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Abstract

The paper studies the Krugman’s CP model in the weakly explored case of asymmetric regions in

two settings: international trade and agglomeration processes. First setting implies that the industrial

labor is immobile, while second one consider mobile industrial labor and long-run equilibria. An-

alytical study of both settings requires application of advanced mathematical analysis, e.g. implicit

function theory. For international trade we find how equilibrium prices, production, consumption,

wages and welfare for all population groups respond to shifts in all exogenous parameters: character-

istics of utility function, transportation costs and degree of asymmetry in initial labor endowment. As

for agglomeration process, it was found that the asymmetry in the population distribution simplifies

pattern of agglomeration, making the direction of migration more definite, so the well-known ambi-

guity of final destination may disappear under sufficiently large extent of asymmetry. From political

point of view, it means that under some conditions, openness of international trade may be harmful to

immobile population of the smaller country.
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1 Introduction

In the course of many years a concept of Perfect Competitive Market was a lodestar for liberal economics. Related

widely accepted model of perfect competitive market — Arrow–Debreu model — (see Debreu 1959, p. 30) distin-

guishes goods at various locations as different goods. However, it is insufficient to explain features of international

trade and agglomeration. As pointed out by Mundell (1957), if every activity could be carried out on an arbitrarily

small scale in every possible place, without any loss of efficiency, there would be no transportation. This idea was

formally supported by Starrett’s (1978) impossibility theorem. The breakthrough in modifying the main model of

the market to the needs of spatial economics, was made by Dixit and Stiglitz (1977) who implemented the Cham-

berlainian idea of inter-firm increasing returns and market power. Their monopolistic-competition model became

a cornerstone of spatial economics, and the seminal step in this direction was implemented by Krugman’s papers

(1980), (1991). These papers initiated the New Economic Geography, developing rapidly and addressing many

interesting questions including agglomeration (see Baldwin et al., 2003; Combes et al., 2008).

This paper belongs to this field. Namely, we study Krugman’s (1991) Core-Periphery model (hereafter CP),

that considers a two-region economy of the Dixit–Stiglitz type and two types of labor: industrial and agricultural

(one can interpret these as skilled and unskilled labor, or any other two industry-specific factors). It is assumed

that the industrial workers are mobile between the regions while the agricultural are not. Wherever a worker

lives, he/she combines residence, consumption and work at the same place. Krugman (1991) has found the full-

agglomeration effect. Namely, under sufficiently small transportation cost, whole industry and industrial labor

should concentrate in one country. Moreover, when initially the countries were identical, which of them becomes

the core and which the periphery, is ambiguous. This means history-dependence of development. Subsequently,

many papers showed simulations of such effects and Fujita et al. (1999) provided a synthesis of the economic

geography based on the Dixit–Stiglitz–Krugman approach. However, main analytical results for CP model were

obtained later, being summarized mainly in Baldwin et al. (2003) (which contains also a wide range of appli-

cations), also in Fujita and Thisse (2002), and Combes et al. (2008). The existence of long-run equilibria, their

number and stability were found, the existence of switching point between dispersed and agglomerated types of

equilibria (see next section for details). With few exceptions mentioned later on, all papers consider symmetric

regions that means total identity of all exogenous parameters. This assumption of symmetry aimed to answer an

important question or intellectual challenge. In contrast to traditional economic geography that derived differences

in development from differences in exogeneous physical circumstances of countries, the new geography distin-

guishes between effects of first nature (exogenous heterogeneity) and second nature, which is the result of human

actions (see Cronon, 1991). The achievement of symmetric model was to explain the endogeneous heterogeneity

emerging from homogeneous first nature. The next step in theory would be to explain how initial exogeneous

heterogeneity interferes with economic forces generating endogeneous heterogeneity.

Agglomeration and dispersion forces: known results

Three driving forces of agglomeration or dispersion in CP model are traditionally discussed. The first is the ‘market

access effect’ that describes the tendency of monopolistic firms to locate their production in the big market but

export to small markets. The second is the ‘cost of living effect’ that concerns the impact of firms’ location on the

local cost of living. Goods tend to be cheaper in the region with numerous industrial firms since consumers in this

region will import a narrower range of products and thus avoid part of the trade costs. These two centripetal forces

are countervailed by the centrifugal ‘market crowding effect’, which reflects the fact that imperfectly competitive

firms have a tendency to reside in regions with relatively few competitors. The first two effects encourage spatial

concentration while the third one discourages it.
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What determines the relative strength of these three forces? The strength of the dispersion force diminishes as

trade gets freer. For example, if trade is almost completely free, competition from foreign firms is approximately

as important as competition from locally based firms. Then shifting firms from south to north will have very little

impact on firm’s revenues and thus on the wages they can pay to industrial workers and ‘cost of living effect’

becomes negligible. Other two effects also become weaker, but generally we shall see that agglomeration prevails.

At the other extreme, near-prohibitive levels of trade cost mean that a change in the number of locally based firms

has a very large impact on competition for customers and thus a very big effect on wages and dispersion prevails.

The strength of agglomeration forces increases continuously as trade gets freer. It means that at some level (‘break

point’) of trade costs the agglomeration forces overpower the dispersion force and self-reinforcing migration ends

up shifting all industry to one region.

The existence of the break point underpins what is perhaps the most striking feature of the CP model — a

symmetric reduction in trade costs between initially symmetric regions eventually produces asymmetric regions.

This mechanism becomes self-reinforcing since as firms move, for example, northwards, the number of industrial

jobs in the south shrinks and the number in the north expands, so the production shifting tends to encourage

further expenditure shifting. The key point here is that if there were no change in industrial wages, the increase in

northern industrial production would have to be more than proportional to the original expenditure shift in order

to re-establish zero profits. (This, of course, is just the famous ‘home market effect’ of Krugman, 1980). Since the

shifting in industrial jobs is more than proportional (holding wages constant), we see that production shift tends to

encourage further migration to the north.

In the course of many years the conclusions of this theory were supported by the numerical simulations only.

For this moment quite complete analytic study was carried out only for symmetric CP models. In this case the

general picture describing stability of long-run equilibria is the following “tomahawk diagram”, see Figure 1, left-

hand side. Here the measure of trade freeness ϕ is, in some extent, inverse value to transportation costs, the bold

lines contain all stable long-run equilibria, dashed “fork” is a set of all unstable equilibria. Along with “break

point” ϕB mentioned above, the diagram contains so-called “sustain point” ϕS — the minimum level of freeness

making total agglomeration equilibria stable. Robert-Nicoud (2005) provides the first analytic proof of the CP

model’s main features, namely that the break point comes before the sustain point (in terms of freeness ϕ) and that

it has at most three locally stable equilibria for any given level of openness. Mossay (2006) proved an existence

and uniqueness of short-run equilibrium in symmetric CP model for all admissible values of parameters.

Figure 1: Tomahawk and “broken” tomahawk, taken from Baldwin et al. (2003). Here SH and Sn denote industrial

labor share.
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Studying of symmetric CP models allows to obtain very important conclusion: the resulting asymmetry (i.e.

agglomeration) is a well-formed result even under condition of initial symmetry. In other words, agglomeration

process may be interpreted in frameworks of “second nature”, i.e. as result of patterns human activity. However, a

theorist can be interested: Are the trade and agglomeration pictures obtained robust against asymmetry or specific

to symmetry?

