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STRATIFICATION AND BETWEEN�GROUP INEQUALITY: 
A NEW APPROACH TO MEASUREMENT 

 

 

�

Abstract 

Traditionally, the literature has seen stratification as linked closely to within�group inequality. 

More recently, some papers have focused on measuring the impact of stratification on between�

group inequality. In this paper, we show that when two groups are involved, such an impact can be 

measured by a simple comparison of the two cumulative distribution functions. This approach 

allows an interpretation of stratification in terms of probabilities and paves the way for a neat and 

simple graphical illustration. We apply it to the analysis of between�continent inequality. 
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1.�INTRODUCTION�

Stratification means a group's isolation from members of other groups (Yitzhaki and Lerman, 

1991, p. 319). A group is said to be ���������	 when it tends to form a perfect stratum in the overall 

distribution. Stratification has been used traditionally in sociological studies, but its rigorous 

definition and measurement are due to Yitzhaki and Lerman (1991) and to Yitzhaki (1994). To this 

end, they propose a decomposition of the Gini index into two parts: a component that is a weighted 

sum of groups’ Ginis and a between�group inequality measure. In the first component, the weight 

depends positively on the value of the overlapping index for each group. In turn, the overlapping 

index for every group measures the extent to which the members of that group overlap with 

members of other groups. The less a group is stratified, the more it overlaps with other groups, thus, 

Yitzhaki and Lerman (1991, p. 323) conclude that “inequality and stratification are inversely 

related”.  

Yitzhaki and Lerman argue that, though counterintuitive, this result is consistent with the 

relative deprivation theory. The idea is that groupings are leagues, so that each person “confines his 

aspirations to his assigned league” (Yitzhaki and Lerman, 1991, p. 323). To put it differently, since 

groups are leagues, an individual (i.e. a group member) feels less deprived if members of his group 

have an income closer to his own, and does not care too much about the income of members of 

other groups. Thus, “stratified societies can tolerate higher inequality than unstratified societies 

since, as people become more (less) engaged with each other, they have less (more) tolerance for a 

given level of inequality” (Yitzhaki and Lerman, 1991, p. 323). Yitzhaki and Lerman (1991, p. 315) 

reinforce this interpretation observing that “generally a rise in a subgroup’s inequality will reduce 

the subgroup’s stratification”, so that, in general, if within�group inequality is low, overlapping is 

also low or, equivalently, stratification is high. Note that in this line of reasoning, the between�

group inequality, which is the second component of the Gini decomposition in Yitzhaki (1994), is 

left completely aside: both Yitzhaki and Lerman (1991) and Yitzhaki (1994) treat stratification and 

between�group inequality as two completely separate objects. Nevertheless, Milanovic and Yitzhaki 
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(2002), aware of the impact of stratification on between�group inequality, suggest evaluation by the 

ratio of the Yitzhaki and Lerman (1991) between�group Gini and the conventional between�group 

Gini coefficient, as obtained by Pyatt (1976).  

Monti and Santoro (2009) propose a Gini decomposition that is based on extensive use of 

transvariations. Given two groups with different average incomes, a transvariation occurs whenever 

a member of the poorer (on average) group has an income higher than a member of the richer (on 

average) group. The number and the extent of transvariations provide natural indicators of the 

extent of overlapping and of stratification. Transvariations are used to rewrite the Gini index as a 

sum of three parts: the conventional Gini�within, a new measure of between�inequality and a new 

residual. The measure of between�inequality thus obtained by Monti and Santoro (2009) is 

numerically equivalent to the one proposed by Yitzhaki and Lerman (1991) and used by Yitzhaki 

(1994) and Milanovic and Yitzhaki (2002), among others. By further decomposing this measure, 

Monti and Santoro (2009) show that it can be expressed as a function of: i) the share of income that 

should be redistributed to achieve complete between�group equality; ii) a coefficient increasing in 

the homogeneity of group sizes and iii) an index that measures stratification as a decreasing 

function of the total number of transvariations. This index is equivalent to the ratio proposed by 

Milanovic and Yitzhaki (2002), but it has the advantage that it can be expressed as �� 
���� ��� a 

unifying and consistent measure of between�group inequality, rather than as a comparison between 

a pair of heterogeneous measures.  

