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Abstract

This paper presents a game theoretic analysis of the generalized second price auc-

tion that the company Overture operated in 2004 to sell sponsored search listings

on its search engine. We present results that indicate that this auction has a multi-

plicity of Nash equilibria. We also show that weak dominance arguments do not

in general select a unique Nash equilibrium. We then analyze bid data assuming

that advertisers choose Nash equilibrium bids. We offer some preliminary conclu-

sions about advertisers’ true willingness to bid for sponsored search listings. We

find that advertisers’ true willingness to bid is multi-dimensional and decreasing

in listing position.



1 Introduction

Internet search engines such as Google and Yahoo provide a service where users

enter search terms and receive in response lists of links to pages on the World

Wide Web. Search engines use sophisticated algorithms to determine which pages

will be of most interest to their users. But they also offer to advertisers against

payment the opportunity to advertise their pages to all users who entered specific

terms. These advertisements are called “sponsored links.” Sponsored links are

displayed on the same page as the links determined by the search engine’s own

algorithm, but separately from these.

Sponsored links are an important new marketing instrument. Sponsored links

offer advertisers a more targeted method of advertising than traditional forms of

advertising such as television or radio commercials, because sponsored links are

only shown to users who have expressed an interest in a search term that is related

to the product that the advertiser seeks to sell. For companies that run search

engines advertising revenue constitutes a major component of their total revenue.

Google reported for the first six months of 2006 a total revenue of $4.71 billion

of which $4.65 billion originated in sponsored search incomes.1 For the same

period, Yahoo reported a total revenue of $3.14 billion, of which $2.77 billion

were attributed to “marketing services.”2

1These figures are taken from the quarterly report filed by Google Inc. to

the United States Securities and Exchange Commission on August 9, 2006.

The figures are not audited. The report was accessed by the authors at:

http://investor.google.com/pdf/20060630 10-Q.pdf on August 13, 2006.
2These figures are taken from the quarterly report filed by Yahoo Inc. to

the United States Securities and Exchange Commission on August 4, 2006.
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The major search engines use auctions to sell spaces for sponsored links. A

separate auctions is run for each search term. Advertisers’ bids determine which

advertisers’ sponsored links are listed and in which order. The subject of this

paper is an early version of an auction of sponsored link spaces that was operated

until 2005 by a company called Overture. At the time, in 2004, at which we

observed Overture’s auction, advertisers bid in Overture’s auction for sponsored

search listings on Yahoo’s search pages. Indeed, Overture, which had started as an

independent company, had been acquired at this point by Yahoo, and it was later

to be renamed Yahoo Search Marketing.

We examine a theoretical model, and bidding data, for Overture’s auction. We

seek to extract information about bidders’ valuation of sponsored search adver-

tisements, and we seek to understand how bidders responded to the incentives

created by the auction rules. Bidders in Overture’s sponsored search auction, and

also in the current sponsored search auctions run by Yahoo Search Marketing and

by Google, bid a payment per click. Whenever a search engine user clicks on an

advertiser’s sponsored link that advertiser has to make a payment to the search

engine. The auction format that Overture used, and that is also currently used by

Yahoo Search Marketing and by Google, is a “generalized second price auction:”3

The highest bidder is listed first and pays per click the second highest bid; the

second highest bidder is listed second and pays per click the third highest bid;

The figures are not audited. The report was accessed by the authors at:

http://www.shareholder.com/Common/Edgar/1011006/1104659-06-51598/06-00.pdf

on August 13, 2006.
3This expression was introduced by Edelman et. al. (2007).
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etc.4

The generalized second price auction is a method for allocating heterogeneous

objects, such as positions on a page of search results, to bidders. It is based on the

assumption that bidders agree which object has the highest value, which one has

the second highest value, etc. The generalized second price auction is a somewhat

surprising choice of auction format in the light of the recent auction literature. An

example of a modern auction format that is used to allocate multiple, heteroge-

neous goods to bidders each of whom acquires at most one unit the simultaneous

ascending auction described in Milgrom (2000). In this auction, bidders can spec-

ify in each round which object that they are bidding for. Bids are raised in multiple

rounds. Within the limits of the auction rules, they can switch from bidding for

one object to bidding for another object. The auction closes when no further bids

are raised. By contrast, in the generalized second price auction, bidders submit

a single-dimensional bid without specifying what they are bidding for. It seems

worthwhile to investigate the properties of this new auction format.

Edelman et. al. (2007) and Varian (2007) have recently offered theoretical

analyses of the generalized second price auction that suggest that the auction may

yield an efficient allocation of positions to bidders. The first part of this paper

reinvestigates the theory of the generalized second price auction. We come to

somewhat different conclusions than Edelman et. al. and Varian. These authors’

work relies on a relatively narrow specification of bidders’ payoff functions: bid-

4Google also uses a generalized second price format, but, when ranking advertisers and deter-

mining their payments, Google incorporates the likelihood that a user will actually click on the

advertisers’ link.

3



ders’ values per click do not depend on the position in which their advertisement

is placed, and click rates are assumed to grow at the same rate for all advertisers

as one moves up in sponsored link position. These authors’ work also relies on

a selection from the set of Nash equilibria of the generalized second price auc-

tion. The authors focus on equilibria that, although, of course, they are strategic

equilibria, are very similar to Walrasian equilibria.

We propose a more flexible specification of bidders’ preferences than is used

by Edelman et. al. and Varian. We undertake a more exhaustive analysis of the set

of Nash equilibria. We find that existence of pure strategy Nash equilibrium can be

proved quite generally. In fact, the generalized second price auction typically has

many Nash equilibria. Moreover, we suggest that there are no strong theoretical

reasons to expect the equilibria of the generalized price auction to be efficient.

We then proceed to an analysis of bidding data for selected search terms. We

have collected our data from Overture’s website in the spring of 2004. We use a re-

vealed preference approach to infer the structure of bidders’ valuations. The more

restrictive specifications of preferences used by previous authors are nested by our

model, and therefore correspond to parameter restrictions within our model.

The evidence suggests that the properties of valuations that previous authors

have postulated do not hold in practice. Our non-parametric revealed preference

approach suggests that values per click decline in listing position. Moreover, even

with our flexible specification of payoffs we find that we can rationalize most

bidders’ behavior only over relatively short time periods, after which we have to

postulate an unexplained structural break in preferences. Thus we find that it is
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not easy to rationalize bidding behavior as equilibrium behavior.

Bidding in sponsored search auctions has previously been examined empir-

ically by Edelman and Ostrovsky (2007) and by Varian (2007). Edelman and

Ostrovsky’s data concern an even earlier version of the Overture auction than we

consider. At the time for which Edelman and Ostrovsky have data, Overture used

a generalized first price format rather than a generalized second price format. This

differentiates their paper from ours. Moreover, unlike us, Edelman and Ostrovsky

do not use a structural model of equilibrium bidding, and they do not present

valuation estimates in any detail.

Varian (2007) uses bidding data for Google’s sponsored search auction on one

particular day. He finds evidence that supports a model of equilibrium bidding in

which bidders’ valuations are not rank dependent. By contrast, we use data that

have been collected over a period of several months. To interpret observed bids as

equilibrium bids over extended time periods, we need to allow valuations to de-

pend on rank, and we need to allow for structural breaks. Varian’s model is based

on an equilibrium selection that implies efficiency of equilibria. Our analysis, us-

ing a data set that extends over time, and using a more general structural model,

does not find evidence of efficiency of equilibria.

While it is a strength of our analysis in comparison to Varian’s that our bidding

data cover several months, a strength of Varian’s analysis is that he has (propri-

etary) click rates available to him. When interpreting our results it must be kept

in mind that our findings may be distorted by the lack of precise click rates.

Other works that are related to ours include Athey and Ellison (2007), who

5



model search behavior by consumers explicitly. The theory of sponsored search

auctions also appears to be potentially related to the theory of contests and tourna-

ments with multiple, ranked prizes (e.g. Moldovanu and Sela (2001), Moldovanu

et. al. (2007)). One can interpret the “effort level” in these models as the bid in

our model. However, the generalized second price rule that is the subject of our

paper seems specific to the sponsored search context.