To answer the appeal of the empirics, some numerical simulations show that certain qualitative conclusions can

not survive in asymmetric case, e.g. relative positions of break points ϕB and sustain points ϕS (see for example,

Appendix C.1 to Chapter 2 of Baldwin et al. (2003), so called “broken tomahawk” on Figure 1, right-hand side).

Moreover, Berliant and Kung (2009) show that symmetric case is singular in some sense.

Generally asymmetry remains weakly studied. The reason for lack of comprehensive analytic study of asym-

metric CP model is substantial complexity of appearing problems, addressed in Baldwin et al. (2003, p. 53)

pessimistically:

“Unfortunately, the intense intractability of the CP model means that numerical simulation of the

model for specific values .... is the only way forward.”

Our contribution

The present paper aims to overcome this seeming “intractability” and give a complete study of Krugman’s CP

model with and without initial heterogeneity, achieving the complete comparative statics of equilibria with respect

to main exogenous parameters.

Note that there are two partial cases when result of struggle between agglomeration and dispersion forces

is obvious. On perfectly competitive market dispersion forces prevail. Starrett’s impossibility theorem is one

of impressive evidences of this idea. On the other hand, purely monopolistic competitive market is domain of

agglomeration forces. More exactly, excluding of perfectly competitive agricultural sector from this model tends

to existing of agglomerated equilibria only, i.e. resulting force for all market forces listed above in the case

of monopolistic competition is agglomeration force. Thus Krugman’s CP model may be considered as mixed

economy model joining features of both perfectly competitive and monopolistic competitive markets. As a natural

measure of relative weight of monopolistic-competitive sector an expenditure share of industral varieties may be

taken. Moreover, intensity of agglomeration effects depends on elasticity of substitution, because its inverse is

interpreted traditionally as “love for variety”. Note that this point of view is not brand new. For example, in

Combes et al. (2008), pp.151-152, we read “Product differentiation plays a key role in the model... In other

words, when varieties are homogeneous, dispersion is the only stable equilibrium. Conversely, when varieties are

more differentiated, the likelihood of agglomeration is higher because the competition effect is weakened” and

“Regarding the share of the manufactured good, it is readily verified that the values of τS and τB increase with

µ , and so does the probability that agglomeration occurs. This is because a larger share of the manufacturing

sector, on which the snowball effect is built, makes the agglomeration force stronger.” Nevertheless, this idea was

not supported by intensive analytical studies and all conclusions concern symmetric case only. In our studies,

prevailing or countervailing of agglomeration and dispersion forces is considered in terms of relative weights of

perfectly competitive and monopolistic competitive sectors, which is measured mainly by expenditure shares.

We start in section 3 with analyzing the short-run equilibria. These describe international trade without any

migration. Our theorem of equlibrium existence generalizes that of Mossay (2006) by allowing for heterogeneity

and simplifies the proof. Our technical achievement enabling this and other results is essential simplification of

equilibrium conditions into one equation with relative wage as a variable. Based on this technique, we analyze

comparative statics of each variable of interest with respect to two parameters: share of agricultural labor θ and
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share of industrial labor λ in home country. First we study relative industrial wage which is the fraction of

industrial wage in home country to foreign wage. Propositions 1 and 3 show that:

(1) relative wage increases monotonically with respect to home share of agricultural population;

(2) under sufficiently small transportation cost (very free trade) relative wage increases monotonically with respect

to share of industrial labor;

(3) under sufficiently big transportation cost relative wage decreases with respect to industrial labor share.

Further we study industrial price indices in both countries and relative price index, which is home industrial

price index divided by foreign one. Proposition 4 says that home industrial price index grows in home share

θ of agricultural population, whereas foreign price index decreases, so relative price index grows. Influence of

industrial labor share growth is opposite — relative price index decreases with respect to industral labor share.

More important for further study of agglomeration is the study of relative welfare, i.e. utility value obtained

by representative consumer in equilibrium. Proposition 5 says that relative welfare always increases in the agri-

cultural share. Proposition 6 say that behavior of relative welfare in industrial labor share is more complicated

and generally non-monotone. Under given parameters, including transportation cost and agricultural labor share,

there can be zero, one, two or three interior values of industrial share yielding welfare equalization between the

two countries (such point is a candidate for interior equilibrium when migration is allowed). No more than one of

them is a candidate for a stable equilibrium. Under sufficiently small transportation costs for any fixed agricultural

population our industral workers are always relatively better off when having more industrial compatriots. But

under sufficiently big transportation costs for any fixed agricultural population there exist an optimal (for them)

share.

Sections 4.1 and 4.2 study long-run equilibria describing migration: agglomerated and interior respectively.

Obtained analytical results (as well as results of simulations) show that the general picture of agglomeration pro-

cesses differs depending on degree of region’s asymmetry. Under small asymmetry the general picture of ag-

glomeration patterns with respect to trade freeness is qualitatively similar to well-known one under symmetry

“tomahawk” picture, it becomes just asymmetric. We provide the formal proof for this robustness of symmetric

theory in the case of moderate asymmetry: any country can become the “core”. In contrast, under big asymmetry

the pattern is qualitatively different: only agriculturally big country can become the core in agglomeration process,

but the smaller one is doomed to be a periphery. We find the threshold or lower bound on asymmetry (in terns of

other parameters) when only one core is predetermined by “first nature.” Below this bound ambiguity remains, but

the higher is asymmetry, the more “probable” is agglomeration in the direction of the bigger country. Something

like this was previously shown in simulations, see Baldwin et. al (2003). Now we combine known symmetric

theory and known asymmetric simulations into general theoretical picture.

As to interior long-run equilibria, in section 4.2 we obtain comprehensive analytical results on their existence,

number and stability under given parameters, generalizing results from Robert-Nicoud (2005) and giving more

direct and intuitive proof.

To further motivate our interest in asymmetry of immobile (or, “agricultural”) populations, note that it may

be considered (ceteris paribus) as equivalent to the market potential differences. There is a series of empirical

evidences showing that this asymmetry causes unavoidable differences across regions in wages (nominal and real),

cost-of-living’s levels (or price indices) etc, see, for example, Cecchetti et al (2002), Hanson (2006), Roos (2006),

Beenstock and Felsenstein (2008), Klaesson and Larsson (2009).

Our study can be extended to other types of asymmetry, including consumer’s preferences dissimilarity studied

in Berliant and Kung (2009). Concerning the robustness of general pitchfork bifurcation patterns to asymmetry,

they expressed the following opinion: “... generically in all parameter paths this class of bifurcations does not

appear. In other words, conclusions drawn from the use of this bifurcation to generate a core-periphery pattern are
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not robust. Generically, this class of bifurcations is a myth, an urban legend.” We agree that bifurcation itself goes

away, but more important is that qualitative features and patterns of agglomeration still remain.

2 Core-Periphery Model

This paper studies the classical Krugman’s CP model, only with asymmetry of the two trading regions or countries:

“Home” H and “Foreign” F . The manufacturing sector in both countries is a standard Dixit-Stiglitz monopolistic

competition industry with specialized labor that produces varieties or brands of “industrial good”. Each manu-

facturing firm employs the labor of industrial workers and produces a single variety subject to increasing returns.

