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Abstract

In this paper, we investigate the nature of rational expectations equilibria for economic epidemiological
models. Unlike mathematical epidemiological models, economic epidemiological models can produce
regions of indeterminacy or instability around the endemic steady state. We consider SI, SIS, SIR and
SIRS versions of economic compartmental models and show how well-intentioned public policy may
contribute to disease instability and uncertainty.
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1 Introduction

In this paper we investigate the dynamic properties of rational expectations economic epidemiological (EE)

models. The economic epidemiology �eld integrates traditional mathematical epidemiology (mathematical

modeling of disease transmission; Anderson and May (1991)) and economic choice (rational decision making).

Economic research in this area began in response to the AIDS epidemic and has led to an improved un-

derstanding of how decision making by individuals and policymakers in�uences infectious disease dynamics.

For example, policymakers may have limited ability to eradicate infectious diseases if rational individuals

respond to lower prevalence by reducing protection (Geo¤ard and Philipson (1996)) or may increase dis-

ease prevalence and induce fatalistic behavior with the introduction of imperfect vaccines (Kremer (1996)).

These examples highlight the need to understand how economic incentives can alter policy prescriptions in

the presence of infectious diseases.

Our focus is on the stability properties of rational expectations EE equilibria and the relationship to

public health policy.1 Similar to the macroeconomic literature on the stability properties of monetary and

�scal policy (Guo and Lansing (1998); Clarida, Gali, and Gertler (2000); Fatás and Mihov (2003)), we show

that well-intentioned public policy has the potential to contribute to aggregate instability and volatility.

For instance, government policy designed to lower the transmission probability or raise the quality-of-life

associated with infectious diseases can push the EE system from a stable equilibrium path to ones exhibiting

instability or indeterminate equilibrium paths. The latter also have the potential of contributing to self-

ful�lling "sunspot" equilibria. To the best of our knowledge, this is a new �nding in the EE literature and

an additional reason for policymakers to consider the predictions of integrated economic and epidemiological

models.

2 Economic Epidemiological Model

Following work by Philipson and Posner (1993), we specify an integrated economic epidemiological model to

describe communicable disease dynamics. The model is set in discrete time (Auld (2003)), where t indexes

the decision interval.2 There is a constant population of N individuals, which are all identical except for

their state of the disease.

1The stability properties of continuous-time epidemiological systems have been studied in detail (see e.g., Korobeinikov and
Wake (2002)). In general, the endemic equilibrium has been found to be globally stable.

2Allen (1994) �nds that endemic equilibria from discrete-time epidemiological models have the potential to be stable, exhibit
periodicity or be chaotic. Instability tends to be driven by high contact rates and high birth/death rates per time interval.
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2.1 Epidemiology

The epidemiological portion of the model describes the evolution of three mutually exclusive disease cate-

gories: susceptible (s), infected (in), and recovered with immunity (r). This is the classical SIRS model

(Anderson and May (1991)) where individuals transition from being susceptible to infected to recovered

(and immune) and then back to susceptible. The SIRS model has previously been used to model infectious

diseases such as syphilis and whooping cough (Grassly, Fraser, and Garnett (2005); Rohani, Zhong, and King

(2010)). The SIRS model is su¢ciently general to handle cases with permanent infection (SI diseases such

HIV/AIDS), diseases with recovery but no immunity (SIS diseases such as the common cold), and diseases

with permanent immunity (SIR diseases such as measles and chicken pox).

Each disease category is measured as a proportion of the overall population with the categories summing

to one. The epidemiological model is represented by three equations:

st+1 = �+ (1� pt � �)st + 
rt (1)

int+1 = (1� v � �)int + ptst (2)

rt+1 = (1� 
 � �)rt + vint; (3)

where � is the common birth/death rate, 1=
 is the average duration of immunity, v is the recovery rate, and

pt is the probability of infection. The SIR model sets 
 = 0 so that individuals are permanently recovered

and immune to the disease. The SIS and SI models omit the immunity category and are treated in the

Appendix.