In this paper, we take the latter equivalence as our starting point. We show that the ratio 

proposed by Yitzhaki and Milanovic (2002), i.e. the measure of the impact of stratification on 

between�group inequality, is indeed a probability function. More precisely, when two groups are 

considered, we show that this measure depends exclusively on the cumulative distribution functions 

of the two groups. The value of the ratio proposed by Yitzhaki and Milanovic (2002), or of the 

equivalent index calculated by Monti and Santoro (2009), can actually be expressed as 1 minus 

twice the area under the cumulative distribution function for the richer (on average) group, 
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evaluated within a range of values of the cumulative distribution function of the poorer (on average) 

group. This expression is to some extent very similar to the Gini index expression and it naturally 

suggests a graphical interpretation. We provide the latter by applying our approach to the analysis 

of between�continent inequality using the data reported by Yitzhaki and Milanovic (2002). 

The paper is organized as follows. Section 2 summarizes the contribution of Yitzhaki and his 

colleagues to the measurement of stratification, and also summarizes the main results obtained by 

Monti and Santoro (2009). Section 3 contains the theoretical results of the paper. We derive the 

measures of the impact of stratification on between�group inequality in terms of the cumulative 

distribution functions of the compared groups and we provide an analysis of the range of variation 

of these measures. Section 4 applies these results to the analysis of between�continent inequality 

using a mainly graphical approach. Section 5 concludes.�

�

2. OVERVIEW OF THE LITERATURE 

The concepts of stratification and segmentation are frequently used in social science literature. 

Their definitions can be traced back at least to Lasswell (1965, p. 10): “A stratum is a horizontal 

layer. Stratification is the process of forming observable layers [...] where the mass of society is 

constructed of layer upon layer of congealed population qualities”. However, until Yitzhaki and 

Lerman (1991), a rigorous approach to definition and measurement was missing.  

Yitzhaki and Lerman’s (1991) contribution is threefold. First, they obtain an index of relative 

stratification, index �, which captures the extent of stratification of every group with respect to the 

entire population, taking into account the size of the group. Second, they derive an index of absolute 

overlapping, 
, which is inversely related to �. Third, they decompose the Gini index in three parts: 

a within�inequality component, a component that reflects the impact of stratification and a measure 

of between�group inequality. When commenting upon the dynamics of these three parts, Yitzhaki 

and Lerman (1991, p. 323, our emphasis) note that “some changes in ��’s may leave Ginis 

unchanged, ��	� ���������� ����� ���
������ ���”. This implies that, in general, there is no 
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relationship between stratification and between�group inequality and that these can be treated as 

separate concepts. 

Yitzhaki (1994) further develops the index of overlapping 
, focussing on overlapping between 

subpopulations. He obtains a decomposition of the Gini index into two components: the between�

group inequality measure, defined by Yitzhaki and Lerman (1991), and a term that is the sum of the 

products of income shares, Ginis and overlaps for all groups. This decomposition is used by 

Milanovic and Yitzhaki (2002), to measure the world’s income inequality. To summarize the main 

results obtained by Yitzhaki (1994) let us introduce some notation. We consider a population of � 

individuals and, for the sake of simplicity, we confine our attention to the case of two population 

groups, which we will call “�” and “�” with �� �� ��� �. The two groups stand for a given 

socioeconomic partition of the population based on the individuals’ characteristics. The population 

size is ,  with ,  ,� � � �� � � � � �+ = ∈ℕ , where ��  is the number of individuals belonging to group �, 

and ��  is the number of individuals belonging to group �. By ��� ,{ }��� +∈ℝ  we denote the income 

of individual � belonging to group �, and by 
� , ��  and �� , the overall, the group � and the group 

� average income, respectively. Finally, { }�  is the set of all income units. 

Following Yitzhaki (1994), the Gini index decomposes as  

(1)                                                  ( )( ) � � � � � � �� � � � 
 � � 
 �= + + ,                                                  

where 

(2)                                                             � � � ��� �

 
 
 


≠
= +∑ ,                                                           

(3)                                                      ( )( ) ( )( )cov , cov ,�� � � � �
 � � � � � �= ,                                         

and 

(4)                                                             2cov( , )�

� � 
� 

� �� �= .                                                     

In (1�3), ��(�), ���� 
��� ��, represent the cumulative distribution, the average income, the Gini 

index and the share of group � in the overall distribution, respectively. Let � � � 
� 
 � �=  denote the 



 6 

share of total income owned by group �, and 
� denote the overlapping index of the same group ��

with the population’s distribution� The index�
� is a function of the overlapping of group � by group 

���
��, which in turn, is equal to the ratio between “the covariance between incomes of group � and 

their rank, had they been considered as belonging to the group �” (Yitzhaki 1994, p. 149) and the 

covariance between incomes and own ranking in group �, the latter being a normalizing factor.1 

Finally, in expression (4), �� is twice the covariance between each groups’ average income and 

groups’ average rank in the overall population ( �


�� ), divided by the overall mean income. The 

overlapping index �
  reflects the overlapping of group �  with itself and with the other groups, and 

can be interpreted as a measure of stratification. 