Namely, production of variety i requires a variable input involving m units of industrial-worker labor per unit of

output produced and a fixed input of f units of this labor. In symbols, the cost function is C(i) = ( f +m · x(i)) ·w,

where x is a firm’s output and w is the industrial workers’ wage. Note that wage w may differ across regions, while

fixed f and marginal variable m costs are the same for both H and F . In contrast, the agricultural sector produces

a homogeneous good under perfect competition and constant returns using only the labor of agricultural workers.

We normalize the model assuming that agricultural production takes ma = 1 unit of agricultural labor to make one

unit of the homogeneous good and agricultural fixed costs fa = 0.

The total amount of industrial labor denoted by L > 0 and La > 0 denotes total amount of agricultural labor.

The share of industral labor resided in home region H is a number λ ∈ [0,1], analogously, θ ∈ (0,1) the relative

share of agricultural population in region H. It implies that supplies of industral and agricultural labor in region

H are λL and θLa respectively. Analogously, labor supplies in region F are (1−λ )L and (1−θ)La. In the short-

run equilibrium concept is supposed that the values of shares λ and θ are fixed. Without loss of generality we

shall assume that θ > 1/2, i.e. agricultural population of home region is greater or equal to foreign agricultural

population. Perfectly competitive agricultural sector technology is uniform for both regions, the only difference

concerns the numbers of laborers. Transportation of agricultural good assumed costless, thus prices for both

countries are equal, which implies equalization of wage rates wa across regions. Agricultural marginal cost ma = 1,

consequently wa = 1.

The goods of both sectors are traded between countries, and trade in industral sector trade incur iceberg-type

trade costs, whereas trade in agricultural sector goods is frictionless. Specifically, it is costless to ship industrial

goods to local consumers but to sell one unit in another region, an industrial firm must produce and ship τ > 1

units. The idea is that τ − 1 units of the good “melt” in transit like an iceberg melts driving across an ocean. As

usual, τ captures all the costs of selling to distant markets, including transport costs and tariffs, τ − 1 being the

tariff-equivalent of these costs.

The typical consumer in each region has a two-tier utility function. The upper tier determines the consumer’s

allocation of expenditure between the homogeneous agricultural good, and the differentiated sector. The second

tier dictates the consumer’s preferences over the various differentiated industrial varieties and the choice within

this sector. The specific functional form of the upper tier is Cobb-Douglas that makes the sectoral expenditure

shares constant (under CES at the lower tier). In symbols, preferences of a typical consumers are described by

utility function:

U = Mµ ·Q1−µ , 0 < µ < 1 (1)

where Q is the consumption of the homogeneous good and M is the composite consumption utility of all differenti-

ated varieties of industrial goods. Traditionally the functional form of the lower tier is represented by CES-function

(constant elasticity of substitution) function M =

(

N

∑
i=1

q
ρ
i

) 1
ρ

for discrete varieties or M =

(

Ń

0

q(i)ρdi

)

1
ρ

in contin-
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uous case1. Here 0 < ρ < 1 is a parameter related to the elasticity of substitution 1 < σ < ∞ as follows ρ = σ−1
σ .

Number N characterizes assortment of varieties or number of firms producing these varieties.

Each consumer (being of industrial or agricultural type) owns a unit of labor supplied inelastically to the market

in exchange of both types of goods produced in both countries, so the industrial consumer’s problem is

U(Mm,Qm)→ max s.t.

ˆ NH

0

pHH(i)q
m
HH(i)di+

ˆ NF

0

pFH( j)qm
FH( j)d j+1 ·Qm = wH

and the agricultural worker finds

U(Ma,Qa)→ max s.t.

ˆ NH

0

pHH(i)q
a
HH(i)di+

ˆ NF

0

pFH(i)q
a
FH(i)di+1 ·Qa = 1,

where qm
HH(i) denotes the industrial worker’s consumption of i-th variety produced and consumed in home region,

whereas qm
FH( j) denotes her consumption of j-th variety imported from foreign country. Values pHH(i) and pFH( j)

are the corresponding prices. Recall that price of homogeneous agricultural good is normalized to 1. Values NH

and NF denote the numbers of firms in regions H and F respectively. Similar notations are used for consumer’s

problem of agricultural workers, and for consumers in another country. Now the home aggregate demand for

agriculture good is Q = λL ·Qm+θLa ·Q
a , aggregate demands for each variety qHH(i) = λLqm

HH(i)+θLaqa
HH(i),

qHF(i) = (1−λ )Lqm
HF(i)+(1−θ)Laqa

HF(i), etc.

It is well known under CES-function the analytical form of aggregate demand in country H for home produced

i-th variety is equal to

qHH(i) =
(wH ·λL+θLa) ·µ · p−σ

HH(i)
´ NH

0
p1−σ

HH ( j)d j+
´ NF

0
p1−σ

FH ( j)d j
. (2)

In turn, aggregate demand in foreign region for i-th variety produced in H is equal to

qHF(i) =
(wF · (1−λ )L+(1−θ)La) ·µ · p−σ

HF(i)
´ NH

0
p1−σ

HF ( j)d j+
´ NF

0
p1−σ

FF ( j)d j
. (3)

Home demand for foreign produced good qFH( j) and foreign demand for foreign produced good qFF( j),

j ∈ [0,NF ] may be obtained analogously.

Each home producer maximizes her profit

πH(i) = qHH(i) · (pHH(i)−wHm)+qHF(i) · (pHF(i)−wH · τ ·m)−wH · f ,

where qHH(i), qHF(i) are defined in (2) and (3), correctly anticipating the demand for his/her variety and perceiving

the competitors’ variables fixed, because everyone is “small enough”. Note that production costs m are also

uniform for both regions. Maximizing this profit with respect to pHH(i) and pHF(i) we obtain the following values

of prices

pHH(i)≡ pHH =
wH ·m ·σ

σ −1
, pHF(i)≡ pHF =

wH · τ ·m ·σ

σ −1
, (4)

which are uniform for all product varieties i ∈ [0,N]. Analogously,

pFH( j)≡ pFH =
wF ·m · τ ·σ

σ −1
, pFF( j)≡ pFF =

wF ·m ·σ

σ −1
(5)

1The limitations of Cobb-Douglas+CES modeling is that it is too specific to obtain more interesting comparative statics: it shows too

much stability of prices against shocks. Besides, use of Cobb–Douglas function makes CP model singular. Still, in the rest part of this

paper two-tier utility function with underlying CES tier will be used.
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The concept of short-run equilibrium implies that share λ is fixed (as well as θ ), whereas the free-entry

condition states that positiveness of profit in industry causes increasing of number of firms until profit becomes

zero. For example, for home producers this Zero-Profit Condition πH(i) = 0, taking into account formulas (2)-(5),

is of the following form

(wHλL+θLa)µ p−σ
HH · (pHH −wH ·m)

NH · p1−σ
HH +NF · p1−σ

FH

+
(wF(1−λ )L+(1−θ)La)µ p−σ

HF · (pHF −wH · τ ·m)

NH · p1−σ
HF +NF · p1−σ

FF

= wH f .