Assuming that individuals independently choose xt contacts and engage in a �xed number of interactions

(a) with each contact, the probability that susceptible individuals become infected is

pt = Pr(infection) = 1� (1� �pint)
xt ; (4)

where �p = 1 � (1 � �a)
a is the probability of contracting the disease from a single infected contact, and

�a is the probability of contracting the disease from a single interaction with an infected contact (Kaplan

(1990); Oster (2005)). The dependence on the chosen number of contacts distinguishes the analysis from

standard mathematical epidemiology.

We now turn our attention to the economic analysis and the optimal choice of contacts.
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2.2 Economics

Representative individual i maximizes expected lifetime utility by choosing the number of contacts, xi;t.

The objective function is

Et
X1

j=0
�j [ln(xi;t+j) + hi;t+j ] (5)

where 0 < � < 1 is the discount factor, Et represents an individual�s rational expectation of future outcomes

conditional on all information dated t and earlier, and �x is the maximum number of contacts per period.

The parameter hi;t captures the individual�s health status with infected individuals experiencing lower values

of h. The core tradeo¤ in the model is that additional contacts bring immediate satisfaction but also the

risk of future infection. Infection in turn causes a deterioration of health.

In any period t, individual i is in one of three epidemiological states as measured by the binary variables:

susceptible (si;t), infected (ini;t), or recovered and immune (ri;t). The proportions of susceptible, infected

and recovered individuals in the entire population are given by averaging over all i. Because all individuals are

identical other than disease state and health level, we drop the i subscript and consider a single representative

individual in each disease category.

The value functions for each category � susceptible, infected, and recovered � are given by

V St = ln(xt) + h
S + �Et[ptV

IN
t+1 + (1� pt)V

S
t+1] (6)

V INt = ln(�x) + hIN + �Et[vV
R
t+1 + (1� v)V

IN
t+1] (7)

V Rt = ln(�x) + hS + �Et[
V
S
t+1 + (1� 
)V

R
t+1]; (8)

where hS > hIN .

All individuals maximize (5) without concern for the welfare of the general population. Infected and

immune individuals will therefore choose the maximum number of contacts, �x, because they face no risk of

immediate infection (Geo¤ard and Philipson (1996)). Assuming an interior solution, susceptible individuals

will choose the number of contacts to satisfy the Euler equation:

x�1t = �px;tEt[V
S
t+1 � V

IN
t+1]; (9)

where the partial derivative of pt with respect to the number of contacts is px;t = � ln(1 � pt)(1 � pt)=xt.
3

3The second-order su¢ciency conditions require that the marginal cost curve with respect to contacts (right side of equation
(9)) must slope up or if it slopes down, it must be locally �atter than the marginal bene�t curve (left side of equation (9)).
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The contact rate in mathematical epidemiological models is typically constant or varies deterministically

(Korobeinikov (2006)). As equation (9) shows, the contact rate in EE models is instead based on behavioral

responses to changes in disease risk. We look at two cases depending on individuals� ability to observe their

own host immunity.

2.2.1 Unobservable Host Immunity

In this case, individuals with host immunity believe they are susceptible. Therefore, equation (8) is not

relevant and equation (7) becomes

V INt = ln(�x) + hIN + �Et[vV
S
t+1 + (1� v)V

IN
t+1]: (10)

Substituting out the value functions (V St+1 and V
IN
t+1), equation (9) can be rewritten as

x�1t = �px;tEt

�
ln(xt+1=�x) + h+

(1� v � pt+1)

xt+1px;t+1

�
; (11)

where h = hS � hIN is the health gap between being susceptible and infected. This equation states that

rational individuals choose the number of contacts to balance the marginal bene�ts (left side) with the

discounted, expected costs (right side).

