding to the load and generator streams,
respectively. For the load coalitions, summation of these new

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 1, FEBRUARY 2010

TABLE IV
CHARACTERISTIC FUNCTION VALUES
Coalitions L1 L2 L1L2 Gl G2 G1G2
Normal 924  231.0 3234 69.0 55.02 69.0
Probabilistic  48.51 97.02 106.72 28.15 26.08 21.11
TABLE V
MARGINAL COST ALLOCATIONS
Player Joining At Gl G2 L1 L2
Position 1 69 55.2 924 231
Position 2 13.8 0 92.4 231
TABLE VI
PROBABILITY PRODUCTS
Player Joining At Gl G2 L1 12
Position 1 0.6 0.75 0.7 0.8
Position 2 0.45 0.45 0.56 0.56
TABLE VII
PERCENTAGE ALLOCATIONS FOR SIMPLE EXAMPLE
Gl G2 L1 L2
MW-Mile 23.0 0.0 0.0 717.0
Normal SV 13.8 9.2 22.0 55.0
Norm. Nucleolus 13.8 9.2 22.0 55.0
Probabilistic SV 12.63 10.37 21.0 56.0
Prob. Nucleolus 12.63 10.37 21.0 56.0
Gen. SV 12.3 10.7 20.82 56.18
Banzhaf Value 13.8 9.2 22.0 55.0

line flows over all the generator coalitions gives its character-
istic value. Similarly, for the generator coalitions, summation of
new line flows over all the load coalitions gives its characteristic
value. These values, as shown in Table I'V, form the probabilistic
characteristic values for the two streams. SV and Nucleolus cal-
culations, based on these probabilistic characteristic values, re-
sult in probabilistic SV and probabilistic Nucleolus cost alloca-
tions (in Table VII).

To obtain generalized SV solution, the normal characteristic
values (from Table IV) are used for calculating the marginal
change in cost allocation, with the players joining the coalition
across all orders. These marginal changes (in Table V) are multi-
plied with the product of existence probabilities of those players
who have joined the coalition. The coalition players are either all
loads or all generators in the up-state, depending upon the cal-
culation stream. The products of such probabilities are shown
in Table VI.

The sum of products of marginal cost allocation and coalition
joining probabilities, rationalized to their overall allocation per-
centages, gives generalized SV cost allocations to the players
(in Table VII). A calculation similar to that used for obtaining
generalized SV is adopted for Banzhaf value solutions, but here
the probability of players joining any coalition is taken to be
equal, and thus 0.5, across all orders.

V. SIMULATIONS

To validate the proposed probabilistic cooperative game
models, simulations are performed on a six-bus, three-gener-
ator, and three-load meshed network of Fig. 3. This is adopted
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Fig. 3. Six-bus system network.
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from [16] and additional assumed data required for optimal
power flow (OPF) are provided in Tables VIII and IX. In order to
optimize the overall system generation costs, OPF is performed
for all these cases. OPF is performed assuming peak load on
load buses, as peak load justifies the design of any transmission
network. The quadratic cost function (C2* P2+ C1* P + C0)
in Table IX represents the cost of active power production by
generators. Loads L4, L5, and L6 are assumed to be of 70 MWs
each. Table X gives the capacity factor of generators and load
factor of the loads connected to the system [17]. The ratio for
global cost allocation in the system between generators and
loads is assumed as 23%:77% [18].

MATPOWER [19] software is used to perform OPF for dif-
ferent coalition combinations of the loads and generators. This
provides the line flows for various coalitions. Taking into ac-
count the multiple lines that exist in the system, calculations are
performed for the complete system.

Load and generator characteristic values developed for the
calculation of normal SV, normal Nucleolus, generalized SV,
and Banzhaf value are as shown in Tables XI and XII. Similarly,
for probabilistic SV and probabilistic Nucleolus approaches,
the load and generator probabilistic characteristic values are as
shown in Tables XIII and XIV.

SV and Nucleolus calculations based on characteristic values
for normal SV/Nucleolus and probabilistic SV/Nucleolus ap-
proaches are done using TuGames package [20], an extension
of CooperativeGames, a Mathematica package. For generalized
SV and Banzhaf value approaches, calculations are performed
in EXCEL environment.

To compare the proposed approaches from existing ones in
use, MW-Mile method has been used as the base approach.
In this method, line cost is allocated to a player by obtaining
change in power flow in the line due to that player. The product
of change in line flow with the corresponding line length,
summed over all the lines, results in overall cost allocation on
the basis of MW-Mile method. This method, in a way, reflects
peak loading on the system due to players.

VI. RESULTS AND DISCUSSIONS

For all game-theoretic approaches, percentage cost allocation
of individual line is calculated. The product of this allocation

with the line length, summed over all the lines, gives the cost
allocation of the whole system to different players. For the com-
plete network, cost allocation due to all the approaches under
consideration are presented in Table XV.