This paper is organized as follows. Sections 2-6 describe our theoretical anal-

ysis. Section 2 presents the model. Section 3 discusses a type of Nash equilibria

that Varian (2007) has called “symmetric.” Section 4 analyzes “asymmetric” Nash

equilibria Section 5 discusses refinements of Nash equilibria. Sections 6 and 7

constitute the empirical analysis. Section 6 describes the data. Section 7 reports

the results of revealed preference tests. Section 8 concludes. One of the proofs of

our theoretical results is in an Appendix.

2 Model

There are K positions k = 1, 2, . . . , K for sale, and there are N potential adver-

tisers i = 1, 2, . . . , N . We shall refer to the potential advertisers as “bidders.” We

assume K ≥ 2 and N ≥ K. Bidders i = 1, 2, . . . , N simultaneously submit

one-dimensional non-negative bids bi ∈ ℜ+. Bids are interpreted as payments per

click. The highest bidder wins position 1, the second highest bidder wins position

2, etc. The bidder with the K-th highest bid wins position K. All remaining bid-

ders win no position. The highest bidder pays per click the second highest bid, the
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second highest bidder pays per click the third highest bid, etc. The K-th highest

bidder pays per click the K + 1-th highest bid if there is such a bid. Otherwise, if

N = K, the K-th highest bidder pays nothing. We will explain later how we deal

with identical bids, i.e. ties. We follow Edelman et. al. (2007) and refer to this

auction as a “generalized second price auction.”

The payoff to bidder i of being in position k if he has to pay b per click is:

ck
i (γ

k
i − b) + ωk

i (1)

Here, ck
i > 0 is the click rate that bidder i anticipates if he is in position k, that is,

the total number of clicks that bidder i will receive in the time period for which

the positioning resulting from the auction is valid. Next, γk
i > 0 is the value per

click for bidder i if he is in position k. This is the profit that bidder i will make

from each click on his advertisement. Finally, ωk
i ≥ 0 is the impression value

of being in position k for bidder i. The impression value describes the value that

bidder i derives from merely being seen in position k, independent of whether

a search engine user clicks on bidder i’s link. We have in mind that companies

derive value from the fact that a sponsored search link reminds customers of the

existence of their company, and that it makes users more likely to buy in the

future, even if those users do not click on the link and make a purchase at the time

of their search. The impression value is thus similar to the value that advertisers

derive from other forms of advertising, such as television advertising, that are less

targeted than sponsored search advertising. Impression values seem to be referred
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to frequently in marketing professionals’ conversations.5

Our representation of bidders’ payoffs is “reduced form,” that is, we do not

describe explicitly the behavior of users of search engines that generates bidders’

payoffs. One reason for not modeling users’ behavior explicitly is that this behav-

ior is presumably driven not only by traditional economic considerations, but also

by human physiology (where do people look first on a computer screen?) and by

human psychology, and we do not know of good ways of capturing these factors

in a formal model. Another reason is that our paper focuses on bidding data, and

does not involve any data about users’ behavior.

A restrictive assumption implicit in equation (1) is that click rate, value per

click, and impression value for bidder i in position k do not depend on the identity

on the bidders that win other positions. In practice, this identity might matter.

Bidder i might attract a larger click rate in second place if the bidder in the top

position is a large, widely known company than if the bidder in the top position

is small and not well-known. In auction theory, this is known as an “allocative

externality.” It is well-known that such externalities may create multiple equilibria

in single unit auctions (Jehiel and Moldovanu, 2006). In our multi-unit auction,

we find multiple equilibria even with the specification of payoffs given in (1). By

leaving allocative externalities out of our model we thus identify an additional

source of multiplicity of equilibria. Our modeling choice also reflects that we do

not attempt to identify and measure allocative externalities. Measuring allocative

externalities would require sufficient data variation in the allocation realization

5Note that we have not ruled out that the impression value is zero.
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which we cannot guarantee as our data set is too small.

Equation (1) seems to assume that bidders know click rates, values per click,

and impression values. We can, however, allow the possibility that bidders are un-

certain about these variables, and maximize the expected value of the expression

in (1). The expected value will have the same form as (1), with all three variables

replaced by their expected value, if all three variables involved are stochastically

independent. Given independence, an alternative interpretation of the expression

in (1) and of each of the variables in (1) is thus to read them as expected values.

We shall refer to the value of b which makes the payoff in expression (1) zero

as bidder i’s willingness to bid for position k. We denote it by vk
i :

vk
i = γk

i +
1

ck
i

ωk
i (2)

We can now equivalently write bidder i’s payoff as:

ck
i (v

k
i − b) (3)

This expression makes clear that our model is equivalent to one in which there is

no impression value, and the value per click is vk
i rather than γk

i . We shall conduct

our analysis using the notation in expression (3), but it will be useful to keep in

mind that the model admits the alternative interpretation given in expression (1).

Our model nests as special cases those of Lahaie (2006), Edelman et. al

(2007), and Varian (2007). These authors assume that the values per click are

independent of the position, that is, for every i = 1, 2, . . . , N there is some con-
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stant vi such that:

vk
i = vi for all k = 1, 2, . . . , K (4)

and that the ratio of click rates for different positions is the same for all bidders,

that is, for every bidder i = 1, 2, . . . , N and every position k = 1, 2, . . . , K there

are numbers ai and ck such that:

ck
i = aic

k (5)

Our analysis is more general than the analysis in the papers cited above, although

in Propositions 2 and 3 below we shall focus on the specification in equation (5).

We shall study pure strategy Nash equilibria of the auction game. A pure

strategy Nash equilibrium is a vector of bids (b1, b2, . . . , bN) such that each bid

maximizes the bidder’s payoffs when the bids of the other bidders are taken as

given. To give a formal definition, we need to deal with ties. A ranking of bidders

is a bijection φ : {1, 2, . . . , N} → {1, 2, . . . N} that assigns to each rank ℓ the

bidder φ(ℓ) who is in that rank. A ranking of bidders is compatible with a given bid

vector (b1, b2, . . . , bN) if ℓ ≤ ℓ′ ⇒ bφ(ℓ) ≥ bφ(ℓ′), that is, higher ranks are assigned

to bidders with higher bids, where ties can be resolved arbitrarily. A ranking of

bidders that is compatible with a given bid vector thus represents one admissible

way of resolving ties in this bid vector. We now define a Nash equilibrium to be a

bid vector for which there is some compatible ranking of bidders so that no bidder

has an incentive to unilaterally change their bid.

Definition 1. A vector of bids (b1, b2, . . . , bN) is a Nash equilibrium if there is a

10



compatible ranking φ of bidders such that:

• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with

k < k′ ≤ K:

ck
φ(k)

(
vk

φ(k) − bφ(k+1)

)
≥ ck′

φ(k)

(
vk′

φ(k) − bφ(k′+1)

)

• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with

1 ≤ k′ < k:

ck
φ(k)

(
vk

φ(k) − bφ(k+1)

)
≥ ck′

φ(k)

(
vk′

φ(k) − bφ(k′)

)

• For all positions k with k ≤ K:

ck
φ(k)

(
vk

φ(k) − bφ(k+1)

)
≥ 0

• For all ranks ℓ with ℓ ≥ K + 1 and all positions k with 1 ≤ k ≤ K:

ck
φ(ℓ)

(
vk

φ(ℓ) − bφ(k)

)
≤ 0

Here, if K = N , we define bφ(N+1) = 0.

The first two conditions say that no bidder who wins a position has an incen-

tive to deviate and bid for a lower or for a higher position. Note the following

asymmetry. A bidder who bids for a lower position k has to pay bφ(k+1) to win
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that position, but a bidder who bids for a higher position k has to pay bφ(k) to win

that position. The last two conditions say that no bidder who wins a position has

an incentive to deviate so that he wins no position, and no bidder who wins no

position has an incentive to deviate so that he wins some position.