Let’s substitute for this pHH −wHm =
wH ·m ·σ

σ −1
−wH ·m =

wH ·m

σ −1
and pHF −wH ·τ ·m =

wH · τ ·m

σ −1
into previous

equation. We obtain

(wH ·λL+θLa) ·µ · p−σ
HH

NH · p1−σ
HH +NF · p1−σ

FH

+
τ · (wF · (1−λ )L+(1−θ)La) ·µ · p−σ

HF

NH · p1−σ
HF +NF · p1−σ

FF

=
(σ −1) f

m
.

The left-hand expression is equal to total output of home-produced variety covering the total demand. This pro-

duction requires the following amount of industrial labor

f +m
(σ −1) f

m
= f ·σ .

Consequently the total industrial labor demand is equal to NH · f ·σ and from labor market equilibrium condition

we obtain that the mass of home firms

NH =
λL

f ·σ
,

analogously

NF =
(1−λ )L

f ·σ
.

Substituting expressions for prices (4), (5) and just obtained NH , NF into Zero-Profit equation we obtain, after

simplifying, the following equation:

µ

(

λwH +θ · La

L

λw1−σ
H +(1−λ )ϕ ·wF

1−σ
+

ϕ
(

(1−λ )wF +(1−θ)La

L

)

λϕwH
1−σ +(1−λ )w1−σ

F

)

= wσ
H , (6)

where ϕ = τ1−σ ∈ (0,1) may be interpreted as a measure of trade “freeness” or “openness”. Taking into account

normalization of agricultural parameters (i.e. marginal costs wage rate are supposed to be equal to 1), a commodity

balance of agricultural product may be written as

(1−µ)(wH ·λL+wF · (1−θ)L+1 ·La) = La

or

λwH +(1−λ )wF =
µ

1−µ
·

La

L
(7)

where La, L are the total amounts of agricultural and industrial labor in the world, wH and wF are industrial

wages, home and foreign respectively, µ characterizes expenditure share of industrial production and λ is a share

of industrial labor in home region.

It will be shown further that the equation system (6), (7) defines short run equilibrium well. This system is not

analytically solvable, which leads to the pessimistic notion about the intractability of the CP model mentioned in

Introduction. One of the aims of this article is to show that this insolubility is not a hindrance for analytical study

of CP model.
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In contrast, the concept of long-run equilibrium implies that there can be a location choice. Agricultural labor-

ers still assumed to be immobile, but share of industrial workers λ can change due to migration between the regions.

Let’s fix an arbitrary λ ∈ (0,1) and calculate all short-run equilibrium values of prices pHH , pHF , pFH , pFF , de-

mands qm
HH ,q

m
HFqm

FHqm
FF , and numbers of firms NH , NF (see (4), (5)). To obtain the demand of industrial workers

only, it is sufficient to put La = 0 in (2) and (3). Then substitute the obtained equilibrium values of industrial labor

demand (for both countries) into utility function (1), as result we get the industrial welfares VH(λ ) and VF(λ ) for

Home and Foreign countries at the value of share λ ∈ (0,1) (for rather explicit formula of welfare see subsection

3.4). An inequality VH(λ ) > VF(λ ) is considered in long run as incentive to migration from Foreign to Home

country and vice versa. One of the popular migration dynamics is so-called ad hoc migration equation:

λ̇ = λ (VH(λ )− (λVH(λ )+(1−λ )VF(λ ))) = λ (1−λ )(VH(λ )−VF(λ ))

In the long-run equilibrium the market and agglomeration determine the equilibrium value λ 0 of share of industrial

labor in our country, such that no migration occurs: λ̇ = 0. The equilibria can be “agglomerated” that means

either λ 0 = 0 or λ 0 = 1, i.e. one country becomes pure agricultural one. Alternatively, a “interior equilibrium”

implies both countries producing manufacturing goods and the equal real wages for both regions VH(λ
0) =VF(λ

0),

0 < λ 0 < 1.

We are going to analyze the asymmetric CP model in two stages. First we derive solutions and their com-

parative statics for short-run equilibria, interpreted as equilibrium in international trade, and having independent

value itself. Then, using these results we completely describe the long-run equilibria, i.e., the resulting agglomer-

ation/dispersion outcomes.

3 Short-run Equilibria

3.1 Equilibrium equations and existence

We get the following two equations (see equations (6), (7) above) connecting nominal wages with exogenous

parameters

µ

(

λwH +θ · La

L

λw1−σ
H +(1−λ )ϕ ·wF

1−σ
+

ϕ
(

(1−λ )wF +(1−θ)La

L

)

λϕwH
1−σ +(1−λ )w1−σ

F

)

= wσ
H ,

La

L
=

1−µ

µ
· (λwH +(1−λ )wF) ,

where ϕ = τ1−σ is “trade freeness” and wH and wF are wages of industrial labor in Home and Foreign countries

respectively.

Substituting second equation into the first one we derive the following simpler one with respect to relative

wage wH

wF
:

(1−λ )
[

1− ((1−θ)+µθ)(1−ϕ2)−ϕ ·
(

wH

wF

)σ]

−

−λ

[

(

1− ((1−µ)θ +µ)
(

1−ϕ2
))

wH

wF
−ϕ ·

(

wH

wF

)1−σ
]

= 0
(8)

Solution of this equation allows to obtain nominal wages from the following equation, which is equivalent to (7)

wH =
µ

1−µ
·

La ·
wH

wF

L
(

λ wH

wF
+(1−λ )

) . (9)
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Based on the simplification obtained, the following result generalizes existence and uniqueness of short-run

equilibrium (see Mossay, 2006) to the asymmetric case.

Proposition 1. i) There exists a unique positive value of Relative Nominal Wage wH

wF
defined by equation (8).

ii) This value satisfies the following inequalities ϕ
1
σ < wH

wF
< ϕ− 1

σ . In the case of “costless trade”, ϕ = 1, an

identity wH ≡ wF holds (“integrated equilibrium”).

For analytical proof see Lemma 1 in Appendix A.

From equations (8) one can see that relative wage depends on shares θ ,λ only but not on absolute values

of industrial and agricultural labors (L and La). Similarly, based on (9), the wage itself depends on fraction of

industrial labor to agricultural one
La

L
but not on the absolute size of global labor. Note that this is a natural

consequence of the linear homogeneity of preferences. Costs do not affect wages.

3.2 Changes in wages

From equation (8), the relative wage is an implicit function of labor shares θ and λ , as well as trade freeness ϕ and

utility function parameters µ and σ . We start deriving the comparative statics of equilibria with respect to labor

shares.

Denote x = wH

wF
for short, then equation (8) takes the following form

(1−λ )(1− ((1−θ)+µθ)(1−ϕ2)−ϕ · xσ )−λ (1− ((1−µ)θ +µ)(1−ϕ2))x−ϕx1−σ ) = 0.

An implicit function x(λ ,θ ,µ,ϕ,σ) is solution to this equation. Immediately one can derive two special cases.

Under ϕ = 0 transportation costs are infinitely large, trade is impossible and this autarky yields wH

wF
=

(1−λ )θ

(1−θ)λ
which increases with respect to θ , decreases with respect to λ and remains unaffected by other parameters. Under

ϕ = 1 trade is costless and so-called integrated equilibrium yields wage equalization wH

wF
≡ 1 independently of any

parameters. The equalization was known under symmetry of labor, but now we see that it is a general fact.