Cooperative game theory offers multiple solution approaches.
Nucleolus and SV differ marginally in their allocations due to
the basic difference in their modeling. Nucleolus minimizes the
maximum discontent among the players, while SV recognizes
the marginal contribution of players when they join a coalition.
Cost allocations from probabilistic methods differ from the tra-
ditional game-theoretic approaches as they take into account
the probabilistic nature of players. Probabilistic SV, generalized
SV, and Banzhaf value allocation are variations of normal SV,
whereas probabilistic Nucleolus is a variation of normal Nu-
cleolus. As we understand, there is no unique solution that can
be labeled as best; still it would be prudent to compare the so-
lutions with previously used or referred solutions. Allocations
have been compared on the basis of two criteria: reflection of
usage probabilities and stability.

Generators and loads have been grouped separately for com-
parison purposes. As compared to normal SV, probabilistic SV
offers a higher allocation to G2, lower to G1 but exceptionally
very low to G3. The load probabilities get reflected as higher
allocation for L4, a bit lower for LS5, and yet, very low for L6
as compared to normal SV allocations. This shows a strong re-
flection of the relative usage probability of generators and loads.
In comparison to normal SV, generator allocations with gener-
alized SV offer an increased allocation for G2, an increase to a
lesser extent for G3, while a decrease for G1. Still, it increases
largely for L4, decreases slightly for L5, and more drastically
for L6, thus strongly reflecting the usage probability. The gen-
erator group allocations from Banzhaf value strongly follow the
probability pattern but the load group follows it in a weak way.
Comparing probabilistic Nucleolus with normal Nucleolus, the
allocations largely follow the usage probability pattern of the
players involved.

Overall results indicate that generalized SV offers the
strongest reflection of the relative usage probability of loads
and generators. Almost similar trends are visible for proba-
bilistic SV and probabilistic Nucleolus, despite that they do not
follow the relative probabilities in an equally strong way.

Further, to analyze the stability of results, characteristic
values of the complete network are obtained by adding the
product of original characteristic values with their corre-
sponding line length over all the lines. Cases 1 and 2 in
Table XVI correspond to the normal characteristic values
for loads and generators, while cases 3 and 4 represent the
probabilistic characteristic values for loads and generators,
respectively. The imputations for the same, illustrated in
barycentric coordinates, are represented by the larger triangles
ABC in Figs. 4-7. In the same figures, the enclosed part of
three bold lines reflects the core for these cases.

Allocations for the complete system are represented in
Table XVII. The grand coalition values of load cases 1 and 3
(from Table XVI) are allocated among the load group players.
Similarly, grand coalition values of generator casess 2 and 4 are
allocated among the generator group players. The split is done
among the load/generator group in the same ratio as indicated
in Table XV for the corresponding methods.

Figs. 4 and 5 represent the normal characteristic values, as
used for normal SV, normal Nucleolus, generalized SV, and
Banzhaf value approaches, whereas points 1, 2, 3, and 4 in
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TABLE VIII
LINE DATA OF SiX-BUS NETWORK

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 1, FEBRUARY 2010

TABLE XIII
PROBABILISTIC CHARACTERISTIC FUNCTION VALUES FOR LOADS

Line  Impedance (pu) Max. Power (MVA) Line Length (km)

12 02 40 11.2
1-4 0.2 60 10.3
1-5 0.3 40 15.55
23 j0.25 40 12.7
2-4 j0.1 60 56

25 j0.3 30 15.8
26 j0.2 90 10.6
35 j0.26 70 143
3-6 jo.1 80 5.1

45 j0.4 20 2.4
5-6 0.3 40 15.8

TABLE IX

GENERATOR DATA OF S1X-BUS NETWORK

Maximum Coefficients of Polynomial Cost Func-
Generator 0 er (MW) tion ( C2*PA2 + C1*P + C0)
C2 Cl CO
Gl 220 0.00533 11.669 213.1
G2 220 0.00889 10.333 200
G3 220 0.00741 10.833 240
TABLE X

CAPACITY/LOAD FACTORS OF PLAYERS

Gl G2 G3 14 L5 L6

0.4184 0.7540 0.5973 0.8333 0.5526 0.3838

TABLE XI
NORMAL CHARACTERISTIC FUNCTION VALUES FOR LOADS

Load

Coalitions L4 LS L6 LALS LAL6 L5L6 LALSL6
Line 1-2 55.19 53.24 36.21 92.75 84.75 84.85 132.53
Line 1-4 93.12 24.77 21.23 116.84 126.23 55.46 156.94
Line 1-5 31.40 73.51 32.69 76.44 28.24 118.66 128.01
Line 2-3 51.41 49.65 63.38 91.07 86.50 93.79 124.60
Line 2-4 228.67  58.39 29.95 257.98 212.87 70.82 236.10
Line 2-5 18.61 85.93 24.48 82.68 33.05 103.73 99.70
Line 2-6 38.47 47.86  133.10 63.96 111.63 155.72 148.87
Line 3-5 45.84 88.59 32.68 135.77 65.00 88.54 126.03
Line 3-6 51.21 50.03 178.71 99.78 228.00 221.49 266.77
Line 4-5 55.49 52.58 17.32 18.14 38.19 69.89 28.57
Line 5-6 23.14 68.97 65.48 86.75 47.70 23.43 37.82