Our approach of modeling the auction as a static game of complete informa-

tion and focusing on Nash equilibria of this game follows previous papers: Lahaie

(2006), Edelman et. al. (2007), and Varian (2007). Clearly, the static model is

very stylized. Interactions in practice take place over time. Moreover, the common

knowledge assumption, literally interpreted, is, of course, unrealistic. However,

the idea of our approach is that the repeated nature of the interaction with almost

continuous opportunities for bid adjustment allows bidders to converge fast to a

Nash equilibrium of the auction. We do not model this adjustment process ex-

plicitly. However, we have in mind that bidders behave naively in this process.

Therefore, the adjustment process itself need not be in equilibrium. But after a

short while, taking others’ bids as given, each bidder behaves optimally. In par-

ticular, we shall assume that static equilibrium has been reached at every instance

in our data set.

3 Symmetric Nash Equilibria

We shall initially focus on a particular type of Nash equilibrium, namely equilib-

ria in which bidders don’t even have an incentive to win a higher position k if they

have to pay bk+1 rather than bk. Varian (2007) has called such equilibria “sym-
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metric Nash equilibria.” We discuss asymmetric equilibria in the next section. In

Section 5 we shall ask whether there are good reasons to focus on symmetric

equilibria.

Definition 2. A vector of bids (b1, b2, . . . , bN) is a symmetric Nash equilibrium

if there is a compatible ranking φ of bidders so that the bid vector satisfies the

conditions of Definition 1, and:

• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with

1 ≤ k′ < k:

ck
φ(k)

(
vk

φ(k) − bφ(k+1)

)
≥ ck′

φ(k)

(
vk′

φ(k) − bφ(k′+1)

)

• For all ranks ℓ with ℓ ≥ K + 1 and all positions k with 1 ≤ k ≤ K:

ck
φ(ℓ)

(
vk

φ(ℓ) − bφ(k+1)

)
≤ 0

The sense in which Nash equilibria that satisfy the conditions of Definition

2 are “symmetric” is that all bidders, when contemplating to bid for position k,

expect to pay the same price for this position, namely bφ(k+1). Thus, the vector

(
bφ(2), bφ(3), . . . , bφ(K+1)

)
can be interpreted as a vector of Walrasian equilibrium

prices. If each bidder takes these prices as given and fixed, and picks the position

that generates for him the largest surplus at these prices, then for each position

there will be exactly one bidder who wants to acquire that position, provided that

13



indifferences are resolved correctly. Thus the market for each position “clears”:

demand and supply are both equal to 1.

We now introduce an assumption that guarantees the existence of a symmetric

Nash equilibrium.

Assumption 1. For every bidder i = 1, 2, . . . , N and for every position k =

2, 3, . . . K the following two inequalities hold:

ck−1
i vk−1

i > ck
i v

k
i and vk−1

i ≥ vk
i

The first inequality says that the expected value of a higher position for bidder i

is at least as large as the expected value of a lower position. The second inequality

says that the same monotonicity is true for bidder i’s willingness to bid. Even

if the value per click and the impression value are larger for larger positions, the

second inequality in Assumption 1 may be violated if the click rates increases too

fast in comparison to the impression value. This can be seen from equation (2).

Thus, the second part of Assumption 1 is somewhat restrictive.

Proposition 1. Under Assumption 1 the game has at least one symmetric Nash

equilibrium in pure strategies.

Proof. STEP 1: We show the existence of Walrasian equilibrium prices for the

K positions. This is essentially an implication of Theorem 3 in Milgrom (2000).

Milgrom proves existence of competitive equilibrium indirectly. He postulates

that K objects are sold through a simultaneous ascending auction, and that bid-

ders bid straightforwardly. He then proves that the auction will end after a finite
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number of rounds, and that the final prices paid for the K objects converge to Wal-

rasian equilibrium prices as the increment in the simultaneous ascending auction

tends to zero. This implies that Walrasian equilibrium prices exist. To apply Mil-

grom’s argument to our context, we need to modify his construction, and assume

that bids in the simultaneous ascending auction are payments per click, rather than

total payments. With this modification, Milgrom’s argument goes through with-

out change. Milgrom’s result assumes that objects are substitutes: each bidder’s

demand for an object does not decrease as the prices of the other objects increase.

This assumption is obviously satisfied in our setting with single unit demand.

Denote by φ a ranking of the bidders that is compatible with the Walrasian

equilibrium, that is, in the Walrasian equilibrium position k is obtained by agent

φ(k). Denote by (p1, p2, . . . , pK) some vector of Walrasian equilibrium prices that

has been constructed by Milgrom’s method. Observe that, as one can easily show,

N = K implies pK = 0.

STEP 2: We show that p1 ≥ p2 ≥ . . . ≥ pK . Indeed, suppose that for some

k we had pk−1 < pk, and consider the bidder i who acquires position k. Because

position k is the optimal choice for bidder i at the given prices:

ck
i

(
vk

i − pk

)
≥ ck−1

i

(
vk−1

i − pk−1

)
(6)
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Because pk−1 < pk this implies:

ck
i

(
vk

i − pk

)
> ck−1

i

(
vk−1

i − pk

)
⇔ (7)

(
ck−1
i − ck

i

)
pk > ck−1

i vk−1
i − ck

i v
k
i (8)

The expression on the right hand side of (8) is by Assumption 1 positive. The

expression on the left hand side is linear in pk. For pk = 0 it equals zero and is

thus smaller than the right hand side. The largest possible value of pk is vk
i . We

now show that even for this largest value of pk the expression on the left hand side

is smaller than the expression on the right hand side:

(
ck−1
i − ck

i

)
vk

i ≤ ck−1
i vk−1

i − ck
i v

k
i ⇔ (9)

vk
i ≤ vk−1

i (10)

which holds by Assumption 1. Thus, there is no value of pk for which (8) could

be true, and the assumption pk−1 < pk leads to a contradiction.

STEP 3: We now construct a symmetric Nash equilibrium. For each k with

2 ≤ k ≤ K we set the bid of the bidder who wins position k in the Walrasian

equilibrium equal to the price that position k − 1 has in that equilibrium:

bφ(k) = pk−1 (11)

For bidder φ(1) who wins position 1 we can choose any bid bφ(1) that is larger than

p1. Finally, if there are bidders i who don’t obtain a position in the Walrasian equi-
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librium, we set their bids equal to pK . Because the Walrasian prices are ordered

as described in STEP 2 these bids imply that every bidder who wins a position in

the Walrasian equilibrium wins the same position in the auction, and pays in the

auction the price that he pays in the Walrasian equilibrium. Moreover, because

we have implemented a Walrasian equilibrium, no bidder prefers to acquire some

other position at the price that the winner of that position pays over the outcome

that he obtains in the proposed bid vector, and hence we have a symmetric Nash

equilibrium.

Two remarks are in order. First, as the second part of Assumption 1 is some-

what restrictive, one might wonder whether it can be relaxed. We have not pursued

this question. Second, the simultaneous ascending auction to which we refer in

Step 1 of the above proof may be regarded as a an alternative to the generalized

second price auction used by Overture. We have not attempted to evaluate the

relative merits of this alternative auction format for sponsored search positions.

If we knew bidders’ valuations vk
i , could we predict who will win which posi-

tion in a symmetric Nash equilibrium? We shall consider this question under the

following simplifying assumption.

Assumption 2. For every bidder i = 1, 2, . . . , N and for every position k =

1, 2, . . . , K there are numbers ai > 0 and ck > 0 such that

ck
i = aic

k

for all i and all k.
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Proposition 2. Under Assumption 2 a ranking φ of bidders that is compatible

with a symmetric Nash equilibrium maximizes

K∑

k=1

ckvk
φ(k)

among all possible rankings φ.

For generic parameters, there will be a unique allocation of positions to bid-

ders that maximizes the sum in Proposition 2. In this sense, Proposition 2 pro-

vides conditions under which we can unambiguously predict which bidder will

win which position in a symmetric equilibrium.