Now consider the most interesting case 0 < ϕ < 1 of non-trivial trade cost. Applying the implicit function

theorem to previous equation we obtain the following

Proposition 2. (Comparative statics with respect to agricultural labor share)

i) Nominal wage in Home country wH increases while foreign wage wF decreases with respect to Home agri-

cultural population share θ , thereby relative industrial wage wH

wF
also increases.

ii) Home nominal wage is greater than foreign wage (wH > wF ) iff the share of home agricultural labor is

sufficiently large, namely θ > λ +
(1−2λ )ϕ

(1+ϕ)(1−µ)
. The opposite strict inequality implies reverse wage relation.

iii) Under sufficiently big asymmetry of industrial labor, namely λ +
(1−2λ )ϕ

(1+ϕ)(1−µ)
> 1 or

λ +
(1−2λ )ϕ

(1+ϕ)(1−µ)
< 0 there is no wage equalization for any shares θ ∈ (0,1).

For analytical proofs see Lemmas 1, 2 and 3 in Appendix A.

Figure 2 illustrates all these facts by simulations (using Mathematica 6.3). Taking three values of industrial

labor share: (small, medium and big) we observe monotonic increase of wages predicted by claim (i) of Proposition

and three qualitatively different outcomes predicted by claims (ii), (iii). Namely, too small industrial share λ = 0.05

yield small industrial wage wH <wF everywhere. Similarly, big share λ = 0.85 yield big industrial wage wH >wF ,

for all values of θ . Only under medium industrial share wages wH ,wF may be equalized for some critical value of

11



Figure 2: Left-hand plot: Relative wages with respect to θ for µ = 0.7, ρ = 0.75, ϕ = 0.75 and three values of λ .

Right-hand plot: Relative wages with respect to θ for λ = 0.65, ρ = 0.75, ϕ = 0.75 and three values of µ .

θ 0 ≈ 0.6. Also we plot relative wage three values of expenditure share – µ = 0.01 (close to perfect competition),

intermediate µ = 0.5 and µ = 0.99 (close to monopolistic competition).

To interpret the monotonic increase, take into account that agricultural share θ indirectly reflects the size of the

market for industrial goods. Bigger market requires more industrial labor whose supply is fixed in the short-run.

Note also there is no difference in tendencies for perfectly competitive and monopolistic competitive sectors of

economy. It should be mentioned only that for “almost monopolistic competitive” economies (µ ≈ 1) relative

wage is (almost) neutral to agricultural labor allocation θ because of its negligibility. On the other hand, in the

case when economy close to perfect competition (µ ≈ 0) its monopolistic competitive sector is more sensitive to

home market size. As to realism of monotonicity conclusion, there is empirical evidence that market size really

positively affects wages and that the industrial structure matters, see, for example, discussion in Klaesson and

Larsson (2009).

Considering dependence of wages on λ we find that in this case answer is ambiguous and heavily depends

on agricultural heterogeneity index defined as follows α = 2θ − 1 = θ − (1− θ) (we assume that θ > 1/2). It

measures degree of asymmetry in the agricultural labor distribution, α = 0 for symmetric model and α = 1 in the

case of total asymmetry for θ = 1. Define the following value

ϕw(µ,α) =

√

√

√

√

√

1−α2

(

1+µ
1−µ

)2

−α2

∈ (0,1)

which increases with respect to asymmetry α and decreases w.r.t. expenditure share µ .

Proposition 3. (Comparative statics with respect to industrial labor share)

When “freeness” exceeds the threshold: ϕ > ϕw(µ,α), then relative industrial wage wH

wF
increases with respect to

industrial labor share λ but decreases under smaller “freeness” ϕ < ϕw(µ,α) . In the case ϕ = ϕw(µ,α) relative

wage wH

wF
does not depend on λ .

For analytical proof see Lemma 4 in Appendix A.

We can also reformulate Proposition 3 in equivalent form as follows

12



Figure 3: Left-hand plot: Relative wages with respect to λ for θ = 0.65, ρ = 0.75, ϕ = 0.5 and three values of µ .

Right-hand plot: Threshold values of expenditure share µw with respect to asymmetry measure α = 2θ − 1 for

three values of ϕ .

Corollary 1. Relative wage wH

wF
increases with respect to industrial labor share λ in the case

µ > µw(ϕ,α), decreases when µ < µw(ϕ,α) and does not depend on λ for µ = µw(ϕ,α) where

µw(ϕ,α) =

√

1− (1−ϕ2)α2 −ϕ
√

1− (1−ϕ2)α2 +ϕ
.

This corollary allows more clear interpretation of struggle in the outcomes between agglomeration and disper-

sion forces. On a near perfectly-competitive market (µ ≈ 0) dispersion forces prevail, and increasing the home

industral labor share λ (or, equivalently number of firms NH =
λL

f ·σ
) negatively affects the relative wage

wH

wF

.

On the other hand, on a monopolistic-competitive market (µ ≈ 1) domination of agglomeration forces tends to

increase the relative wage with respect to λ . Increasing the expenditure share µ of the monopolistic competitive

sector weakens dispersion forces, while agglomeration forces are enhanced. At threshold value µw, agglomeration

and dispersion forces compensate each other. On left-hand side of Figure 2 three outcomes of force’s struggle

are represented: when expenditure share µ = 0.01 is small dispersion wins, when it is large µ = 0.99 then ag-

glomeration prevail and only for µ = µw ≈ 0.317714 tie happens. The right-hand side illustrates dependence of

threshold value on asymmetry measure of agricultural labor allocation α = 2θ −1 ∈ (0,1) and trade “freeness” ϕ

for three values. Due to Corollary 1, an area above the threshold curve µw(ϕ,α) covers the cases of increasing of

relative wage. We see that increasing of trade “freeness” makes this area wider, i.e. helps generate agglomeration.

The same occurs under increasing of asymmetry in the agricultural population allocation α = 2θ − 1. The large

concentration of agricultural population in home country attracts more industrial (i.e. agglomeration) forces and

amplifies their impact.

3.3 Changes in Price Indices (or Agricultural Welfare)

Prices pi j defined in equations (4)-(5) allow to define the index of cost of living, somewhat vaguely called “price

index”, PH for Home-Country and PF for foreign one. This index is the expenditure function at utility 1, i.e. the

amount of money needed to maintain a unit level of gross utility under these prices. It is standard in CP model to

express the index in both as

PH =
(

λw1−σ
H +(1−λ )w1−σ

F ϕ
)

1
1−σ , PF =

(

λϕw1−σ
H +(1−λ )wF

1−σ
)

1
1−σ
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(see for details Comparative Statics of Price Indices in Appendix I).

Since agricultural workers always have unit income, the inverse price index directly measures their utility as

V a =
wa

Pµ
=

1

Pµ
. The changes in both with respect to relative agricultural population are described as follows.

Proposition 4. i) Nominal price index for any region increases with respect to its own agricultural population

share, while foreign nominal price decreases, i.e., PH increases in θ whereas PF decreases.

ii) Relative price indices PH/PF increases with respect to agricultural population share θ , thereby relative

welfare of agricultural workers V a
H/V a

F =
1

(PH/PF)µ
becomes more favorable for the country with decreasing θ .

iii) Relative price indices PH/PF decreases with respect to industrial population share λ , thereby relative

welfare of agricultural workers V a
H/V a

F =
1

(PH/PF)µ
becomes more favorable for the country with increasing λ .

iv) Price indices PH and PF (as well as agricultural welfares V a
H and V a

F ) are equalized under condition

1− ((1−θ)+µθ)(1−ϕ)

1− ((1−µ)θ +µ)(1−ϕ)
=

(

λ

1−λ

) σ
σ−1

.

