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1. INTRODUCTION

For a linear system of simultaneous equations, an instrumental variables
interpretation of the full information maximum likelihood estimator was
proposed by Durbin (1963, unpublished paper), and by Hausman (1974,
1975). When the covariance matrix of the structural system is completely
unrestricted, FIML estimates can be obtained from iterating to convergence a
full information instrumental variables procedure like Brundy and Jorgenson’s
(1971) FIVE method. Instruments for the included endogenous variables are
obtained as linear combinations of all the predetermined variables of the
system, through the matrix of restricted reduced form coefficients. [n other
words, in each iteration instruments for the included endogenous variables are
obtained from the simultaneous solution of the structural form equations
(without error terms and with coefficients set at the previous iteration values).

Extending Hausman's interpretation to thc general class of nonlinear
systems of simultaneous equations with normal errors and unrestricted
covariance matrix, Amemiya (1977) shows that FIML estimates also in this
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case can be obtained by iterating to convergence an appropriate instrumental
variables method. Instruments are obtained from the variables and functions
of variables {linear or nonlinear) that appear in the structural equations
properly purged of their stochastic component. In the particular case of a
linear system, instruments for the included endogenous variables turn out tc
be obtained by purging the variables of their residuals in the restricted reduced
form. ‘Therefore the resulting instruments are exactly the same as fo
Hausman’s method.

When zero restrictions are imposed in the covariance matrix, instrumenta
variables interpretations of FIML arc available in the literature for linea
models.

If the covariance matrix is diagonal (a case analyzed by Koopmans, Rubir
and Leipnik, [950, and by Rothenberg, 1973), the instrumental variable:
whose iterated application converges to FIML are illustrated, for example, ir
Maddala (1981, p.199), or Hausman (1983, p.427). Instruments for ths
endogenous variables included in one eguation are obtained as linea
combinations of all the predetermined variables of the system (as before), bu
also of the estimated residuals of all the other structural equations. Th
coefficients of the linear combination are such that the same values for th
instruments would be obtained by purging each endogenous variable includes
in equation i only of that pert of ils restiricted reduced form residual tha
derives from the { th structural residual.

This interpretation can be extended tc the case of a block-diagona
covariance matrix, as shown by Friedmann (1985). We can linearly combine
in addition to the predetermined variables of the system, also the estimate
residuals of all the structural equations uncorrelated with the given one
Again, this is the same as purging the included endogencus variables of th
structural residuals of all the equations that are corretated with the given one

Somehow mare complicated is the case of zero restrictions in the covarianc
matrix, which do not impiy a diagonal or block-diagonai structure, ) This i
the case analyzed by Hausman, Newey and Taylor {(1987). Again the result i

)?hu elegant analysis of the different implications of zeto restnctions, when they imply or nc
a diagonal ot block-diaganal structure of the covarance matrix, is made in Friedmann (198!
by means of the concepl of connected versus correlated crror terma,
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that the efficient instruments for the endogenous variables included in one
equation should be obtained by linearly combining not only the predetermined
variables of the system, but also the estimated residuals of all the structural
equations that are uncorrelated with the given one. The complication with
respect to the previous cases is in the coefficients (or weights) of the linear
combination of residuals: these coefficients do not have the simple expression
they have in the previous cases.

All the methods summarized above show that we can get FIML estimates
by iterating to convergence an instrumental variables formula that is perfectly
consistent with the intuitive fextbook-type interpretation of efficient
instruments: insttuments for an equation must be uncorrelated with the error
term of the equation, but at the same time must have the highest correlation
with the explanatory variables {e.g. Fomby, Hill and Johnson, 1984, p.258).

However, if our purpose is to obtain FIML from iterating to convergence
some full information instrumental variables, the intuitive textbook-type
interpretation of the efficient instruments is not necessarily helpful, and can
be too restrictive.

The purpose of this paper is to show that, in the fufl information framework,
there is a much wider flexibility in the choice of the instruments. Instruments
can be efficient @ even if, against intuition, they are not purged encugh of
correlation with the error term: for example, thé instruments for the
endogenous variables or functions of endogenous variables included in one
equation do not npeed to be purged of the residuals of equations that are
correlated with the given one. Viceversa, instruments can be efficient even if
they are purged too much: for example, if there are zero covariance restrictions,
instruments may be purged also of the estimated residuals of equations
uncorrelated with the given one.