The function that according to Proposition 2 symmetric Nash equilibrium

rankings maximize is similar to a utilitarian welfare function. However, a util-

itarian welfare function would assign to each ranking the sum of all bidders’ val-

uations of positions, that is:
K∑

k=1

aic
kvk

φ(k)

In the expression in Proposition 2 the bidder specific factors ai are omitted. It is

intuitively plausible that the Overture auction cannot lead to an allocation which

takes these factors into account. These factors only affect the absolute level of

click rates, but not their ratio. Incentives in the auction only depend on the ratio

of click rates.

Proof. Le φ be a ranking of bidders that is compatible with a symmetric Nash

equilibrium, and let φ̂ be an alternative ranking. Without loss of generality assume
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that φ is the identity mapping. Let pk (for k = 1, 2, . . . , K) be the Walrasian

prices associated with the symmetric equilibrium. By definition of the Walrasian

equilibrium we have for all positions k that are won under φ̂ by bidders φ̂(k) that

would also win a position under φ, i.e. for whom φ̂(k) ≤ K:

aφ̂(k)c
k
(
vk

φ̂(k)
− pk

)
≤ aφ̂(k)c

φ̂(k)
(
v

φ̂(k)

φ̂(k)
− pφ̂(k)

)
⇔ (12)

ck
(
vk

φ̂(k)
− pk

)
≤ cφ̂(k)

(
v

φ̂(k)

φ̂(k)
− pφ̂(k)

)
(13)

For all positions k that are won under φ̂ by bidders φ̂(k) that would not win a

position under φ, i.e. for whom φ̂(k) > K:

aφ̂(k)c
k
(
vk

φ̂(k)
− pk

)
≤ 0 ⇔ (14)

ck
(
vk

φ̂(k)
− pk

)
≤ 0 (15)

Summing (13) and (15) over all k = 1, 2, . . . , K we obtain:

K∑

k=1

ck
(
vk

φ̂(k)
− pk

)
≤

∑

k∈{1,...,K|φ̂(k)≤K}

cφ̂(k)
(
v

φ̂(k)

φ̂(k)
− pφ̂(k)

)
(16)

which implies:

K∑

k=1

ck
(
vk

φ̂(k)
− pk

)
≤

K∑

k=1

ck
(
vk

k − pk
)
⇔ (17)

K∑

k=1

ckvk

φ̂(k)
≤

K∑

k=1

ckvk
k (18)
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Thus, the value of the function in Proposition 2 under φ̂ is not larger than it is

under φ.

To illustrate how Proposition 2 allows one to predict symmetric equilibrium

allocations we consider the case in which bidders are ranked according to a single

crossing condition: the marginal value of higher positions decreases as a player’s

index goes up.

Assumption 3. Assumption 2 holds, and for all bidders i = 1, 2, . . . , N − 1 and

all position k = 1, 2, 3, . . . , K − 1

ckvk
i − ck+1vk+1

i > ckvk
i+1 − ck+1vk+1

i+1

The following is an immediate implication of Proposition 2.

Corollary 1. Under Assumption 3 in every symmetric Nash equilibrium bidder i

wins position i for i = 1, 2, . . . , K.

If Assumptions 1 and 3 hold simultaneously we can infer the existence of a sym-

metric equilibrium in which bidder i wins position i. Existence results that have

been obtained constructively by Edelman et. al. (2007, Theorem 1) and Varian

(2007, Section 2) are implications of this observation. These authors study mod-

els in which Assumption 2 holds, values vk
i are independent of position k, and

ck > ck+1 for k = 1, 2, . . . , K − 1. This implies Assumption 1. Assumption 3 is

then satisfied if bidders are labeled such that v1 > v2 . . . > vN .
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4 Asymmetric Nash Equilibria

The game defined in Section 2 has further Nash equilibria if we allow for equi-

libria that are not symmetric, that is, asymmetric equilibria. It is hard to give a

complete description of all Nash equilibria. We provide two partial results. The

first result concerns the case discussed at the end of the previous section.

Proposition 3. Under Assumptions 1 and 3 there is an asymmetric Nash equilib-

rium in which bidder 1 wins position 2, bidder 2 wins position 1, and bidder i

wins position i for all i = 3, 4, ..., K.

Proof. Suppose that b1, b2, . . . , bN is a symmetric Nash equilibrium in which bid-

der i wins position i for i = 1, 2, . . . , K. By Proposition 1 and Corollary 1 such an

equilibrium exists. Define a new vector of bids, b̃1, b̃2, . . . , b̃N , as follows: b̃i = bi

for i = 3, . . . , N , b̃1 = b3 + ε where ε > 0 is very close to zero, and b̃2 is arbitrary

but very large, and, in particular, larger than b̃1. We now show that we can choose

ε so small that no bidder has an incentive to deviate and bid for a different posi-

tion. We ignore the possibility of deviating and bidding for position 1, because by

choosing b̃2 sufficiently large we can eliminate all incentives to bid for position 1.

We first consider the incentives of bidder 2. Bidder 2 wins position 1 at a price

that is ε larger than the price that he paid in the original equilibrium for position 2.

If bidder 2 were to deviate and bid for position 2, the change in his payoff would
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be:

a2c
2(v2

2 − b3) − a2c
1(v1

2 − b3 − ε)

= a2

[
c2v2

2 − c1v1
2 + (c1 − c2)b3 + c1ε

]

We want to show that for sufficiently small but positive ε this expression is neg-

ative. For this, it is obviously sufficient to show that c2v2
2 − c1v1

2 + (c1 − c2)b3

is strictly negative. This term is linear in b3. Note that 0 ≤ b3 < v2
2 . The rea-

son why b3 has to be strictly less than v2
2 is that otherwise bidder 2 would make

non-positive profits in the original equilibrium. Bidder 2 could then deviate and

make positive profits by bidding for the lowest position. It thus suffices to show

that the expression in question is strictly negative for b3 = 0, and that it is non-

positive for b3 = v2
2 . The first claim follows from Assumption 1, and the second

claim follows if we substitute b3 = v2
2 to obtain c1(v2

2 − v1
2) which is non-negative

by Assumption 1. We infer that bidder 2 has no incentive to bid for position 2.

Bidder 2 does not have an incentive to deviate and bid for an even lower position

because such a deviation was not profitable in the original equilibrium, and in the

new equilibrium bidder 2 obtains a higher profit than in the original equilibrium.

We next consider the incentives of bidder 1. Bidder 1 obtains position 2 at the

same price at which originally bidder 2 obtained position 2. We show that bidder

1 does not have an incentive to bid for a lower position because in the original

equilibrium bidder 2 did not have an incentive to bid for a lower position. Bidder

2 does not have an incentive to bid for a lower position if and only if the following
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inequality is true for all k ≥ 3:

a2c
2(v2

2 − b3) ≥ a2c
k(vk

2 − bk+1) ⇔

c2v2
2 − ckvk

2 ≥ c2b3 − ckbk+1

By Assumption 3 this implies:

c2v2
1 − ckvk

1 ≥ c2b3 − ckbk+1 ⇔

a1c
2(v2

1 − b3) ≥ a1c
k(vk

1 − bk+1)

which says that bidder 1 does not have an incentive to bid for position k.

Finally, we argue that bidders i = 3, 4, . . . , N have no incentive to bid for

a different position. Recall that we started with a symmetric equilibrium. Thus,

these bidders have no incentive to deviate in the original equilibrium if thy assume

that all positions are available to them at the prices which the current winners of

those positions pay. Because the price of none of the positions 2, 3, . . . , K have

changed, these bidders continue to have no incentives to bid for any of those

positions. As noted, an incentive to bid for position 1 can be ruled out by making

bidder 2’s bid b̃2 arbitrarily high.

Finally, observe that the equilibrium that we have described is not symmetric.

If bidder 1 could obtain position 1 at the same price as bidder 2 obtains it, then for

sufficiently small ε he would want to deviate.

For a further illustration of the multiplicity of Nash equilibria in our model
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we now take a closer look at the case that N = K = 3. For this case explicit

calculations that we provide in the Appendix prove the following result.6 Note

that this result relies on none of the assumptions used earlier.