For all given θ ,ϕ,µ,σ there exists λ ∈ (0,1) satisfying this equation. On the other hand, for some values of

λ ,ϕ,µ,σ price indices of two countries may be non-equalizible for all θ ∈ (0,1).

v) Price index inequality PH > PF holds if and only if

θ >
(1−µ)+µϕ

(1−µ)(1−ϕ)
−

(1−µ)+(1+µ)ϕ

(1−µ)(1−ϕ)

(

1+
(

λ
1−λ

) σ
σ−1

)

or, equivalently,

λ

1−λ
<

(

1− ((1−θ)+µθ)(1−ϕ)

1− ((1−µ)θ +µ)(1−ϕ)

)ρ

.

For analytical proof see Lemmas 5, 6 and 7 in Appendix A.

Note that left-hand side of equalization condition
1−((1−θ)+µθ)(1−ϕ)
1−((1−µ)θ+µ)(1−ϕ) under variation of θ ∈ (0,1) takes the

values in limited interval between
ϕ

(1−µ)+µϕ and
(1−µ)+µϕ

ϕ , whereas the right-hand side changes in unlimited

interval, i.e,
(

λ
1−λ

) σ
σ−1

∈ (0,∞) for various λ ∈ (0,1). Thereby, there always exist some shares of industrial

labor λ that equalize price indices and welfares of agricultural workers, but changes in agricultural labor may be

insufficient for this task under given θ ∈ (0,1) and other parameters. In other words, migration of industrial labor

producing varieties matters more for agricultural welfares equalization than changes in agricultural labor, even if

concede possibility of the agricultural migration.

At Figure 4 the proposition and all three (equalizible and non-equalizible) situations are represented. We see

that under sufficient asymmetry in industrial labor, price indices need not equalize between countries, it means

Law of one price fails. We can compare our two propositions with traditional international trade and factor-price

equalization in Hecksher-Ohlin model with specific factors used in two industries. Like there, factor endowments

of the countries matter in our model and differences in wages or prices depend on parameters in natural direction:

a factor in shorter supply becomes more expensive.

To mention realism of these conclusion, an empirical study Roos (2003) claims that “the most important factors

driving price level differentials are population size and the average wage level” (see also Cecchetti et al (2002)).
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Figure 4: Changes in relative price index with respect to asymmetry in θ for µ = 0.7, ρ = 0.75, ϕ = 0.75 and

three values of λ .

3.4 Changes in industrial welfares

The industrial welfare in a country is defined by dividing industrial nominal wage w by the price index P. For

Home country it equals to

VH =
(L f σ)

µ
1−σ

(

mσ
σ−1

)µ ·
wH

(

λw1−σ
H +(1−λ )w1−σ

F ϕ
)

µ
1−σ

,

and for Foreign it is

VF =
(L f σ)

µ
1−σ

(

mσ
σ−1

)µ ·
wF

(

λϕw1−σ
H +(1−λ )w1−σ

F

)

µ
1−σ

.

Thus relative welfare may be expressed in terms of relative wage as follows

VH

VF

=
wH

wF







λ +(1−λ )ϕ
(

wH

wF

)σ−1

λϕ +(1−λ )
(

wH

wF

)σ−1







µ
σ−1

. (10)

Next proposition extends the comparative statics of previous two propositions onto real wages (utilities) of indus-

trial labor in two countries.

Proposition 5. i) Relative industrial real wage VH

VF
as well as home welfare VH of industrial labor increase with

respect to home agricultural population share θ .

ii) There exist values of λ ,ϕ,µ,σ when industrial welfares of two countries are non-equalizible, i.e., VH 6=VF

for all θ ∈ (0,1).

For analytical proof see Lemma 5 in Appendix A.

Figure 5 illustrates monotonicity claim (i) and proves claim (ii) by example. In contrast to previous proposi-

tions, it is not easy here to obtain explicit condition of non-equability. Our conjecture induced by this and other

simulations is that non-eligibility happens when industrial labor asymmetry is sufficiently large.
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Figure 5: Comparative statics of relative welfare with respect to θ for µ = 0.7, ρ = 0.75, ϕ = 0.75 and three values

of λ .

Interpreting the monotonicity observed, we can say that in this case there is no conflicts between perfect

competitive and monopolistic competitive sectors. Indeed, in the case µ = 0 we obtain from (10) that relative

welfare is similar to relative wage
wH

wF

that is increasing function with respect to agricultural labor share θ . To

approximate monopolistic competitive case µ = 1 we use equivalent representation of relative welfare (see for

details Comparative Statics of Industrial Welfares in Appendix A)

VH

VF

=

(

x
ρ
µ

(1−µ)θ − ((1−µ)θ +µ)ϕx

(1−µ)(1−θ)x− ((1−θ)+µθ)ϕ

)
µ

σ−1

,

where x =

(

wH

wF

)σ

. Then for µ = 1 we obtain that relative welfare is similar to positive power of relative wage

(

wH

wF

) 2σ−1
σ−1

that is increasing function with respect to agricultural labor share θ .

Comparative statics with respect to industrial labor share λ is more sophisticated. Traditionally general case

is divided into two sub-cases. The first one is so called Black Hole, characterized by inequality ρ =
σ −1

σ
6 µ ,

or equivalently,
1

σ
= 1− ρ > 1− µ with the following interpretation — love for industrial variety exceeds the

expenditure share for agricultural good. The opposite case characterized by No-Black-Hole Condition ρ > µ

will be considered as main one. In this case one can define the following critical point

ϕB(ρ,µ,α) =
ρ −µ

ρ +µ

√

√

√

√

√

√

1−α2

(

1+µ

1−µ

)2

−α2

where α = 2θ −1, coinciding in symmetric case α = 0 with break-point ϕB mentioned in Introduction.

Proposition 6. i) Let Black-Hole Condition ρ 6 µ holds. Then relative welfare
VH

VF

increases with respect

to industrial labor share λ . There exists the unique value λ 0 ∈ (0,1) yielding industrial welfare equalization

VH(λ
0) =VF(λ

0).

ii) Assume No-Black-Hole Condition ρ > µ holds and ϕ > ϕB(ρ,µ,α). Then relative welfare
VH

VF

increases

with respect to industrial labor share λ and there is at most one value λ 0 ∈ (0,1) yielding welfare equalization

VH(λ
0) =VF(λ

0).
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iii) Assume No-Black-Hole Condition ρ > µ holds and ϕ < ϕB(ρ,µ,α). Then relative welfare
VH

VF

increases

with respect to industrial labor share λ for sufficiently small λ > 0 and derivative
∂

∂λ

VH

VF

changes its sign not more

than twice for all λ ∈ (0,1). Therefore there is at most one three values λ ∈ (0,1) yielding welfare equalization

VH(λ ) =VF(λ ).

For analytical proof see Lemmas 9, 10 in Appendix A.

We obtain this threshold effect in terms of trade freeness ϕ . Proposition 6 may be equivalently reformulated

in terms of threshold value of expenditure share µ , though there is no the corresponding explicit form of this

threshold.