2.2.2 Observable Host Immunity

When individuals observe their own immunity, they rationally choose the maximum number of contacts �x

and have health level hS . Susceptible individuals, on the other hand, choose xt to satisfy

x�1t = �px;tEt

�
ln(xt+1=�x) + h+

(1� v � pt+1)

xt+1px;t+1
� ��t+2

�
; (12)

where

�t+2 =
v


xt+2px;t+2
+ (1� v � 
)

�
ln
�xt+2
�x

�
+

1� pt+2
xt+2px;t+2

�
+ (1� 
)

�
h�

1

�xt+1px;t+1

�
:

The Euler equations in (11) and (12) are identical except for �t+2. This term captures the expected future

"costs" of infection associated with observed acquired immunity. Because �t+2 enters the right side of (12)

with a negative sign, the possibility of future immunity is a bene�t of becoming infected.
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3 Equilibria

We focus on the nature of the transition dynamics around the endemic EE steady state.4

3.1 Steady State

The endemic steady state solves time-invariant versions of (1), (2), (3) and the Euler equation. The Euler

equation either takes the form of (11) when the indicator variable � is zero or the form of (12) when � = 1.

The steady-state system can therefore be rewritten as four equations:

s = (�+ 
r)=(1� p) (13)

in = ps=(v + �) (14)

r = vin=(
 + �) (15)

x�1 = �[px(ln(x=�x) + h� ���) + (1� v � p)=x] (16)

in four unknown variables (s; r; in; x) where

� =
1

pxx
[v
 + (1� v � 
)(1� p)� (1� 
)=�] + (1� v � 
) ln(x=�x) + (1� 
)h:

3.2 Transition Dynamics

To analyze the transition dynamics, we linearize around the endemic steady state:

ŝt+1 = (1� p� �)ŝt + 
r̂t � sp̂t (17)

bint+1 = (1� v � �) bint + sp̂t + pŝt (18)

r̂t+1 = (1� 
 � �)r̂t + v bint; (19)

4There is also an eradication steady state where in = r = 0, s = 1, and x = �x. In general, the economic eradication
steady state is locally unstable because susceptible individuals have no incentive to reduce the number of contacts or engage in
preventative behavior.
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where hats (^) over the variables indicate deviation from the steady state. The linearized Euler equation is:

pxx̂t + xp̂x;t = �px(1� v � p� xpx)Etx̂t+1 + �x(1� v � p)Etp̂x;t+1 + �xpxEtp̂t+1 (20)

+��2Et

8
><
>:
px[v
 + (1� v � 
)(1� p� xpx)]x̂t+2 + x[v
 + (1� v � 
)(1� p)]p̂x;t+2+

[(1� v � 
)xpx]p̂t+2 � [(1� 
)px=�]x̂t+1 � [(1� 
)x=�]p̂x;t+1

9
>=
>;

where

p̂t = pin bint + pxx̂t (21)

p̂x;t = [(1 + ln[1� p])=x]p̂t � (px=x)x̂t (22)

and

pin = x�p(1� �pin)
x�1 (23)

px = � ln(1� p)(1� p)=x: (24)

Using the restriction ŝt = �r̂t � bint and imposing perfect foresight, the � = 0 linearized EE matrix

system is:

2
66664

0 1� v � �� p �p

0 v 1� 
 � �

px 0 0

3
77775

| {z }
A

2
66664

x̂t

bint

r̂t

3
77775
+

2
66664

s 0

0 0

0 x

3
77775

| {z }
B

2
64
p̂t

p̂x;t

3
75

=

2
66664

0 1 0

0 0 1

�px(1� v � p� xpx) 0 0

3
77775

| {z }
C

2
66664

x̂t+1

bint+1

r̂t+1

3
77775
+

2
66664

0 0

0 0

�xpx �x(1� v � p)

3
77775

| {z }
D

2
64
p̂t+1

p̂x;t+1

3
75 (25)

and
2
64

�1 0

�(1 + ln(1� p))=x 1

3
75

| {z }
F

2
64
p̂t

p̂x;t

3
75 = �

2
64
px pin 0

px=x 0 0

3
75

| {z }
G

2
66664

x̂t

bint

r̂t

3
77775
: (26)
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When � = 1, we have