In (1), within the round brackets, the subgroup Gini indices, �� , and the overlap indices, �
 , 

have symmetrical impacts on overall inequality, since inequality rises in both. Nevertheless, high 

stratification implies low overlapping so that if �� is ignored, one concludes that “inequality and 

stratification are inversely related” (Yitzhaki and Lerman, 1991, p. 323). According to Milanovic 

and Yitzhaki (2002, p. 161), however, more overlapping (i.e. less stratification) leads to lower 

correlation between average income and average rank and this decreases the between�group 

component. To measure the impact of stratification on between�group inequality, Milanovic and 

Yitzhaki (2002) refer to the conventional decomposition of the Gini index as proposed by Pyatt 

(1976) 

(5)                                                             ( ) ,� �� � � �  = + +                                                    

where, 

(6)           ( )2 2

2 2

1 1
 and  ;  .� � � � � � � � � � � � � �


 


� � � � � � � �
� �

� � � � � �
� �

   
     

= + = − >                      

In (6), the terms ��  and ��  denote the group � and group � Gini index, respectively, so that ��

measures within�group inequality, ��  captures between�group inequality and   is the residual, 

                                                 
1To interpret these definitions recall that Yitzhaki and Lerman (1991, p. 321) estimate the cumulative distribution, �!�), 
by the rank of �. 
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which depends on the overlapping between the two group income distributions. In the conventional 

Gini decomposition, �� is different from ��. In both �� and ��, each group is jointly represented 

by its mean income and rank. However, in �� “the rank is the rankings of the group’s mean 

incomes” while in��� one “takes account of each observation’s raking in the overall distribution by 

averaging these rankings within each group” (Yitzhaki and Lerman, 1991, p. 322). The two 

between�group inequality components are equal if there is no overlap between groups and it can be 

shown that ��≤�� when groups overlap (we return to this in Section 3). The ratio ��/�� is 

suggested by Milanovic and Yitzhaki (2002, p.161) as an index representing the loss in between�

group inequality due to an increase (decrease) in overlapping (stratification).  

Using the Gini index decomposition proposed by Monti and Santoro (2009), the ratio ��/�� can 

be expressed differently. This decomposition is based on the concept of transvariation. In general, a 

transvariation occurs whenever a member of the poorer (on average) group is richer than a member 

of the richer (on average) group (Gini, 1959). If � �� �> , a transvariation occurs whenever a member 

of group � is richer than a member of group �. It can be immediately noted that, when no 

transvariation occurs, the two groups do not overlap at all, i.e. in our context, the first ��  richest 

individuals in the overall distribution are the ��  members of group �. Equally, one can say that 

when there are no transvariations between the two groups, the groups are perfect strata. It can be 

shown that �� rewrites as: 

(7)                                                               
( )

2
,� � � �

�




� �
� "

�

� �
�
−

= ⋅ ⋅                                                        

with 

(8)                                                                        
2

1
# 

� �

$
"

� �
= − .                                                              

where $#  is the total number of transvariations. From (6) and (7), it is immediate to note that 

(9)                                                                         .�

�

�
"

�
=                                                                       
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3 INDEX I 

Monti and Santoro (2009) have commented on expression (7). Here, we focus on " and on 

expression (9). 

Since � �� �
 
is the total number of comparisons between members of the two groups, the ratio

# 

� �
$ � �  can be interpreted as the probability that the sign of a difference between two incomes 

belonging to different groups is opposite with respect to the difference between the means of the 

two groups. In other words, this ratio corresponds to the probability of a transvariation.2 Then, 

assuming � �� �> , we represent the income sets of the two groups as two discrete random variables 

denoted by�%� and %�, respectively, so that 3 

(10)                                                                   [ ]Prob
# 

� �

� �

$
% %

� �
> ≡                                                      

is the probability that a member of the poorer (on average) group is richer than a member of the 

richer (on average) group. Thus, we can write 

(11)                                                                  [ ]1 2Prob � �" % %= − > .                                             

  

We can now derive a number of results concerning the range of ". First, we note that index " 

assumes its maximum, "� = 1 (��� = ��), when stratification is perfect, i.e. when there are no 

transvariations ( 0# $ = ). 