\éfﬂh efficient instruments we simply mean that their iterated application, if converging, leads
to FIML; we do not mean that their application, starting from any consistent estimate,
attains asymptotic efficiency after the first iteration. As explained in Amemiya (1977, in the
general nonlinear system the instrumental variables do not attain cfficiency after the first
eration, unless the initial estimate is already asymptotically efficient. The same happens for
the linear system, with diagonal or bloek-diagonal covariance matrix, as shown in Friedmann
(1985).
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We show these resultls for general nonlinear systems of simulianeous
equations, with additive random error terms which are independently and
identically distributed like multivariate normal. Then the linear systern follows
as a particular case. We first show why there is 4 wide flexibility in the choice
of instruments, then cxcmplily some exireme consequences with a list of
examples.

2. NOTATIONS AND ESTIMATION

We follow the notations and implicitly accept the assumptions in Amemiya
{1977.1982). Let the simultancous equation model be represented as

i=1.2,..n
m S = LG 5 @) =y t=12...T

where v, is the n x | veclor of endogenous variables at time ¢, x, is the vector
of predetermined variables at time ¢ and 4 is the & = 1 vecter of unknown
structural coefficients in the i th eguation. The a = } vector of random error
terms at time ¢, t; = {ty 0.0 , i85 assumed 1o be independently and
identically distributed as N(G, L) ; the # x n matrix T is symmetric and positive
definite, and can be either unrestsicted or subject to linear restrictions (in
particular, zero restrictions like o,; = o, = 0 ). The complete Y. 4 = | vector
of unknown structural coefficients of the system will bd'indicated as
a = {a/.a/...,aq,7) . Identities, if any, have been previously substituted out of
the system.
The log-likelihood of the whole sample can be ¢xpressed as

%,

1 & sl
o '7):}55!-:
T

=1

T T
(2) Lyp=-Flog]Z] + T log

=1

where fo = (finfan oo = 4, and the Jacobian determinant |3f/dy.| is
taken in absolute value. We define. for the i th equation, g, = éf;,/da, which
is a column vector with the same length as a,. and is a function of ¥, x, and a.
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if, for any w, the system has a unique solution for y, we can regard £ a5 2
function of u, x, and 2. We aeed, in particular, its derivative with respect to
. , which is

-f
&) & = (% ) ( o )
By, oy’ T

where (8£/8y,)" is the i th column of the inverse of the n x n Jacobian matrix
(ffavy .

Differentiating the log-liketihood (2) with respect 1o the coefficients of the
ith equation we get
aL‘r L agr.t

A i
= - ng_u';’o ’
=]

1G]
doy = auf.(

where o' is the i th column of I,

We now introduce the T x 7 matrix of the structura} form functions over
time, F, whose ¢,i th element is f; (v, x, @) (its ¢ throw is /), and the T = £,
matrix G; , whose ¢ th row is g,/ , 50 we can write

T
&) L&l = GF
=l

We also indicate with § = FF/T the sample cova'riancc matrix of the
structural residuals {# x 7). If i., is the ¢ th column of the 7 * A unit matrix
L, we build for the i1h equation an # x 2 matrix @, which has {,, as 1th
column, while the remaining # - 1 columns are completcly arbitrary

E3 A . . 0 - - *

LT
© Q-fxin e i

*x ks 0 x

Given @, we build the n x n matrix P, as

) P =QzLs! QE(F—;)‘I
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Whatever choice we make for the arbitrary elements of & (whose number is
- r for any i}, we obviously get

@) P Sa = P, —FTF o =i,
and therefore
g, dg;, dg;, FF i
oo % % .
@ fu, | ow, i dw, T °