Proposition 4. Suppose K = N = 3. An equilibrium in which bidder i wins

position i for i = 1, 2, 3 exists if and only if either c2
3v

2
3 ≤ c3

3v
3
3 and

c1
1v

1
1 ≥ c3

1v
3
1

c2
2v

2
2 ≥ c3

2v
3
2

or, alternatively, c2
3v

2
3 > c3

3v
3
3 and in addition to the two conditions above also the

following two conditions hold:

(
c1
1v

1
1 − c3

1v
3
1

)
≥

c1
1

c2
3

(
c2
3v

2
3 − c3

3v
3
3

)

(
c1
1v

1
1 − c2

1v
2
1

)
+

c2
1

c2
2

(
c2
2v

2
2 − c3

2v
3
2

)
≥

c1
1

c2
3

(
c2
3v

2
3 − c3

3v
3
3

)

The conditions in Proposition 4 are very weak. The second to last inequality in

Proposition 4, for example, requires that the marginal value to bidder 1 of being in

position 1 rather than position 3 (the left hand side of the inequality) is at least as

large as a variable that is proportional to the marginal value to bidder 3 of being in

position 2 rather than position 3, where the proportionality factor is some ratio of

6Lahaie (2006, Lemma 3) provides a necessary condition for the existence of a Nash equilib-

rium that assigns position i to bidder i for all i = 1, 2, ...,K. He asserts that this condition is

also sufficient, but after publication of his paper he found this part of the claim to be incorrect.

We are grateful to Sebastién Lahaie for helpful discussions regarding his result. Our Proposition

3 corrects Lahaie’s work for the special case that N = K = 3.
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click rates. The last inequality is a similarly weak inequality relating the marginal

value that bidder 1 derives from being in position 1 rather than position 2, the

marginal value that bidder 2 derives from being in position 2 rather than position

3, and the marginal value that bidder 3 would have if he were in position 2 rather

than position 3.

We now give an example in which Proposition 4 implies that every allocation

of positions to bidders can be an equilibrium allocation. We describe correspond-

ing bid vectors.

Example 1. There are 3 bidders and 3 positions. Click rates are bidder inde-

pendent: c1
i = 3, c2

i = 2, c3
i = 1 for all bidders i = 1, 2, 3. The willingness to

bid per click is independent of a bidder’s position: vk
1 = 16, vk

2 = 15, vk
3 = 14

for all positions k = 1, 2, 3. Whenever one bidder bids 11, another bids 9, and

another bidder bids 7, then this will be a Nash equilibrium. Thus, all allocations

of positions to bidders are possible equilibrium allocations.

5 Refinements of Nash Equilibrium

In this section we ask whether there are good reasons to expect only some of the

Nash equilibria described in the previous sections to be played and not others.

In other words, we ask whether there are plausible ways of refining the set of

Nash equilibria in the auction game that we are studying. Edelman et. al. (2007)

and Varian (2007) focus on symmetric Nash equilibria. We comment on these

authors’ approaches towards the end of this section. The purpose of this section
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is to examine the equilibrium selection issue from a different angle than these

authors.

The classic way of selecting among equilibria in second price auctions is to

rule out Nash equilibria in weakly dominated strategies. Weak dominance argu-

ments are powerful in our model only if the number of bidders is N = 2. In that

case each bidder knows that even a bid of zero guarantees at least the second po-

sition. Bidders only bid for the marginal benefit of being in the first rather than

the second position. The auction is strategically equivalent to a single unit, second

price auction. It is well-known that the single unit Vickrey auction has multiple

Nash equilibria,7 but that the only strategy that is not weakly dominated is to bid

one’s true value. This observation extends to our setting. Although the multi-

plicity of equilibria described in the previous section also prevails in the case of

N = 2, it is easily seen that each bidder i has a weakly dominant strategy, namely

to place the bid bi that makes bidder i indifferent between obtaining the first po-

sition with bid bi, and obtaining the second position for free. This bid thus solves

the following equation:

c1
i (v

1
i − bi) = c2

i v
2
i ⇔ (19)

bi = v1
i −

c2
i

c1
i

v2
i (20)

Unfortunately, the situation changes quite dramatically when N ≥ 3. This is

shown in the following result that provides a range of not weakly dominated bids.

7See, for example, Blume and Heidhues (2004) for the case of incomplete information.
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Intuitively, the reason why in the case N ≥ 3 we obtain a range of not weakly

dominated bids rather than a single such bids is that for N ≥ 3 the marginal gain

of a bidder who raises his bid is no longer clear unambiguously defined. Raising

one’s bid may, in the best case, move a bidder up from no listing to top position,

but it may also, for example, move a bidder up by only one position, from position

k to k + 1. The range of bids is the range of marginal utilities derived from any

such marginal improvement in a bidder’s position, modified by a correction factor

that takes into account how positions affect click rates.

Proposition 5. Suppose N ≥ 3, and Assumption 1 holds. Consider any bidder i.

If N = K, a bid bi is not weakly dominated by any other bid b̂i if and only if:

min{vk
i −

ck′

i

ck
i

vk′

i | k′ > k} ≤ bi ≤ v1
i

If N > K, a bid bi is not weakly dominated by any other bid b̂i if and only if:

min({vk
i −

ck′

i

ck
i

vk′

i | k′ > k} ∪ {vK
i }) ≤ bi ≤ v1

i

Proof. We give the proof in the case N = K. The proof in the case N > K is

analogous. We first show that any bid outside the range described in Proposition 5

is weakly dominated. First, obviously any bid bi > v1
i is weakly dominated by bid

v1
i . It remains to show that any bid below the boundary described in Proposition

5 is weakly dominated. Let bi be any such bid, and let b̂i > bi be another such bid

that is also lower than the lower boundary in Proposition 5. We shall show that b̂i
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weakly dominates bi. For some bid vectors of the other bidders it will not make a

difference whether bidder i bids b̂i or whether he bids bi. Suppose it does make a

difference, and that bidder i, by bidding b̂i acquires position k whereas bidding bi

yields position k′ > k. We shall show that it is better to bid b̂i than bi. The worst

case is that bidding bi acquires position k′ at price 0, whereas bidding b̂i acquires

position k at price b̂i. We shall show that in even this case it is better to bid b̂i

rather than bi:

ck
i (v

k
i − b̂i) > ck′

i vk′

i ⇔ (21)

b̂i < vk
i −

ck′

i

ck
i

vk′

i (22)

This holds by construction.

We now show that no bid that satisfies the inequality in Proposition 5 is weakly

dominated. Consider any bid bi ≤ vi, and consider any other bid b̂i 6= bi. We shall

construct a vector of bids of the other bidders such that bi achieves a higher payoff

than b̂i. Suppose first b̂i < bi. Consider a vector of bids of all other bidders such

that no two bids are equal to each other, the highest bid of the other bidders is

b̂i +ε and the second highest of the other bidders bid is b̂i−ε. Here, ε is a positive

number. Suppose that it is sufficiently small so that bidder i, if he bids bi, wins

position 1 and has to pay for it b̂i + ε, but if he bids b̂i he wins position 2 and has

to pay b̂i − ε. By Assumption 1 bidder 1 strictly prefers position 1 to position 2 if

he has to pay the same price for both positions. Therefore, for ε sufficiently close

to zero, he also prefers bidding bi to bidding b̂i.
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Now consider the case that b̂i > bi. Assume that k, k′ are the indices for which

the minimum in Proposition 5 is attained. Let bi be a bid that is equal or greater

than this minimum. Let b̂i > bi be an alternative bid. Suppose that N − k′ bidders

bid 0. Suppose that k′ − k of the remaining bidders bid b̂i − ε > bi, and that all

other bidders bid above b̂i. Here, ε > 0. Then bidding bi wins position k′ at price

0, whereas bidding b̂i wins position k at price b̂i − ε. It is better to bid bi if:

ck′

i vk′

i > ck
i (v

k
i − b̂i − ε) ⇔ (23)

b̂i − ε > vk
i −

ck′

i

ck
i

vk′

i (24)

By construction

b̂i > vk
i −

ck′

i

ck
i

vk′

i (25)

and hence for sufficiently small ε also (24) will be true.