Corollary 2. For all (ρ,α,ϕ) ∈ (0,1)3 there is defined a continuous function µB(ρ,α,ϕ) satisfying the following

conditions:

i) function values 0 < µB(ρ,α,ϕ)< ρ , moreover µB(ρ,α,ϕ) decreases with respect to ϕ and α

ii) For all µ > µB(ρ,α,ϕ) relative welfare
VH

VF

increases with respect to industrial labor share λ and there

exists not more than one value λ 0 ∈ (0,1) yielding welfare equalization VH(λ
0) =VF(λ

0)

iii) For µ < µB(ρ,α,ϕ) relative welfare
VH

VF

increases with respect to industrial labor share λ for sufficiently

small λ > 0 and derivative
∂

∂λ

VH

VF

changes its sign not more than twice for all λ ∈ (0,1). Therefore there exists

not more than three values λ ∈ (0,1) yielding industrial welfare equalization VH(λ ) =VF(λ ).

Indeed, the threshold function µB(ρ,α,ϕ) may be obtained as implicit function defined by equation

F(ϕ,ρ,µ,α) = ϕ −
ρ −µ

ρ +µ

√

√

√

√

√

√

1−α2

(

1+µ

1−µ

)2

−α2

= 0.

It is obvious that F(ϕ,ρ,µ,α) strictly increases with respect to µ , i.e.
∂F

∂ µ
> 0 for all admissible arguments, thus

by the Implicit Function Theorem there exists differentiable function µB(ρ,α,ϕ) and

∂ µ

∂α
=−

(

∂F
∂α

)

(

∂F
∂ µ

) < 0,
∂ µ

∂ϕ
=−

(

∂F
∂ϕ

)

(

∂F
∂ µ

) < 0

because F(ϕ,ρ,µ,α) obviously increases with respect to α and ϕ . We need not consider Black-Hole case sepa-

rately, since µ > ρ implies µ > µB(ρ,α,ϕ). In other words, Black Hole is simply a partial case of monopolistic

competition’s prevailing.

Note that equalization values VH(λ
0) = VF(λ

0) are exactly interior long run equilibrium values of industrial

labor shares. More detailed consideration of interior long run equilibria is postponed until section 4.2. Claims

(ii), (iii) with No-Black-Hole Condition are illustrated in Figure 6. When “freeness” ϕ increases gradually from

0.003, to 0.1, the sinus-shape curve of relative welfare
VH

VF

(λ ) becomes less and less steep in the middle, arriving

finally at monotone increasing shape. The curve changes as a piece of wire, whose left end is pulled down but

right end up (seemingly, all curves turn around one point, but it is an illusion). In the beginning, under 0.003, the

curve intersects the horizontal line
VH

VF

= 1 only once, as predicted by claim (iv) with one utility-equalization point.

Then, at some stage before ϕ = 0.01 the right end hits 1 and at the next moment two interior equilibria emerge, the

right one being unstable because the curve intersects 1 from below. These two equilibria, stable and unstable, are
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Figure 6: Different patterns of relative welfare for θ = 0.55, µ = 0.2, ρ = 0.25 and various values of freeness ϕ .

supplemented by the third equilibrium (unstable one) after the left end of the curve hits 1 (say, under ϕ = 0.02),

but after bigger ϕ = 0.01 the middle and the rightmost equilibria disappear together, only one unstable intersection

is possible. Similar picture—one intersection from below—remains true under further increase of ϕ > 0.01, and

remains also under Black-Hole Condition discussed in claim (ii), for all ϕ . Note that increasing of relative welfare
VH

VF

reflects predominance of agglomeration forces with direction toward home country, while decreasing reflects

the opposite process. Figure 6 demonstrates also that increasing of trade freeness supports agglomeration forces.

Further, Figure 7 illustrates how strengthening of monopolistic competition (i.e. increasing of expenditure

share µ) changes correlation of agglomeration and dispersion forces. For small values of µ dispersion forces

prevail and relative welfare decreases forming stable interior long run equilibria (see for details section 4.2). For

sufficiently large values of µ outcome is opposite — relative welfare increases with respect to home industrial

labor share. As for intermediate values — for example, µ = 0.55 — dynamics of relative welfare may change not

more then twice.

Possible absence of interior utility equalization under sufficiently big agricultural asymmetry occurring under

θ = 0.9 or θ = 0.1 is illustrated in left-hand side of Figure 8. The industrial workers neighboring very big agricul-

tural population benefit so much from this that this cannot be completely outweighed by any change in their own

population. Finally, right-hand side of Figure 8 illustrates how threshold value µB(ρ,α,ϕ) depends on asymmetry

in agricultural labor allocation α = 2θ − 1 and trade freeness ϕ . Recall that area of relative welfare’s increasing

lies to the right of the curve. The more free is trade, the wider is this area, i.e. increasing of trade freeness inten-

sify agglomeration forces. Moreover, increasing of asymmetry in agricultural population’s allocation also amplify

agglomeration.
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Figure 7: Different patterns of relative welfare for θ = 0.6, ϕ = 0.005, ρ = 0.75 and various values of expenditure

share λ .

Figure 8: Left-hand plot: Absent utility equalization under big agricultural asymmetry: θ = 0.9, µ = 0.25, ϕ = 0.7,

ρ = 0.75.

Right-hand plot: Threshold values of expenditure share µB with respect to asymmetry measure α = 2θ − 1 for

three values of ϕ .

4 Asymmetry in Long Run

4.1 Agglomerated Long-Run Equilibria

The most popular migration dynamics model is so called ad hoc dynamics for industrial labor share λ

λ̇ = M(λ ) = λ (1−λ )(VH(λ )−VF(λ )) .

From this point of view there are two agglomerated long-run equilibria λ 0 = 0 and λ 0 = 1 which are steady

states of this differential equation. Stability conditions for this type of dynamics may be standardly expressed as
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Black Hole case µ > ρ Symmetric No-Black Hole case ρ > µ, α = 0

Figure 9: Symmetric patterns of agglomeration stability

∂M

∂λ
(0) < 0 and

∂M

∂λ
(1) < 0 which is equivalent to inequalities

VH

VF

(0) < 1 and
VH

VF

(1) > 1, respectively. Note

that these inequalities may be well interpreted without any differential equations, the first inequality means that

all industrial workers left Home country and none want to return, the second one means that all gathered in Home

country and none want to leave.

In symmetric case θ = 1/2 one can obtain one of two typical pictures of stability depending on transportation

costs τ > 1 or, which is equivalent, on trade freeness ϕ = τ1−σ ∈ (0,1]. The first one is so called “Black Hole”

when both agglomerated equilibria are stable for all values of ϕ ∈ (0,1] and it appears in the case ρ =
σ −1

σ
6 µ .

Under “No Black Hole Condition” ρ > µ there exists “sustain point” ϕS ∈ (0,1) such that both agglomerated

equilibria are unstable for all ϕ ∈ (0,ϕS) and they are both stable for all ϕ ∈ (ϕS,1].

Here the bold lines are sets of stable agglomerated long run equilibria for various values of trade freeness ϕ .

Asymmetry in agricultural population brings two new cases. Without loss of generality we assume that θ > 1/2.