2
666666666664

0 1� v � �� p �p 0 0

0 v 1� �� 
 0 0

px 0 0 0 0

0 0 0 1 0

0 0 0 0 1

3
777777777775

| {z }
A

2
666666666664

x̂t

bint

r̂t

x̂t+1

bint+1

3
777777777775

+

2
666666666664

s 0 0 0

0 0 0 0

0 x 0 0

0 0 0 0

0 0 0 0

3
777777777775

| {z }
B

2
666666664

p̂t

p̂x;t

p̂t+1

p̂x;t+1

3
777777775

(27)

=

2
666666666664

0 1 0 0 0

0 0 1 0 0

�px(1� v � p� xpx)� �
2[(1� 
)px=�] 0 0 �2px[v
 + (1� v � 
)(1� p� xpx)] 0

1 0 0 0 0

0 1 0 0 0

3
777777777775

| {z }
C

2
666666666664

x̂t+1

bint+1

r̂t+1

x̂t+2

bint+2

3
777777777775

+

2
666666666664

0 0 0 0

0 0 0 0

�xpx �x(1� v � p)� �2[(1� 
)x=�] �2(1� v � 
)xpx �2x[v
 + (1� v � 
)(1� p)]

0 0 0 0

0 0 0 0

3
777777777775

| {z }
D

2
666666664

p̂t+1

p̂x;t+1

p̂t+2

p̂x;t+2

3
777777775

and

2
666666664

�1 0 0 0

�(1 + ln(1� p))=x 1 0 0

0 0 �1 0

0 0 �(1 + ln(1� p))=x 1

3
777777775

| {z }
F

2
666666664

p̂t

p̂x;t

p̂t+1

p̂x;t+1

3
777777775

= �

2
666666664

px pin 0 0 0

px=x 0 0 0 0

0 0 0 px pin

0 0 0 px=x 0

3
777777775

| {z }
G

2
666666666664

x̂t

bint

r̂t

x̂t+1

bint+1

3
777777777775

:

(28)

If we let ẑt = (x̂t; bint; r̂t)0 or ẑt = (x̂t; bint; r̂t; x̂t+1; bint+1)0 then the EE system reduces to

ẑt = J ẑt+1 (29)
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where

J = (A�BF�1G)�1(C �DF�1G):

We use the method of Blanchard and Kahn (1980) to analyze the nature of the rational expectation EE

equilibrium. The three-variable system (29) contains one jump (x̂t) and two predetermined ( bint and r̂t)

variables. The system will exhibit saddle-path stability if there are two eigenvalues of J outside the unit

circle, indeterminate multiple stable paths if there are no forward stable eigenvalues, and explosive paths if

there is more than one forward-stable eigenvalue. The �ve-variable system contains three jump (x̂t, x̂t+1 and

bint+1) and two predetermined ( bint and r̂t) variables. The �fth equation in (27) is an identity for bint+1with

a zero eigenvalue. Considering the other four eigenvalues, the system will exhibit saddle-path stability if

exactly two of the eigenvalues are outside the unit circle, indeterminate multiple stable paths if there are

three or more eigenvalues outside the unit circle, and explosive paths if there is less than two eigenvalues

outside the unit circle.

3.3 Parameter Values and Mathematical Program

The parameter values in Table 1 are �xed and not calibrated to a particular disease.

Table 1. Fixed Parameter Values

Parameters � � v 
 �x

Value 0:96 0:05 1 0:2 10

The value of � implies a 4% annual discount rate, � gives a 5% birth and death rate for the population,

v implies a 100% recovery rate within a year of infection, 
 gives an expected 5-year immunity duration, and

the maximum number of feasible annual partners is 10.