(12)                                                           [ ]1 Prob 0 0# 

� �" % % $= ⇔ > = ⇔ = .                                                       

Second, we note that  

(13)                                                      [ ]0 Prob 1/ 2 2# 

� � � �" % % $ � �= ⇔ > = ⇔ = .                          

                                                 
2See Gini (1959) page 8. on this point 
3We observe that in the definition of the Gini index and in its decomposition, there is an implicit assumption of 
independence between Ya and Yc. For all � and �, the probability of the difference (���&��� ) is the product of the 
probability to observe ��� in the distribution %� and the probability to observe ��� in distribution %�. That is, given 

( ) 1�� �
 � �= and ( ) 1�� �
 � �= ,one has ( ) ( ) 1 1
( , ) .�� �� �� ��

� �


 � � 
 � 
 �
� �

= ⋅ = ⋅  
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The index " is equal to zero if, and only if, the probability of transvariation is equal to 0.5 or, in 

other words, when the number of transvariations is equal to the number of non�transvariations. 4 

Third, we note that the index "�����'�� is minimum when the probability of transvariation reaches 

its maximum, i.e. 

(14)                                                            [ ]{ }min 1 2 max Prob�
� �

�

�
" % %

�

 
= = − > 

 
,                                            

where 

(15)                                                        [ ]{ } 1
max Prob max # 

� �

� �

% % $
� �

> = ,                                                            

and max $# 
� is the maximum number of transvariations between the two groups under the 

assumption � �� �> . We can obtain the expression of max $#  by considering the difference between 

the total number of comparisons between members of the two groups, ��� ��, and the minimum 

number of non�transvariation. By denoting �(  as the number of members of group ��whose income 

is higher than �� , and �
  as the number of members of group � whose income is (weakly) lower 

than �� , one obtains 5 

(16)                                                                max$# �= ���� – (��
�,                                                       

and the minimum value of "�����'�� is 

(17)                                                          
2

min 1� � �

� � �

� ( 

"

� � �

 
= = − + 

 
.                                                 

                       

Expression (17) suggests immediately to write both the index " and its minimum in a continuous 

form. To do this, one has to express the number of transvariations and its maximum as functions of 

continuous cumulative distributions. Assuming a continuous approximation of the random variables 

%� and %�, Monti and Santoro (2007) show that the �)
����	�*�������������*��������� (
��) is 

                                                 
4 A non�transvariation is the difference between two incomes, belonging to different groups, that has the same sign with 
respect to the difference between the means of the two groups. 
5 The proof of this result can be obtained from the authors upon request. 
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(18)                                                 ( ) ( )( )1��
 � � � � 	�
∞

−∞
= −∫                                                           

 

where��(�) and �(�) are the cumulative distributions of %� and %�, respectively. The result in (18) is 

obtained starting from a continuous definition of the Gini mean difference extended to two different 

variables.6 Here, we show that the ���������������*��������� and its maximum also rewrite in terms 

of cumulative distribution functions. In so doing, we follow a different approach with respect to 

Monti and Santoro (2007). Our results are derived in a very simple way starting from the definition 

of the probability of transvariation.  

In what follows, we assume that (see footnote 3) 

(19)                   ( ) ( ) ( ) ( ) ( )Prob , Prob Prob� � � � � � � � � �% � % � % � % � � � � �< < = < < = ,                       

 

where �(��) and �(��) are the cumulative distribution of %� and %�, respectively. Then, because   

(20)                                            ( ) ( ) ( )Prob , 1� � � � � �% % � � � �� �  > < = −  ,                                     

 

expression (15) rewrites as  

(21)                                               [ ]{ } [ ]max Prob 1 1 ( ) ( ),  � � � �% % � �� �> = − −                                   

 

and expression (17) becomes  

(22)                                                [ ]min 2 1 ( ) ( ) 1�
� �

�

�
" � �

�
� �

 
= = − − 

 
.                                         

 

Using (22), we can see that min " can be negative and that its value depends on the skewness of 

the two distributions. If the two distributions are both symmetric with respect to their mean, the 

minimum value of index " is &+',. On the other hand, one has min "-&+', if either the distribution of 

%� is symmetric with respect to �� and the distribution of %� has positive asymmetry (�� >median, 

right obliquity), or if the distribution of %� has negative asymmetry (��<median, left obliquity) and 

                                                 
6 We observe that (18) provides an alternative path to derive the expression of the residual R as presented in Lambert 
and Decoster (2005). 
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the distribution of %� is either symmetric or asymmetric with positive asymmetry. 