Substituting equations (35) and (9) into (4) we get
aLT T agl'.r

(10) aa, - ,§1 au’,

G’ ( g”)PtF' Fagof
lzlau,

Defining the matrix of instruments for the i th equation as

6
(an 6-(F 15 )p,.r
!’l

then building as in Amemiya (1977, p.962) the nT ):k, block-diagonal
matrices G = diag (G, ..., G,) and G = dlag(Gl,..., ,.) *=land stacking the
equations (10) for i = 1,2, ..., n, we get for the gradient the expression

Ly
da

P —FTF gt G’EFU"'A

(12) =G E'el)vec F

Setting (12) to zero gives a nomnlinear equation that can be solved, as in
Amemiya {1977, eq.4.8), iterating 1o convergence , Lhe instrumental variables
formufa

-l
(13) gt 1) = 4 (G (0l G| 62 ®1p) vee F

“Frah'ons stop when ¢ (E'®{;) vec £ = 0 but, of course, convergence 18 not guaranteed,
The joint use of the instrumental variables formula and of the fine search maximization of
the likebhood, analogous to Dagenais {1978) or Calznlari, Panattoni and Weihs (1987), is
helpful since it improves considerably the probability and the speed of convergence.
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To make iteration (13) feasible in practice, we must replace G , G, Fand % with
values computed at the coefficients estimate of the rrth jteration, gm. For G
and G this means that we must compute derivatives at di= ; for £ we must take
the matrix of the m th iteration structural residuals; finally, for T, we must take
the appropriate estimate, whose expression changes considerably if we consider
the unrestricted case or the case where restrictions are imposed.

Equation (11} defines the matrices of efficient instruments with a wide
degree of arbitrariness given the presence of the matrices P, whose only
reguirement is that they must satisfy the condition given by equation (3).

3. THE INSTRUMENTAL VARIABLES

Interpreting the matrix &, is particularly simple for an equation that is linear
in the coefficients, even if nonlinear in the variables. The ¢ th column of G/ is
the &, = 1 vector g, = df,/da, and -g.. is nothing but the vector of values at
time t of the explanatory variables and functions of variabies included in the
i th equation. Therefore, - G, is simply the 7" x k; matrix of regressors of the
i th equation that can be normalized as i

(14) Y= Gty
The k= 1 vector of instruments at time ¢, g, (the /th column of Gy is

.
obtained by purging g, of (T Xag,,,"au,’)Pf

agu
(3) ( J-Ia“t )Pij;

For an element of g, that is not function of current endogenous variables, the
first derivatives with respect to the error terms are zero, thus implying a row
of zeroes in the &k, x n matrix dg,,/0u, . This element of g, remains therefore
unchanged in g, , as expected, whatever the choice of the arbitrary elements
of { {and therefore P). For an element of g, that is function of current
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endogenous variables, the choice of the arbitrary elements of ¢ can
considerably affect the way in which it will be purged of the correlation with
the error terms. The analysis of some extreme cases will better illustrate this
point.

3.1, If T is unrestricted, then solving the first order conditions @Lg /62" = 0
leads to the well known estimate of the covariance matrix & = FF/T = 5that
must be substituted into equation {13} at each iteration. If we choose @, = J,
(the n x n unit matrix, the same for all equations), then from equation (7) we
get P, = /, and, therefore

- L 2
{16) g,._r=g.-,,-(“17-— Egutr)fr
1

=1

that is Amemiya’s {1977) instruments.

3.2. If the model is linear, we can write
(17 Sy, xp, @d=f=8y +Tx =y

If % 15 unrestricted {30 that $=5= F'FiT) and y, is an explanatory variable
included in equation { (so that y,, is an element of the vector - g,,), then we have

(7T i@y,_‘/au,’) = Jv /oy, = bt | the j th row of B'. If we choose @ = 7,
(and”'therefore £, = 1), then we replace y, with the instrument P
=y, - by, that is we purge y,, of its restricted reduced form residual {which
is & u, , and therefore is a linear combination of all the structural residuals,
coefficients being elements of B'Y). This is obviously equal to the value of y,,
calcuiated from the simuitancous solution of the modet (17, that is considering
all the overidentifying coefficients restrictions), after setting to zero the error
terms: ﬁm = -p+" ' x, , where cocfficients are set to the previous iferation
values, as in Hausman (1974, 1975).
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3.3, Still for the example 3.2 (and 3.1, with simpie modifications), we may set
to zero all the n- [ arbitrary columns of €, (#? - # ¢lements), choosing