4 Results and Policy Implications

Figures 1-3 show the types of dynamic paths for the EE and ME models under a range of values for the

health gap (h) and infection rate (�p). These two parameters represent possible public health policy

targets. The health gap parameter (h = hS � hIN ) can be lowered through the discovery and introduction

of drug treatments, while the infection rate (�p) can be lowered through the introduction of vaccines or new

protection technologies.

Figure 1 shows the map of path types for the SI and SIS models around the endemic steady state. The

top panels show the type of localized dynamic paths for the economic and mathematical SI models with
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no available treatment, v = 0. The majority of the parameter space for the economic SI model is de�ned

by saddle-path equilibria. For a given initial prevalence level (in0), there is a unique initial contact choice

(x0) that puts the system on a convergent equilibrium path to the endemic steady state. All other initial

contact levels lead to divergent paths that violate non-negativity or non-explosion conditions. Parameter

combinations with low values for the health gap h and high values of the infection parameter �p lead to

stable equilibrium where individuals choose the maximum number of contacts. Because individuals in this

parameter region do not vary their choice of contacts in response to changes in disease prevalence, the model

collapses to a mathematical epidemiological SI system. The mathematical SI model (upper right panel) is

characterized by stable dynamic paths with a �xed number of contacts and no dependence on the health gap,

h. The bottom panels of Figure 1 show the path types for the SIS models where infected individuals have

access to perfectly e¤ective treatment (v = 1) and return to the susceptible pool after treatment. In addition

to the saddle-path region, the economic SIS model also contains a parameter region where the dynamic path

near the endemic steady state is explosive. Public health policy aimed at improving the health of infected

individuals could inadvertently move the system from a stable saddle-path region to an explosive system

with higher prevalence as individuals rationally take more risk.

To gain intuition for the types of dynamic paths in the economic and mathematical SIS models, consider

a simple heuristic, dint+1=dint, relating changes in future prevalence to a change in current prevalence.

Nearby the endemic steady state, this metric is given by

d bint+1
d bint

= (1� v � �) + (1� in) (pin + �pxx=in) ; (30)

where � is the contact elasticity with respect to prevalence. Prevalence elasticity measures the percentage

change in contacts for a one-percent change in prevalence. This elasticity is generally negative, indicating

that susceptible individuals respond to the increased risk of infection by choosing fewer contacts.5 Whether

the economic SIS system depicted in the lower left panel of Figure 1 is saddle-path stable or explosive depends

on the magnitude of �. The critical prevalence elasticity along the stable-explosive boundary can be found

by setting (30) equal to �1 and solving for �:

�c = �
in

pxx

[1 + (1� v � �) + pin(1� in)]

1� in
:

5Kremer (1996) discusses the possibility of a positive prevalence elasticity and fatalistic behavior.
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For the parameter values in Table 1, the critical prevalence elasticity is approximately �c = �2. Parameter

combinations in the SIS saddle-path region are associated with prevalence elasticities that have a smaller

magnitude than �c while parameter combinations in the SIS explosive region are associated with prevalence

elasticities larger in magnitude than �c. If an increase in disease prevalence triggers susceptible individuals

to reduce the percentage of contacts by twice the initial increase in prevalence, then prevalence at t+1 falls

more than the initial rise in prevalence at t. As a result, the system oscillates in an explosive manner.

Conversely, prevalence elasticity is zero in the mathematical SIS model because susceptible individuals do

not alter their behavior in response to changes in disease prevalence. This implies that

d bint+1
d bint

= (1� v � �) + (1� in)pin;

which is positive and less than one for all values of the infection parameter �p in Figure 1. Increases in

prevalence near the endemic steady state cause the mathematical SIS system to convergence monotonically

back to the endemic steady state.