Moreover, one has min ".&+', if either the distribution of %� is symmetric with respect to �� and 

the distribution of %��has negative asymmetry, or if the distribution of %��has positive asymmetry 

(��>median, right obliquity) and the distribution of %� is either symmetric or asymmetric with 

negative asymmetry. Nothing can be said about min " if the two distributions are asymmetric with 

the same asymmetry.  

Let us now consider the continuous expression of index " (expressions (10) and (11)). Observe 

that 

(23)
                                               

Prob( ) Prob( 0)� � � �% % % %< = − < .                                                     

Then, if the difference variable (%� � %�) is denoted by Z, and its cumulative distribution is 

denoted by ( )
� �% %/ 0− , one has 

(24)                     ( ) ( ) ( ) ( ) ( )Prob( )
�

� �

0 �

� � % % � � � �% % 0 / 0 	� � 	� � � 0 � 	� �
∞ + ∞

− −∞ −∞ −∞
− < = = = +∫ ∫ ∫ ,       

and expression (10) becomes 

(25)                                         ( ) ( ) ( )Prob( 0) 0
� �� � % % � �% % / � � 	� �

∞

− −∞
− < = = ∫  .                              

 

Using (25) back in  (11), we can write 

(26)                                                      ( ) ( )1 2 � �" � � 	� �
∞

−∞
= − ∫ .                                                         

Expression (26) says that the measure of impact of overlapping on between�inequality can be 

expressed as a function of the cumulative distribution functions of the two groups. More precisely, 

expression (26) says that "� �� ��'�� is equal to 1 minus twice the area under the cumulative 

distribution function of the richer group, evaluated as a function of the cumulative distribution 

function of the poorer group. 

To sum up, Yitzhaki and Milanovic (2002) propose measuring the impact of stratification on 
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between�group inequality considering a ratio of two between�inequality coefficients derived from 

two different decompositions of the Gini index. Monti and Santoro (2009) propose an alternative 

Gini decomposition. In this decomposition, the between component is function of an index, denoted 

by ", which is a measure of�the impact of overlapping. The two indices, " and ��'�� , are equivalent. 

Expression (26) represents index ", and then represents the ratio between the two between�

inequality coefficients as an area. This area is evaluated in term of cumulative distributions. This 

allows a further and deeper insight into the impact of the two groups’ overlap on between�

inequality.  

We discuss the implications of expression (26) using a graphical approach in Section 4, where 

we analyse between�continent inequality in a way that immediately relates to the research of 

Yitzhaki and Milanovic (2002). 

 

4. A GRAPHICAL INTERPRETATION

 
Using the national income/expenditure distribution data from 111 countries, Yitzhaki and 

Milanovic (2002) decomposed total inequality between individuals in the world, by continents and 

regions. In particular, they partitioned the world into five continents: Africa; Asia; Western Europe, 

North America and Oceania (WENAO); Eastern Europe and the Former Soviet Union (EUFSU) 

and Latin America and the Caribbean (LAC). Commenting on the results concerning between�

continent inequality, they note that “between�continent inequality Gini is 0.309…had we used 

Pyatt’s between�group component, we would have gotten a between�continent Gini of 0.398 which 

means that overlapping has decreased the between�continent component by about 9 Gini points” 

(Yitzhaki and Milanovic,� 2002, p. 163). It is interesting to verify how continent�by�continent 

comparisons have contributed to this result.� We treat countries as units of observation, and 

continents as groups. Ordering the continents by their per capita average income in international 

dollars, in Table 1, we report the values of ", i.e. the values of the ratio ��'��, for each pair of 
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continents.  