TABLE XII

NORMAL CHARACTERISTIC FUNCTION VALUES FOR GENERATORS

Generator

Coalitions Gl G2 G3 G1G2 GI1G3 G2G3  GIG2G3
Line 1-2 67.18 23.75 10.71 11.45 16.01 18.26 13.80
Line 1-4 69.00 12.20 13.41 2510 2959  12.83 15.46
Line 1-5 50.12 16.67 8.01 26.83 19.41 11.37 13.64
Line 2-3 18.57 28.58 47.93 2599 27.64 10.03 8.64
Line 2-4 24.41 63.84 45.45 49.08 3473  56.09 53.42
Line 2-5 13.26 31.42 10.21 2672 11.23  20.65 20.38
Line 2-6 3382 4561 20.60 4258 18.05  23.72 24.60
Line 3-5 10.41 10.89 52.59 11.40 3539  27.60 25.69
Line 3-6 22.18 21.61 92.67 21.83  70.67 5023 48.19
Line 4-5 13.36 13.02 12.77 13.12 1026  10.38 10.78
Line 5-6 16.42 12.76 18.82 13.88  14.55 14.96 14.14

Load
Coalitions

Line -2 20.06 12.84  5.79 19.53  11.75 7.74 10.45
Line1-4 3255 5.85 3.33 21.19 1599 466 10.31
Line 1-5 11.06  17.23 534 1412 3.87 10.24 8.70
Line 2-3 1795 1267 11.05 1925 1337  9.78 10.98
Line 2-4 81.54  14.06 492 5224 30.15 6.98 19.20

14 L5 L6 LALS L4L6 L5L6 LALSL6

Line 2-5 7.04 20.46 421 16.89 5.13 9.68 7.97

Line 2-6 1373 1202 2206 1444 1628 1440 12.23

Line 3-5 1577  19.10 5.76 26.54 9.00 7.97 9.70

Line 3-6 1735 1145 2873 1924  30.56  19.68 19.92

Line 4-5 1947 1246 293 3.93 5.12 6.34 2.48

Line 5-6 8.08 1613 1072 17.16 6.35 222 2.96
TABLE XIV

PROBABILISTIC CHARACTERISTIC FUNCTION VALUES FOR GENERATORS

gg;‘ﬁ::‘;g; G2 G3 GIG2 GIG3 G2G3 GIG2G3
Linel2 983 739 258 1.8 118 321 1.16
Line1-4 1082 403 361 281 270 262 1.20
Line1-5 729 1052 226 526 164 198 091
Line23 239 1725 1092 700 305 187 0.73
Line2-4 481 2364 1175 865 410  10.64 434
Line25 200 1904 247  7.57 1.09 324 1.34
Line2-6  4.18 2440 576 995 203 338 1.44
Line3-5 174 795 1162 955 356 459 1.84
Line36 260 3559 1867 1490 615 699 2.84
Lined4-5 224 723 352 303 126 217 0.92
Line56 237 1613 478 679 170 291 1.19

TABLE XV
COMPARATIVE PERCENTAGE ALLOCATIONS FOR SIX-BUS SYSTEM

Gl G2 G3 4 L5 L6
MW-Mile 4.06 8.08 10.85 2229 2826 2645
Normal SV 9.93 5.86 7.21 19.36  37.20 2044
Norm. Nucleolus 10.23  7.05 572 20.52 31.70 24.78
Probabilistic SV 3.40 18.82 0.78 39.76 31.87 537
Prob. Nucleolus 7.49 14.40 1.11 3446 30.10 12.44
Gen. SV 8.09 7.35 7.57 27.10 3436 1554
Banzhaf Value 9.45 6.25 7.30 18.53 37.05 21.42

them represent the allocations due to these methods, respec-
tively. Figs. 6 and 7 represent the probabilistic characteristic
values, as used for probabilistic SV and probabilistic Nucleolus
approaches, whereas points 5 and 6 in them represent the allo-
cations due to these methods, respectively.