(18) ¢ =19,0,..,0,i ,0,..,0]

and therefore we get from equation (7), being Z unrestricted, P, = ¢ and
{19 Pfi=10,0,.,0,%,0,..,0F

For the instrument replacing in equation { the explanatory endogenous
variable y,, we have, therefore

(20) = Wby =0 T+ k);ib”‘ ty

Surprisingly we get, even if £ is unrestricted, the instrument that would
traditionally be used if % is diagonal, as in Maddala (1981, p.199), or Hausman
(1983, p.427). The endogenous regressor in equation { is purged only of the i
th equation residual. Viewing this from the other point, the structural
residuals of all equations but the { th (even if correlated with the i th residuaf)
enter the linear combination that produces the efficient instrument for
equation f.

3.4. Stll for examples 3.1 and 3.2, we may set to zero only some rows and
columns of &, and take the others from the unit matrix. For example, if
i > 2, we may take

2n Q=1T10,0,¢ 5,0 4yl il o

then it will be £, = @: and

; N 1 T agf.r

\22} g'r =& Z =2 z ﬁt,l
b PPN A

= r?uk'r

for the nonlinear model, If the model is linear

(23 ﬁj.r = yj,;'fézbj‘k u, = - Cx, + 6y, + 67 ",
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The instruments for the endogenous regressors of equation ¢ (¢ > 2} are not
purged of the residuals of equations ! and 2. We get, even if T is unresiricted,
the instruments that would ¢reditionally be used if £ is block-diagonal, the first
block being given by the first two equations (e.g. Friedmann, 1985). For the
linear case we can alse say that equation (23) uses u, and u,, as extra
instrumental variables for estimation, even in absence of covariance
restrictions. :

3.5. The model is linear, as in example 3.2, but X is diagonal (and so is ).
Differentiating the Jog-likelihood (2) with respect to the diagonal elements of
1 and equating derivatives to zero we get

T T '
L . . 1
(24) L= dtag [5[_[? mrerry Sn‘n:] = dlag l: T Zflz,n """ :LT E.f;rl,,l‘-,
=1 =1

If we choose for O, the unit matrix, then P, will penerally be a full matrix with
fairly complicated elements (only asymptotically it would be equal to the unit
matrix 1, , if the coefficients estimate is consisient). This implies that
endogenous regressors will be partially purged of a linear combination of the
residuals of ali the equations (only partially, because coefficients of the linear
combination are not equal to the elements of B-"). Viewing this from the other
point, in the linear case ail residuals enter, with complicated coefficients, into
the linear combination that forms the efficient instruments.

3.6. In the same case of example 3.5 we choose an n x n matrix @, whose Tows
are all zeroes except the i th row, whose elements are all #0; the 7/ th element

is S/ 5y = )Eﬁ,‘f},,/ zrlf}{ (the iith element is 1, so the condition that the ith
cotumn of ¢ hust B&'equal to i, is satisfied). With this choice of (% we get
the same P, f; as in equation (19): any endogepous regressor in equation i is
purged anfy of the ith equation residual, which now is the expected result, £
being diagonal. However the instruments are exactly the same as in example
3.3, where ¥ had no restrictions.
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3.7. The model is linear and I is two-blocks block-diagonal, the first two
equations giving the first block. From the first order conditions we get that &
is obtained from F'F/T by simply cancelling the two off-diagonal blocks. If
we choose for () the unit matriz, then P will generally be a full matrix with
fairly complicated elements. This implies that an endogenous regressor of
equation i will be replaced by a linear combination of the predetermined
variables of the system and of all residuals, including those of the first two
equations.