Observe that Proposition 5 examines only weak dominance when the domi-

nating strategy is a pure strategy. In principle, it may be that more strategies can

be ruled out when mixed strategies are considered. We conjecture that this is not

the case. A formal examination of this issue would require us to specify bidders’

risk attitudes. We have not pursued this issue.

Proposition 5 indicates that there is little chance of obtaining a substantial

refinement of the set of Nash equilibria by appealing to weak dominance. In Ex-

ample 1 neither of the equilibria displayed is ruled out by weak dominance, as

the intervals of undominated bids are in that example [16
3
, 16], [15

3
, 15] and 14

3
, 14]
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for bidders 1, 2, and 3 respectively. One can also verify that the equilibria con-

structed in Edelman et. al. (2007) and Varian (2007) are not in weakly dominated

strategies.

Edelman et. al. (2007) and Varian (2007) in more special models than ours

select among all Nash equilibria the symmetric Nash equilibria. Varian offers no

game theoretic motivation for this. Edelman et. al. (2007, p. 249) argue that the

selection can be derived from the assumption that bidders raise their bids to induce

a higher payment for the next highest bidder, but that they do so only up to the

point b̄ at which they would not regret having raised their bid if the next highest

bidder were to lower his bid slightly below b̄. Edelman et. al. refer to the selected

equilibria as “locally envy-free.” This construction appears ad hoc. It is not clear

why the relevant case for bidders to consider is the case that other bidders lower

their bids just below b̄.

Edelman et. al. (2007) offer two further justifications for their selection. The

first (their footnote 17) is that there is an analogy between symmetric Nash equi-

libria and the requirement in single unit, second price auctions that bidders bid

at least their true value. We argue that in single unit, second price auctions this

requirement is not attractive per se, but only in as far as it is implied by weak domi-

nance. Our analysis shows that weak dominance does not always select symmetric

Nash equilibria. Edelman et. al. (2007, Section IV) also introduce an ascend-

ing price auction with incomplete information, and show that the unique perfect

Bayesian equilibrium of this auction results in rankings and payments identical

to those in symmetric Nash equilibria of the static, complete information model.
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They interpret the ascending price auction as a description of the process by which

bidders arrive at equilibrium. One can conceive of other models of this process,

and we prefer to remain agnostic on this point. In any case, in this paper we

interpret the data without committing to any particular equilibrium selection.

6 Data

We have collected bid data for five search terms over a period from February 3rd

2004 to May 31, 2004. The search terms are Broadband, Flower, Loan, Outsourc-

ing and Refinance.8 For each search term, the data describe the current bid levels

every 15 minutes9 yielding 96 bid observations per bidder for every day.10 We

include a bid observation (and time period) for bidder i in the final data only when

the bidder places a new bid or alters the bid level of an existing bid. The data

selection avoids a set of issue related to delays in bidders’ response times.11

We augmented the bid data with weekly click-through data for 46 weeks in

8Initially, search words were chosen at random by using an english dictionary, and we collected

one sample of bid prices for each search word. We then selected the search words that achieve

high bid prices. The motivation for our selection was that bidders may be more likely to behave

optimally when more money is at stake.
9The data were collected using the publicly accessible bidtool on the webpage

http://uv.bidtool.overture.com/d/search/tools/bidtool. The data re-

trieval time interval ranges between 10 and 20 minutes.
10Bidders revise their bids frequently and the 15 minute sampling frequency was chosen to

capture bid changes accurately. On average across search terms a new bid is chosen, or an existing

bid is revised every 43 minutes across search terms, yielding an average of 63 changes per day.

There is variation across search terms with the average number of bid revisions ranging from five

per day for Outsourcing to 63 per day for Flower.
11In particular, the data selection avoids the concern that an initially payoff maximizing bid may

no longer be an optimal bid choice when an opponent’s bid level changes.
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2004.12 Based on the click through data we calculate that the ratio ck−1
i /ck

i equals

about 1.5 for top positions on average across our search terms. We use this number

in the subsequent analysis. The assumption of a common click through ratio is

restrictive as it does not permit the possibility of bidder heterogeneity in click

through ratios. We make the assumption as our data do not contain information

on bidder specific click throughs. The empirical findings have to be interpreted

subject to this caveat.

The price paid reflects a lower bound on an advertiser’s willingness to pay per

click. The lower bound varies substantially across categories. The price for the

top Broadband position equals $2.05 on average. The average top position price

equals $2.44, $4.62, $2.54, $6.92 for the search terms Flower, Loan, Outsourcing,

and Refinance respectively.

There is substantial dispersion in bids over time suggesting that revealed pref-

erence arguments may achieve tight bounds on advertisers’ willingness to pay.

The bid dispersion varies in magnitude across categories. The low standard de-

viation occurs for Outsourcing with a standard deviation of the top position price

equalling 0.27. On the other extreme is the category Broadband with a stan-

dard deviation of 0.81. The empirical distribution reveals that ninety percent of

high Outsourcing position price observations fall into the interval $2.00 to $3.00.

Ninety percent of Broadband price observations fall into the interval $1.32 to

$3.25.

The price difference between two adjacent positions is 20 cents on average

12The data were kindly provided to us by Yahoo.
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across search terms for top ten positions. The price difference between two adja-

cent positions varies across search terms and ranges from 14 cents for Outsourcing

to 31 cents for Refinance.

In the data we see that some bidders are regular bidders for premium positions

while other bidders achieve a premium position on occasions only, or vanish after

a short time. These two types of bidders may exhibit distinct valuation processes

and we wish to distinguish them in the subsequent analysis. To illustrate the

difference we determine the average position in the bid ranking during our sample

period. There are 167 bidders with average ranking of one to ten and there are

1,227 bidders with average ranking of ten or higher. The bidders with average

ranking of one to ten win 85 percent of the top five positions. We focus on the

regular bidders in the subsequent analysis.

7 Revealed Preferences

This section explores a non-parametric revealed-preference approach to infer bounds

on advertisers’ willingness to pay. We assume that the submitted bid maximizes

the bidder’s payoff. We use the bid data in conjunction with the optimality con-

dition to deduce bounds on the willingness to pay. We illustrate when the bounds

imply a non-empty set of valuations and examine the non-emptyness hypothesis

empirically. We discuss the shape of the valuation profiles consistent with the

bounds. Section 7.1 illustrates when a set of bid observations yields a non-empty

set of valuations. Section 7.2 describes our empirical test results.
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7.1 Test of the Revealed Preference Hypothesis

It is instructive to distinguish two types of bid submissions depending on whether

the submitted bid wins an item or not. First, suppose the chosen bid of bidder i

does not win a position which we call a type one bid submission. If we denote by

bφ(k) the k−th highest bid, then, it must be that the bid prices exceed the valuation

of the position:

vk
i ≤ bφ(k) for all k ≤ K (26)

Thus, we obtain an upper bound on the valuation vector.

Second, suppose the bid by bidder i wins position k ≤ K. We call this a

type two submission. Optimality of the bid choice implies the following three

inequalities:

−vk
i ≤ −bφ(k+1) (27)

vk′

i ≤
ck
i

ck′

i

vk
i +

[
bφ(k′) −

ck
i

ck′

i

bφ(k+1)

]
for k′ < k (28)

vk′

i ≤
ck
i

ck′

i

vk
i +

[
bφ(k′+1) −

ck
i

ck′

i

bφ(k+1)

]
for K ≥ k′ > k (29)

The first inequality says that the valuation of position k is at least as large as the

winning price which places a lower bound on the valuation vk
i . The second and

third inequalities say that the valuation for a position that is not won, vk′

i with

k′ 6= k, is bounded from above by a line with slope
ck

i

ck′

i

and an intercept equal to

bφ(k′) −
ck

i

ck′

i

bφ(k+1) for k′ < k and an intercept equal to bφ(k′+1) −
ck

i

ck′

i

bφ(k+1) for

k′ > k, respectively.
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We can write the above inequalities compactly in matrix notation as

Atvi ≤ αt (30)

where vi =
(
v1

i , v
2
i , . . . , v

K
i

)
is a K × 1 dimensional valuation vector; At is a

K×K dimensional matrix and αt is a K×1 dimensional vector. In type one sub-

missions At equals the identity matrix and αt is equal to
(
bφ(1), bφ(2), . . . , b(K)

)
.