Figure 2 shows a similar map for the dynamic paths in SIR and SIRS models where immunity is un-

observable. The top panels show the equilibrium types for the economic and mathematical SIR models

with permanent immunity, 
 = 0. For both the economic and mathematical model, the entire range of

parameter combinations results in stable equilibria. For the economic epidemiological model, parameter

combinations with high h and high �p produce stable saddle-path dynamics. In this region, individuals

respond to the higher disease prevalence by rationally reducing their contacts below the maximum allowable

contacts. The lower panels treat the economic and mathematical SIRS models with 
 = 0:2 (i.e., average

immunity duration of �ve years). Unlike the economic SIS model, the EE SIRS model produces a region

of indeterminacy for high �p and moderate h where there are multiple equilibrium paths and the possibil-

ity of "sunspot" equilibria (Benhabib and Farmer (1999)). Sunspot equilibria are often associated with

self-ful�lling prophecies and additional aggregate volatility.

Figure 3 depicts the SIRS counterpart to Figure 2 but with observable host immunity. Observable host

immunity causes two primary changes. First, individuals in the EE SIR system take the maximum number

of contacts for any parameter combination. Knowledge of perfectly e¤ective treatment and permanent

immunity greatly reduces the future cost of current risky behavior. Second, the indeterminacy region for

the EE SIRS system now covers a large range of health gap parameters. Thus, public health policy aimed

at improving the quality of life for individuals infected with diseases that have known temporary immunity
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may encourage additional risk-taking and induce aggregate instability and indeterminacy.

5 Conclusion

Economic epidemiology has made signi�cant advances in educating health o¢cials about the behavioral im-

plications of public policies. However, one area that has received little attention is how policy in�uences the

nature of communicable disease dynamics as the system transitions toward the endemic long-run equilib-

rium. In this paper, we explore the nature of the short-run equilibrium dynamics for rational expectations

economic epidemiological systems. The analysis digs beneath a comparison of �xed parameter values and

demonstrates the behavioral origin for changes in the dynamical properties of the system. Indeed, we show

that well-intentioned policy has the potential to create instability and indeterminacy when individuals be-

have rationally and in a self-interested manner. Future research should focus on providing precise policy

recommendations by applying and calibrating the methods outlined in this paper to speci�c diseases.
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Appendix A. SIS Economic Epidemiological System

Here we describe the SIS economic epidemiological model. In the SIS model, infected individuals

transition directly back to the susceptible category and do not experience a period of immunity. The SIS

dynamic equations are

st+1 = �+ (1� pt � �)st + vint (A.1)

int+1 = (1� v � �)int + ptst; (A.2)

while the steady-state values are

s = (v + �)=(p+ v + �) (A.3)

in = p=(p+ v + �): (A.4)

The SI model is de�ned by v = 0 so that infection is permanent. The value functions are

V St = ln(xt) + h+ �Et[ptV
IN
t+1 + (1� pt)V

S
t+1] (A.5)

V INt = ln(�x) + �Et[vV
S
t+1 + (1� v)V

IN
t+1]: (A.6)

The Euler equation for susceptible individuals is given by equation (9) in the main text. Using (A.5) and

(A.6) to substitute out the value functions, the Euler equation can be rewritten as

x�1t = �px;tEt

�
ln(xt+1=�x) + h+

(1� v � pt+1)

xt+1px;t+1

�
: (A.7)

The linearized EE system is

bint+1 = (1� v � �) bint + (1� in)p̂t (A.8)

pxx̂t + xp̂x;t = �px(1� v � p� xpx)Etx̂t+1 + �x(1� v � p)Etp̂x;t+1 + �xpxEtp̂t+1 (A.9)

along with equations (21) and (22). Assuming perfect foresight, equations (A.8) and (A.9) in matrix form

are
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2
64
0 1� v � �� p

px 0

3
75

| {z }
A

2
64
x̂t

bint

3
75+

2
64
1� in 0

0 x

3
75

| {z }
B

2
64
p̂t

p̂x;t

3
75

=

2
64

0 1

�px(1� v � p� xpx) 0

3
75

| {z }
C

2
64
x̂t+1

bint+1

3
75+

2
64

0 0

�xpx �x(1� v � p)

3
75

| {z }
D

2
64
p̂t+1

p̂x;t+1

3
75 : (A.10)

Along with (26), the SIS economic epidemiological model can then be written in the form of equation (29)

where the coe¢cient matrices A, B, C and D are rede�ned and ẑt = (x̂t; bint).
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Appendix B. Derivation of the Economic SIRS Euler Equation with Observable Immunity

In Appendix B, we derive the Euler equation for the economic SIRS model with observable immunity.