3.8. For the model of example 3.7, we partition the n x n matrix §

FFE hY hY
(25 LA S - e B 12
) T S0 S

where 5, has dimensions 2 x 2 . We indicate with Z,, the first 2 x 2 block
of the block-diagonal  and with W = (Z,,)! its inverse. For the { th equation
(i > 2) we may choose the following matrix Q;

0 o]o...0
26) o -0 0|08 .0
SpE" | s
so that
(27 Pr=QEST =00,0,i 5, 4oiijoni ]

as for example 3.4. Instruments for the endogenous regressors of equation i
(i > 2) are given by a linear combination of the predetermined variables of the
system and of the residuals of equations | and 2 (which are uncorrelated with
equation £). This now is the expected result, as in Friedmann (1985), I being
bleck-diagonal. The instruments, however, are exactly the same as in equation
(23), where T was uarestricted.
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3.9. The maodel is linear and some linear restrictions are imposed on the I
matrix. These restrictions can aiso be of the zero-type, but without implying
a diagonal or block-diagonal structure. At each iteration, the estimate of £ can
be obtained from the first order conditions related only fo the unrestricted
elements of I, as in Hausman, Newey and Taylor (1987). Alternatively, £ can
be obtained from the constrained maximization of the log-iikelihood (2), using
the Lagrange multipliers, as in Friedmann (1985). In any case we get an
estimate & generally different from § = FF{T (only asymptotically they will
be equal, if coefficients are consistently estimated), so that £S5t is generally
different {rom the unit matrix. Therefore, if we choose @, = f,, we get a fairly
complicated linear combination of the structural residuals of all equations,
coefficients being generally different from the elements of B'. This implies that
instruments are anly partially purged of the correlation with all the errcr terms
or, which is the same, instruments involve a linear combination of all the
structural residuals.  Different linear combinations, but still involving
structural residuals of all equations, will be obtained by choosing (: as in
equations (18) or (21).

3.10. Let us suppose that, in example 3.9, the endogenous variable y,, is 2
regressor of equation i. Suppose that we can choose a matrix P, which has the
following form

(28) P, =(w0,0,.,0] + 1,

where the n = | veclor w = [w,, ..., w,]  is not identically zero. Then

widiy ¥
wyfie o

@ P = ey +
o + o

and the instrument replacing y;, in equation i is. therefore
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" J( . .
(30) Yoo = Ha- kglbj Wehro * fed = - L X - i wi,

This is a lirear combination of all the predetermined variables of the system
{with the usual reduced form coefficients) and of the residual of the first
structural equation (with a complicated coefficient given by - &' w). If { > 1
and the linear restriction is g, = o,, = 0, this is the result in Hausman,
Newey and Taylor (1987, eq.3.11). [t remains to prove that equation (28) is
an acceptable choice for the matrix £. If 5.0+ 0 (which, fori > 1, is made
possible by the restrictions an ), and we choose w = {i., - So") /(s,.0"),
the resulting P, satisfies equation (8) and therefore produces efficient
instruments.

3.11. The only condition needed in the last example, in order to ensure that
an instrument with the form of equation (30) is efficient for equation !, is
§,.0"'#0. If i =1, such a condition is obviously satisfied when I is either
restricted or not. The case of I unrestricted is not surprising, because it gives
w = 0, thus producing the traditional instruments of example 3.2. On the
contrary, the risult is quite surprising if Z is diagonal. In such a case, in fact,
5,070 = |, and the vector w is

31 i | - Son! ol
we=i -Sg"l=; -
(31) ol L 5
White wy = 0, the other elements of w are generally ¥0. Therefore, if y;, is a
regressor of the first equation, the efficient instrument given by equation (30)
involves the usual linear combination of all the predetermined variables of the
system (with the restricted redvced form coefficients), plus the structurai
residual of the first equation (with a complicate coefficient given by - 4 w

= Eb“s.,,.l/s._; ). The traditional case (example 3.6) used exactly the
revelsd: the sfructural residuals of all the gquations except the first.
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4. CONCLUSION

The usual interpretations of efficient instruments should be carefully revised
for the full information case. There are sentences often recurring in the
literature that should be reconsidered. One is, for example, that efficient
instruments for an equation must be uncosrelated with the error term of the
equation, but at the same time must have the highest correlation with the
explanatory variables. Another one is that, when there are covariance
restrictions, FIML uses the uncorrelated structural residuals {o perform better
instruments. In the fil information framework these sentences are tog
restrictive.  'We have shown in this paper that efficient instruments can be
chosen with a much greater flexibility.
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