In type two submissions, when position k is won, At is equal to a matrix with

entry k, k equal to -1, entry (k, k′) equal to 0, entry (k′, k′) for k′ 6= k equal to 1,

entry (k′, k) equal to −
(
ck
i /c

k′

i

)
and all other entries equal to zero;13 and vector αt

has entry k equal to −bφ(k+1), entries k′ where k′ < k equal to bφ(k′) −
ck

i

ck′

i

bφ(k+1),

and entries k′ > k equal to bφ(k′+1) −
ck

i

ck′

i

bφ(k+1).

Given a set of observations T , we denote the set of valuations that satisfy

restriction (30) as V
T

i
,

V
T

i
=

{
vi ∈ ℜK

+ |Atvi ≤ αt for all t ∈ T
}

Revealed preference predicts that the set V
T

i
is non-empty. The revealed prefer-

ence hypothesis can be tested empirically. Observe though that the computational

complexity of the empirical test can be high even for moderately sized K due to

the curse of dimensionality.

Figure 1 illustrates the set V
T

i
graphically in the case of two positions, K =

13Here, k′ 6= k.
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Figure 1: Valuations consistent with hypothetical bids
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2.14 The dark shaded area with boundary points a1, a2, a3, a4, a5, and a6 is

consistent with three hypothetical bid vectors b1, b2, b3 where the superscript in

the bid vector indicates that bidder i wins item 1, item 2, or no item, respectively.

Item 1 is won in the area south-east of the solid line segments b1
φ(2), a5 and a7.15

Item 2 is won in the area north-west of the dashed line segments b2
φ(3), a3 and

a8.16 No position is won in the area south-west of the dotted line-segments going

through the points b3
φ(3), a1, and b3

φ(1).

Figure 1 can be easily extended to an arbitrary set of bids. To see that, partition

the set of observations T into three sets T 1, T 2, T 3, so that T 1, T 2 denote the sets

of bids in which position 1, 2 is won and T 3 denotes the set of bids in which no po-

sition is won. The dotted line is defined by the minimum bids for positions 1 and

2, b3
φ(2) = mint∈T 3(bt

φ(2)), and b3
φ(1) = mint∈T 3(bt

φ(1)), the dashed line segments

are defined by b2
φ(3) = maxt∈T 2(bt

φ(3)) and a10 = mint∈T 2(bt
φ(1) − (c2

i /c
1
i )b

t
φ(3)),

and the solid line segments are defined by b1
φ(1) = maxt∈T 1(bt

φ(2)) and a9 =

maxt∈T 1(bt
φ(2) − (c2

i /c
1
i )b

t
φ(3)). Hence, the bid vectors b1, b2, b3 in Figure 1 de-

note the corresponding minima and maxima. If some set T i is empty, then the

corresponding boundary will not bind and the shaded area in the figure will be

enlarged.17

With multiple positions, K > 2, the set VT

i
is contained in ℜK . The boundary

14In Figure 1, we write “b1
2” for b1

φ(2) etc.
15The line going through the points a5 and a7 has slope c1

i /c2
i and intercept b1

φ(3)−
(
c1
i /c2

i

)
b1
φ(2).

16Here the line going through the points a3 and a8 has slope c1
i /c2

i and intercept b2
φ(3) −(

c1
i /c2

i

)
b2
φ(1).

17If T 1 is empty, then the left boundary of the shaded area will equal the vertical line
(
0, v2

i

)
as

by assumption v1
i > 0. If T 2 is empty, then the bottom boundary of the shaded area will equal the

horizontal line
(
v1

i , 0
)
. If T 3 is empty, then the shaded area is unbounded to the north-east.
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of the set V
T
i along dimension (vk

i , v
k′

i ) shares the features as in Figure 1 for any

pair (vk
i , v

k′

i ).

Next, we state that a pairwise non-empty boundary is a necessary condition for

the revealed preference hypothesis. We denote the set of bid observations in which

the submitted bid wins position k by T k ⊂ ℜN , and the set of bid observations in

which the submitted bid does not win an position by TK+1 ⊂ ℜN . We adopt the

convention that the maximum and minimum over an empty set equals −∞ and

+∞, respectively.

Condition 1 (Non-empty Pairwise Boundaries). Given a set of observations T , a

necessary condition for the valuation range V
T

i
to be non-empty is that

max
t∈T k

(
bt
φ(k+1)

)
≤ min

t∈T K+1

(bt
φ(k)) for all k ≤ K;

max
t∈T k

(
bt
φ(k+1) −

ck′

i

ck
i

bt
φ(k′+1)

)
≤ min

t∈T k′

(
bt
φ(k) −

ck′

i

ck
i

bt
φ(k′+1)

)

for all k, k′ ≤ K with k < k′.

The non-empty pairwise boundary condition is a necessary condition for a

non-emptyness of the set VT

I
. The first necessary condition states that the position

price paid during some period cannot exceed the price of the same position during

another period when the bidder doesn’t win a position. The second necessary con-

dition says that when position k is won the valuation difference, vk
i −

(
ck′

i /ck
i

)
vk′

i ,

is bounded from below by the price differences bt
φ(k+1) −

(
ck′

i /ck
i

)
bt
φ(k′+1), and,
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when position k′ is won it is bounded from above by the price differences bt
φ(k) −

(
ck′

i /ck
i

)
bt
φ(k′+1), respectively. Observe that condition 1 is not a sufficient condi-

tion as two two-dimensional areas that share one dimension need not overlap in

the common dimension.

Examining empirically whether the set VT

i
⊂ ℜK is non-empty can be compu-

tationally complex for moderately sized K. Yet, the necessary pairwise boundary

condition can be examined at relatively small computational costs for all K. For

computational reasons we proceed with a two step test approach of the revealed

preference hypothesis: In the first step, we examine whether there is a violation

of the necessary pairwise boundary condition. In the second step, we examine

whether there is a non-empty set for those observations with a non-empty pair-

wise boundary.

A violation of the revealed preference hypothesis may be indicative of behav-

ior inconsistent with rationality. Alternatively, it may suggest taste changes across

subsets of the observations. For instance, preferences may be different during day-

time than during night-time. The revealed preference hypothesis may be satisfied

during day-time periods and during night-time periods, but not for both periods

jointly.

7.2 Revealed Preference Test Results

This section examines the revealed preference hypothesis for our data. We also

comment on the shape of the valuation profile for observations that satisfy the

revealed preference hypothesis.
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The non-empty pairwise boundary hypothesis is examined for a subset of our

data consisting of bidders that submit a bid for a top five position on average.18 In

total there are 71 such bidders. We find no violation of the non-empty pairwise

boundary condition for 21 of 71 bidders, or 30 percent. Violations arise for bidders

submitting numerous bids. On average, a bidder with a violation submits 154 bids.

In contrast, a bidder without a violation submits about 3 bids.

A violation may be attributable to a discrete change in an observable charac-

teristic, such as a change from day-time to night-time. Alternatively, a violation

may be attributable to a gradual change in observable characteristics, for instance

when there is a time trend. Violations may also arise, if bidders are inexperienced

and make periodic mistakes in assessing their willingness to pay or in submitting

erroneous bids.

To examine whether violations arise suddenly or gradually, we select all bid-

ders with a violation for the entire sample period. We determine the (maximal)

length of sub-periods on which the non-empty boundary hypothesis holds. The

algorithm is simple. For each bidder, we start with the first observation and then

add on additional consecutive observations as long as no violation of the non-

empty boundary hypothesis occurs. When a violation arises, we start a new set

of observations. The algorithm partitions the set of observations into consecutive

sub-period Ti1, . . . , Titi with the property that the non-empty boundary hypothesis

18An examination of all bidders shows that a violation of the non-empty boundary condition

occurs for 14 percent of bidders only. The low violation rate may appear surprising initially.