Relative unstability of the solutions can be visualized by as-
sessing the likelihood of the imputations to be upset. This is
perceived by their nearness to the core limits. The closer the
imputation is to the core limits, the weaker is its stability. Ana-
lyzing Figs. 4 and 5, imputations from all the methods, except
for generalized SV (indicated by point 3 in Fig. 4), lie inside the
highlighted core, thus indicating relatively stable allocations. In
Fig. 4, point 3 lying outside the core indicates the existence of a
coalition that offers a lower allocation to load 3 as compared to
the present allocation. This may prompt it to leave the present
coalition. The load and generator imputations for normal Nucle-
olus consistently lie away from the core limits, thus reflecting
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A(7226,8606,-282)

R(7226,5164, 3160/\
X (7226,5018,3306) \  (36388606,3306)

B(7226,1620,6704)  5(3682,5164,6704) M (2974,5872,6704) C (240,8606,6704)

N (2974,8606,3970)

Fig. 4. Load imputations and core for normal characteristic values.

A(4004,3111,-4520)

R(4004,-431,-978),
(-41,3111,-475)

X (4004,-934,—475) (-58,3111,-438)

B(4004,-4843,3434) M (-58,-781,3434) S (-408,-431,3434) (C(-3950,3111,3434)

Fig. 5. Generator imputations and core for normal characteristic values.

A(2551,2028,-3375)

X (2551,-101,-1246)

255] —244,-1103

B(2551,-2462,1115)  §(333,-244,1115) M (50,39,1115) C(-1939,2028,1115)

Y (422,2028,-1246)
N (50,2028,-874)

Fig. 6. Load imputations and core for probabilistic characteristic values.

their stronger stability. Similarly, imputation location for prob-
abilistic SV, lying consistently away from the core limits, as
compared to the imputation location for probabilistic Nucleolus,
reflects its stronger stability among the two approaches. But,
the small size of the core for both the probabilistic approaches
(Figs. 6 and 7) indicates a not-so-strong stability as compared
to the other models. Even normal SV and Banzhaf value allo-
cations reflect a not-so-strong stability as compared to that of
normal Nucleolus allocation.

A(594,1911,-2315)

N (-270,1911,-1451)

X (594,288,-692

¥(~1029,1911,-692)
R(594,-114,-290)

B(594,-1225,821)
M (-270,-361,821) § (-517,~114,821)

C(-2542,1911,821)

Fig. 7. Generator imputations and core for probabilistic characteristic values.

TABLE XVI
CHARACTERISTIC FUNCTION VALUES FOR COMPLETE SYSTEM

Case 1 Case 2 Case 3 Case 4
c(1) 7226 4004 2551 594
c(2) 8606 3111 2028 1911
c(3) 6704 3434 1115 821
c(1,2) 12244 3070 2450 882
c(1,3) 10386 3026 1448 304
c(2,3) 12576 2653 1154 460
¢(1,2,3) 15550 2595 1204 190
TABLE XVII
ALLOCATIONS FOR COMPLETE SYSTEM
Gl G2 G3 L4 L5 L6
Normal SV 1121 661 813 3909 7513 4129
Normal Nucleolus 1154 796 645 4143 6402 5005
Generalized SV 912 829 854 5472 6940 3138
Banzhaf Value 1066 707 824 3743 7482 4325

Probabilistic SV 28 155 6 622 498 84
Prob. Nucleolus 62 119 9 539 471 195

TABLE XVIII
STRENGTH OF MODELS

Stability Reflection of Usage Probability
Normal SV Average Weak
Normal Nucleolus Strong Weak
Generalized SV Weak Strong
Banzhaf Value Average Average
Probabilistic SV Average Strong
Prob. Nucleolus Average Strong

Evaluation of various models on the basis of their strength, as
regards a particular criterion, is shown in Table XVIII. Overall
comparison shows a weak reflection of usage probability by
normal SV and normal Nucleolus. Generalized SV strongly re-
flects usage probability, but falls weak on account of stability
considerations. Banzhaf value offers an average reflection on
both counts. Considering these facts, probabilistic SV and prob-
abilistic Nucleolus are understood to offer better overall results.

VII. CONCLUSION

The cooperative game approaches, SV and Nucleolus,
provide unbiased and stable solutions to the cost allocation
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problem. In this work, probabilistic approaches to the cooper-
ative games have been modeled and their application to cost
allocation has been realized.

Cost allocation of power networks from the traditional coop-
erative game approaches is based on peak loading by the players.
Actual network usage is reflected by introducing the capacity
and load factor of players as their existence probabilities. The
methods are used for prospect evaluation of individual players
in a probabilistic environment. The results obtained reflect the
player usage probabilities and are largely stable. Consistent re-
sults validate these approaches and justify their implementa-
tion. The resultant pricing structure would rightly incentivize
the players to join a coalition at proper locations for overall cost
optimization.

Probabilistic cooperative game models would find applica-
tions, where presently, the cooperative game approaches are hin-
dered due to their seemingly unfairness for not accounting the
varying usages by the players.
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