TABLE 1 AROUND HERE 

 

Recalling the discussion in Section 3, we note that Table 1 covers the whole range of possible 

values of ". When WENAO is compared with other continents, " reaches very high values. In 

particular, "  is very close to unity when WENAO is contrasted with Africa (99%), EUFSU (96.4%) 

and LAC (92.7%). According to expression (12) above, in all these cases, the probability of a 

transvariation is close to zero, i.e. stratification dominates and there is virtually no overlapping 

between WENAO countries and countries belonging to other continents. Thus, in these cases, using 

Pyatt’s (1976) decomposition and Yitzhaki’s (1994) decomposition, we would yield almost 

equivalent measures of between�continent inequality. The only case in which WENAO countries 

are to some extent involved in transvariations, is when they are compared with Asian countries. In 

this case, " equals 72.2%, so that we know from (11) that the probability of an Asian country having 

a mean income higher than a WENAO country is equal to 13.9%. 

At the other extreme, " reaches a (small) negative value (i.e. �4.5%) when EUFSU and Asia are 

compared. According to expression (13), this means that the probability of a transvariation among 

countries belonging to these two continents is higher than 50%; and using (11), this probability 

amounts to 52.2%. Thus, although the mean income of EUFSU is 75% higher than the mean 

income of Asia, it is more likely that an Asian country has a mean income higher than a EUFSU 

country than the reverse. It is this result that is associated clearly with a high polarization within 

both these continents, which generates a ��1���*� value of ". This signals low stratification and high 

overlapping. 

Finally, remaining comparisons are somewhat in between these the two extremes. For example, 

when LAC and EUFSU are compared, the value of " is close to 50%, which indicates, again using 

(11), that the probability of a EUFSU country having a mean income higher than a LAC country is 

around 25%. According to Table 1 and to expression (11), the probability of an African country 
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having a mean income higher than either an Asian or a EUFSU country, and the probability of an 

Asian country having a mean income higher than a LAC country, is ranged between 25% and 50%. 

These, and more results, can be illustrated considering the probability of transvariation, as in 

expression (25) and representing, for each pair of continents, the cumulative distribution of the 

richer continent as a function of the cumulative distribution of the poorer one. In Figure 1, we 

present four comparisons that represent the graphical counterpart of expression (25). 

FIGURE 1 AROUND HERE 

In each of the four diagrams, the kinked line represents the cumulative distribution of the richer 

continent (function �(�) using the notation of expression (25)) plotted against the cumulative 

distribution of the poorer continent (function �(�)). It follows that the coordinates of each point on 

the kinked line are given by i) the proportion of countries, which, in the poorer continent, has an 

average income smaller than �  on the horizontal axis, ii) the percentage of countries, which, in the 

richer continent, has an average income smaller than �  on the vertical axis. In each diagram, areas 

under the �(�) curves are equal to the probability of a transvariation between countries belonging to 

the corresponding continents, as can be verified by simple numerical computation. 

The 45° line (when present) indicates the values that the cumulative distribution of the richer 

continent should possess, to be exactly equal to the cumulative distribution of the poorer continent 

[�(�) = �(�)] �������������*���1�����������*��. Where the slope of �(�) is higher than 1 (the slope 

of the 45° line) in a given range of �(�), it means that, for �����
���� belonging to that region, the 

percentage of countries having an average income smaller than �  in the richer continent is higher 

than the percentage of countries having an average income smaller than the same value �  in the 

poorer continent. In that region transvariations are being originated, because, at the same levels of 

average income, there are countries belonging to the richer continent whose incomes are lower than 

at least one of the countries of the poorer continent. 

We choose to represent two comparisons involving EUFSU countries and two comparisons 

involving WENAO countries; these comparisons are both compared with Asian and African 
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countries. The polarization among EUFSU countries is visible in the shape of its cumulative 

distribution when plotted against Asia and, to some extent, against Africa. In both these cases, at 

low income levels, �(�) is above the 45° line since many of the absolute poorest countries belong to 

EUFSU (Georgia, Uzbekistan, Armenia; see Yitzhaki and Milanovic, 2002, p.176). This means that 

the minimum average income level, i.e. the lower boundary of the region  , where the integral in 

(25) is evaluated, belongs to the richer (on average) continent, EUFSU in both cases. As higher 

income levels are considered, the cumulative distribution for EUFSU falls behind the 45° degree 

line with respect to both Africa and Asia. This signals that the probability of a EUFSU country 

having an average income below a given level is lower than the probability of finding an African or 

an Asian country having an average income below the same level. Consequently, in this region, 

there are no (or few) transvariations. However, in the comparison with Asia, there is another region, 

at middle�high income levels, where transvariations appear again, so that �(�) lies above the 45°line 

at the top. The latter reflects polarization of income across Asian countries, namely the presence of 

high�income countries, such as Singapore, Taiwan, Korea, Japan and Hong Kong.  