To begin, note that equations (7) and (8) imply

V Rt � V INt = h+ �Et
�

(V St+1 � V

R
t+1) + (1� v)(V

R
t+1 � V

IN
t+1)

�
; (A.11)

while equations (6) and (7) imply

V St � V
IN
t = ln(xt=�x) + h+ �Et

�
(1� pt)(V

S
t+1 � V

IN
t+1)� v(V

R
t+1 � V

IN
t+1)

�
: (A.12)

Using equation (9), we have

Et(V
S
t+1 � V

IN
t+1) = (�xtpx;t)

�1, (A.13)

for all t. Next, rearrange (A.12) as

V Rt+1 � V
IN
t+1 =

1

�v
[ln(xt=�x) + h] +

1

v
(1� pt)Et(V

S
t+1 � V

IN
t+1)�

1

�v

�
V St � V

IN
t

�
: (A.14)

Take Et�1 on both sides of ( A.14) and substitute (A.13) to get

Et�1(V
R
t+1 � V

IN
t+1) =

1

�v
Et�1[ln(xt=�x) + h] +

1

�v
Et�1

�
1� pt
xtpx;t

�
�

1

�2v

�
1

xt�1px;t�1

�
: (A.15)

Now rewrite equation (A.11) as

V Rt � V INt = h+ �Et
�

(V St+1 � V

IN
t+1) + (1� v � 
)(V

R
t+1 � V

IN
t+1)

�
: (A.16)

Move (A.16) ahead one period, take Et�1 of both sides, and set equal to (A.15) to get

1

�v
Et�1 [ln(xt=�x) + h] +

1

�v
Et�1

�
1� pt
xtpx;t

�
�

1

�2v

�
1

xt�1px;t�1

�

= h+ �Et�1

�

(�xtpx;t)

�1 + (1� v � 
)

�
1

�v
[ln(xt=�x) + h] +

1

�v

�
1� pt
xtpx;t

�
�

1

�2v

�
1

xt�1px;t�1

���
:(A.17)

Impose perfect foresight, move ahead one period, and rearrange to get

x�1t = �px;t

�
ln(xt+1=�x) + h+

(1� v � pt+1)

xt+1px;t+1
� ��t+2

�
;
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where

�t+2 =
v


xt+2px;t+2
+ (1� v � 
)

�
ln
�xt+2
�x

�
+

1� pt+2
xt+2px;t+2

�
+ (1� 
)

�
h�

1

�xt+1px;t+1

�
:
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Figure 1.  Types of Dynamic Paths for Rational Expectations Economic SI and SIS Models 
Economic SI Model 

 

Mathematical SI Model (x=2) 

 

Economic SIS Model 

 

Mathematical SIS Model (x=10) 

 
Notes:  Contour lines indicate disease prevalence.  Parameter values are given in Table 1. 



Figure 2.  Types of Dynamic Paths for Rational Expectations Economic SIR and SIRS Models (with Unobserved Immunity) 
Economic SIR Model 

 

Mathematical SIR Model (x=10) 

 

Economic SIRS Model 

 

Mathematical SIRS Model (x=10) 

 

Notes:  Contour lines indicate disease prevalence.  Parameter values are given in Table 1. 



Figure 3.  Types of Dynamic Paths for Rational Expectations Economic SIR and SIRS Models (with Observed Immunity) 
Economic SIR Model 

 

Mathematical SIR Model (x=10) 

 
Economic SIRS Model 

 

Mathematical SIRS Model (x=10) 

 

Notes:  Contour lines indicate disease prevalence.  Parameter values are given in Table 1. 