However, the bidders without a violation win position 70 or higher on average. For these bidders,

the upper valuation bound is binding most of the time, and there are hardly any observations that

provide a lower bound on the valuation range.
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is satisfied on each sub-period. Notice that period Ti1 starts at the point of time

when bidder i places the first bid, or revises the existing bid for the first time.

Typically period Ti1 starts well inside of our sample period.

The length of the sub-periods without a violation amounts to 1.34 days on

average. During the 1.34 days the bidder submits a total of 4.7 bids on average.

The frequent violations suggest that valuations may vary over time, or that bidders

may make mistakes periodically.

Next, we describe our test results of the revealed preference hypothesis. We

examine whether the hypothesis holds for observations without a violation of the

non-empty pairwise boundary condition.

The non-empty V
T

i
hypothesis. In total we include 1618 observations. These

include all observations of bidders with a non-empty pairwise boundary during the

entire period and all observations with a non-empty pairwise boundary for sub-

periods. To limit the computational complexity of the exercise, we examine the

non-emptyness hypothesis for a five dimensional valuation profile consisting of

the top five valuations (v1
i , v

2
i , . . . , v

5
i ). We do not examine the restrictions placed

by the hypothesis for higher position valuations, (v6
i , v

7
i , . . . , v

10
i ). For each test

candidate, we take one million independently and identically distributed multi-

variate random draws from a uniform distribution.19

The results are the following: For 50 percent of observations the set V
T

i
is

19The support of the uniform distribution is defined by the position price when no item is won,

and the price paid when the item is won. Specifically, we take as the upper bound for valuation

vk
i the low bid observation that does not win a top ten position, mint∈T 11 bt

(i), and we take as the

lower bound the price paid when position k is won, maxt∈T k bt
φ(k+1). When the upper bound does

not exist, we replace it with 15. When the lower bound does not exist, we set it to 0.
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non-empty. We can conclude that for about half the observations the revealed

preference hypothesis is satisfied.

Next, we explore the shape of the valuation profiles that are consistent with

revealed preference.

Shape of the Valuation Profile. We consider two alternative hypothesis: (i)

constant valuations, v1
i = v2

i = . . . = v5
i ; and (ii) monotone decreasing valuations,

v1
i > v2

i > . . . > v5
i . The data include all observations that pass the revealed

preference test.

The hypothesis of a constant valuation profile is tested in the following way.

We fix a grid with 0.5 cent increment and determine whether there exists a constant

valuation profile ṽi ∈ {0.005, 0.01, . . . , 15} such that ṽi ∈ V
T

i
. The hypothesis

of monotone decreasing valuations is tested by using a sample of randomly drawn

monotone valuation profiles. We select one hundred thousand draws from a multi-

variate uniform distribution and we check whether ṽi ∈ V
T

i
.

We find that 16 percent of observations pass the constant valuation test. We

interpret the test result as a rejection of the null hypothesis of constant valuations.

We find that 98 percent of observations pass the monotone decreasing valuation

test. We cannot reject the monotonicity of valuation profiles.

To examine whether the decrease amounts to at least five percent for all con-

secutive pairs of valuations we consider the hypothesis that vk
i > 1.05 · vk+1

i for

k = 1, ..., 4. We cannot reject the null hypothesis of a five percent decline for all

consecutive pairs for 97 percent of observations.

The test results indicate that the willingness to pay decreases with the posi-
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tion. We conclude this section with a caveat of the revealed preference approach

as the chosen data partition may influence the interpretation of the test results. For

example, it may be of interest to partition the data into day-time and night-time

observations, and to examine whether the revealed preference hypothesis holds for

the respective sub-samples. Yet, it is difficult to determine whether the newly cre-

ated partition improves the fit simply due to the increased fineness of the partition,

or indeed reflects a structural break.

8 Conclusion

We have presented a game theoretic analysis of the Yahoo sponsored search auc-

tion, and we have interpreted bidding data assuming that this theory is a correct

model of bidders’ behavior. Our analysis suggests that it might be interesting to

consider a dynamic model of bidding behavior in the auction in which bidders

pursue repeated game strategies. Another missing element in our model might be

bidders’ budget constraints. It seems common that bidders in sponsored search

auctions have to respect budget constraints. The rich data that high frequency

sponsored search auctions provide allows the examination of a variety of further

issues.
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Appendix: Proof of Proposition 4

Observe that we can choose b1 arbitrarily high and thus ensure that no bidder has

an incentive to bid for position 1. Therefore, we can find a Nash equilibrium of

the required type if and only if we can find non-negative bids b2 and b3 such that

four incentive constraints hold. Firstly, bidder 1 does not want to bid for position

2:

c1
1(v

1
1 − b2) ≥ c2

1(v
2
1 − b3) ⇔

b2 −
c2
1

c1
1

b3 ≤ v1
1 −

c2
1

c1
1

v2
1 (31)

Secondly, bidder 1 does not want to bid for position 3:

c1
1(v

1
1 − b2) ≥ c3

1v
3
1 ⇔

b2 ≤ v1
1 −

c3
1

c1
1

v3
1 (32)

Next, bidder 2 does not want to bid for position 3:

c2
2(v

2
2 − b3) ≥ c3

2v
3
2 ⇔

b3 ≤ v2
2 −

c3
2

c2
2

v3
2 (33)
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Finally, bidder 3 does not want to bid for position 2:

c3
3v

3
3 ≥ c2

3(v
2
3 − b2) ⇔

b2 ≥ v2
3 −

c3
3

c2
3

v3
3 (34)

We now distinguish two cases. The first case is that the lower bound in (34) is

not-positive.

v2
3 −

c3
3

c2
3

v3
3 ≤ 0 ⇔

c2
3v

2
3 ≤ c3

3v
3
3 (35)

In this case, a necessary and sufficient condition for the existence of a non-negative

solution to (31)-(33) is that the right hand sides of (32) and (33) are non-negative.

The necessity is obvious. To see sufficiency note that b2 = b3 = 0 will solve

(31)-(33) in this case. The upper boundary in (32) is non-negative if:

v1
1 −

c3
1

c1
1

v3
1 ≥ 0 ⇔

c1
1v

1
1 ≥ c3

1v
3
1 (36)

The upper boundary in (33) is non-negative if:

v2
2 −

c3
2

c2
2

v3
2 ≥ 0 ⇔

c2
2v

2
2 ≥ c3

2v
3
2 (37)
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Inequalities (36) and (37) are the first two conditions in Proposition 4.

Now suppose that the lower bound in (34) is positive.

c2
3v

2
3 > c3

3v
3
3 (38)

Obviously, (36) and (37) remain necessary. But we also need that the upper bound-

ary in (32) is not less than the lower boundary in (34):

v1
1 −

c3
1

c1
1

v3
1 ≥ v2

3 −
c3
3

c2
3

v3
3 ⇔

c1
1v

1
1 − c3

1v
3
1 ≥

c1
1

c2
3

(c2
3v

2
3 − c3

3v
3
3) (39)

If (36), (37) and (39) hold, then the difference on the left hand side of (31)

is minimized when b2 is at the lower bound given by (34), and b3 is at the upper

bound given by (33). Thus, a necessary and sufficient condition for the existence

of a non-negative solution is that for these choices of b2 and b3 inequality (31)

holds:

v2
3 −

c3
3

c2
3

v3
3 −

c2
1

c1
1

(
v2

2 −
c3
2

c2
2

v3
2

)
≤ v1

1 −
c2
1

c1
1

v2
1 ⇔

(c1
1v

1
1 − c2

1v
2
1) +

c2
1

c2
2

(c2
2v

2
2 − c3

2v
3
2) ≥

c1
1

c2
3

(c2
3v

2
3 − c3

3v
3
3) (40)

Inequalities (39) and (40) are the second pair of conditions in Proposition 4.

✷
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