Diagrams involving WENAO are much more conventional. Since the poorest WENAO country 

(Turkey) is always far richer than the poorest African or Asian country, �(�) (in these cases) lies on 

the horizontal axes for a large interval of values of �(�). More precisely, there is no WENAO 

country with a mean income lower than an Asian country up until the 7th decile of the Asian 

distribution. At higher mean income levels, some transvariations are originated by the rich Asian 

countries mentioned above, although the kinked line never crosses the 45° line. Overall the 

probability of a transvariation amounts to 13.8%, again, a value that can be approximated by 

calculating the area under the kinked curve. The comparison between WENAO and African 

countries is much more dramatic, since the stratification, as indicated by the value of " at 99% in 

Table 1, is almost absolute. There are only three transvariations, and the probability of a 

transvariation is only marginally different from 0; thus the 45° degree line cannot be represented 

and �(�) is almost everywhere lying on the horizontal axis. 
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5. CONCLUDING REMARKS 

The traditional literature on stratification measurement (Yitzhaki and Lerman, 1991; Yitzhaki, 

1994) tends to see stratification as inversely related to inequality. This view arises from the fact that 

higher stratification, i.e. lower overlapping, is usually associated with lower within�group 

inequality. However, the most recent literature focuses on the impact of stratification on between�

group inequality and proposes a measure to evaluate it (Yitzhaki and Milanovic, 2002; Monti and 

Santoro, 2009). This measure is such that, ��������
������, a higher stratification is associated with 

higher between�group inequality. 

In this paper, we interpret this measure as a function of the probability of a transvariation. We 

show that when two groups are considered, this approach leads to rewrite such a measure as 1 

minus twice the area under the cumulative distribution function of the richer group, expressed as a 

function of the cumulative distribution function of the poorer group. This formula is, to some 

extent, similar to the expression of the Gini index and naturally suggests a graphical illustration that 

we provide analysing between�continent inequality. The major advantage of our approach is that a 

lot of information about the impact of stratification on between�group inequality can be obtained by 

a simple graphical inspection of the plot of the cumulative distribution function of the group with a 

higher mean income against the cumulative distribution function of the group with a lower mean 

income. 

What rationale can be provided for this interpretation of the impact of stratification on between�

group inequality? We think an answer to this question can be provided by the concept of 1���
�

	�
��*����� and it applies when group members share a strong body of common moral, social and 

cultural values. By 1���
�	�
��*����� we mean the feeling that a group has to be deprived whenever 

any of its members' income is lower than any members' income of the other group. In such a case, 

every member of a group feels empathy for any other member of his own group the group as a 

whole is affected by the probability that any of its members is richer than any of the member of the 

other group. Group deprivation, thus, increases in this probability and this drives the impact of 
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stratification on between�group inequality. 

To provide an example, we refer back to the analysis of between�continent inequality and 

consider the viewpoint of a representative individual of an African country. By representative 

individual, we mean an individual whose income is exactly equal to the mean income of his their 

country. Suppose this individual feels to belong to the African continent, not only to his own 

country. Then, when comparing Africa to any other continent, this individual would care about the 

possibility that any representative African is richer than the representative individual of a Western 

or of an Asian country. This possibility corresponds to the probability of a transvariation, i.e. to the 

probability that any representative African is richer than a representative individual of another 

(richer) continent. The higher this probability is then the lower the feeling of group deprivation and 

between�group inequality.  
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TABLE 1 
Values of " for Continent�by�Continent Comparisons 

 AFRICA 

(1,310) 

ASIA 

(1,594.6) 

EUFSU 

(2,780.9) 

LAC 

(3,639.8) 

WENAO 

(10,012.4) 

AFRICA      

ASIA 32.6%     

EUFSU 32.0% �4.5%    

LAC 77.4% 30.0% 45.0%   

WENAO 99.0% 72.2% 96.4% 92.7%  

$���: Mean income in $PPP within brackets (1993) 
EUFSU = Eastern Europe and Former Soviet Union 
LAC=Latin America and Caribbean 
WENAO = Western Europe, North America and Oceania 
Source: authors’ calculation from Yitzhaki and Milanovic (2002). 
 

 

 

Figure 1.  Continent�by�Continent Comparisons 
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