Proposition 7. i) Let Black-Hole condition ρ 6 µ holds. Then both agglomerated equilibria λ = 0 and λ = 1 are

stable for all values of ϕ,θ .

ii) Let No-Black-Hole condition ρ > µ holds and µ >
ρ

1+2ρ
. Then there exist 0 < ϕS

1 6 ϕS
0 < 1 such that

agglomerated equilibrium λ = 0 is stable if and only if ϕ > ϕS
0 and λ = 1 is stable if and only if ϕ > ϕS

1 . Moreover,

ϕS
0 = ϕS

1 if and only if θ = 1/2. Sustain point ϕS
0 strictly increases with respect to θ while ϕS

1 strictly decreases.

iii) Let No-Black-Hole condition ρ > µ holds and µ <
ρ

1+2ρ
. Then there exist 0 < ϕS

1 6 ϕS
0 6 1 such that

agglomerated equilibrium λ = 0 is stable if and only if ϕ > ϕS
0 and λ = 1 is stable if and only if ϕ > ϕS

1 . Moreover,

ϕS
0 = ϕS

1 if and only if θ = 1/2, ϕS
0 < 1 for all θ <

ρ +µ

2(1−µ)ρ
and ϕS

0 ≡ 1 for all θ >
ρ +µ

2(1−µ)ρ
. Sustain point

ϕS
0 strictly increases with respect to θ for all θ ∈

[

1

2
,

ρ +µ

2(1−µ)ρ

)

while ϕS
1 strictly decreases for all θ .

For technical details see Lemmas 12, 13 in Appendix B.

The asymmetric Black-Hole case i) is identical to symmetric Black Hole. More exactly, for sufficiently large

weight of industrial sector, asymmetry degree of agricultural sector does not affect direction of relative welfare

change, i.e. it is a case of domination of monopolistic competition suppressing agricultural heterogeneity.
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Moderate asymmetry α <
(1+ρ)µ

(1−µ)ρ
, No-Black-Hole Large asymmetry α >

(1+ρ)µ

(1−µ)ρ
, No-Black-Hole

Figure 10: Asymmetric patterns of agglomeration stability

Sub-case ii) is analogous to its symmetric case except that each agglomerated equilibrium has specified sus-

tain point ϕS
0 for λ = 0 and ϕS

1 for λ = 1. Finally, sub-case iii) when one of sustain points disappears is specific

to “sufficiently large” asymmetry in agricultural labor allocation. It is obvious that increasing of trade freeness

supports agglomeration in both directions, while asymmetry in agricultural population is favorable for agglomer-

ation in big country only. For sufficiently large measure of monopolistic competition µ >
ρ

1+2ρ
the general (i.e.

non-directed) agglomeration has some influence and ambiguity in agglomeration directions still remains, though

asymmetry makes one of directions “more probable”. In opposite case, when monopolistic competitive sector is

sufficiently weak, i.e. µ <
ρ

1+2ρ
directed agglomeration prevails and for sufficiently large asymmetry ambiguity

disappears.

Note additionally that for any given ρ > µ and θ sustain points ϕS
0 , ϕS

1 may be found as the smallest roots of

equations

G(ϕ) = θ(1−µ)ϕ
µ−ρ

ρ +(1−θ(1−µ))ϕ
µ+ρ

ρ = 1,

H(ϕ) = (1−θ)(1−µ)ϕ
µ−ρ

ρ +(1− (1−θ)(1−µ))ϕ
µ+ρ

ρ = 1,

respectively (see proof of Lemma 13 in Appendix B). On the Figure 11 functions G(ϕ), H(ϕ) are plotted for

No-Black-Hole (left-hand side) and Black-Hole (right-hand side) cases. Note that ϕ = 1 is trivial root of both

equations and sometimes (namely, for all θ >
ρ +µ

2(1−µ)ρ
) it is a smallest one. In other cases ϕS

0 ,ϕ
S
1 ∈ (0,1). In

No-Black-Hole case ρ > µ for all ϕ ∈ (0,1) inequalities ϕ
µ+ρ

ρ < 1 < ϕ
µ−ρ

ρ hold, while left-hand sides of these

equations are the weighted sums of terms ϕ
µ−ρ

ρ and ϕ
µ+ρ

ρ . It is obvious that increasing in agricultural labor share

θ , or equivalently in corresponding weight coefficient, pulls plot of G(ϕ) up, while plot of H(ϕ) goes down. Thus

sustain points ϕS
0 , ϕS

1 shift to the right and left, correspondingly. In Black-Hole case changes in θ do not have

significant consequences.
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Figure 11: Sustain points: No-Black-Hole and Black-Hole cases

4.2 Interior Long-run Equilibria

Interior long-run equilibria may be defined as interior steady states λ 0 ∈ (0,1) of the same ad hoc dynamic equation

λ̇ = M(λ ) = λ (1−λ )(VH(λ )−VF(λ )) .

which implies the equality of industrial real wages in both regions VH(λ
0) =VF(λ

0). Stability conditions for this

type of dynamics may be standardly expressed as
∂M

∂λ
(λ 0)< 0 which is equivalent to inequalities

∂

∂λ

VH

VF

(λ 0)< 0.

Note that these inequalities may be also interpreted without any differential equations. It means that the further

immigration in Home country causes deceasing of relative welfare and leads to backward migration.

Recall the definition of break point

ϕB =
ρ −µ

ρ +µ

√

√

√

√

1− (2θ −1)2

(

1+µ
1−µ

)2

− (2θ −1)2

Proposition 8. i) Let Black-Hole Condition ρ 6 µ hold. Then there is at most one single interior long run

equilibrium and ,in case of existence, it is always unstable.

ii) Let No-Black-Hole Condition ρ > µ holds and ϕ > ϕB. Then there is at most one interior long-run equi-

librium and ,in case of existence, it is always unstable.

iii) Let No-Black-Hole Condition ρ > µ holds and 0 < ϕ < ϕB. Then there is at most three interior long-run

equilibria.

Numerical simulation show that for appropriate values of the parameters, each of the cases in “not more than

n” is possible, i.e. for ϕ > ϕB there are examples of exactly one or without any interior equilibrium, and for

ϕ < ϕB there are examples of exactly three, two, one and none of interior equilibria. In fact, Figures 6, 7, 8

show us all cases of interior equilibria mentioned above. More exactly, Figure 7 shows single unstable Black Hole

equilibria for µ = 0.8 and µ = 0.9 (µ > ρ = 0.75), Figure 8, left-hand side, shows absence of interior equilibria

for No-Black-Hole case and ϕ = 0.7 > ϕB = 0.402985, Figure 6 shows the cases of one, two and three interior

equilibria for various values of ϕ < ϕB = 0.0740226. Note that indication of equilibrium stability is intersection

“from above”, while inverse direction of intersection characterizes unstable equilibria. For each specified value

of freeness ϕ all possible cases of number and stability type of interior equilibria are described in Lemma 16 in

Appendix B. Here we classify the synthetic patterns of long run equilibria, including agglomerated and interior

ones.
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Pattern 0: No Break-Point, Sustain Points ϕS
0 = ϕS

1 = 0

Figure 12: Black Hole map: µ = 0.5 > ρ = 0.25, θ = 0.6

These patterns are represented by simulation results for specified values of ρ,µ,θ and for all values of in-

dustrial labor share λ and trade freeness ϕ . Dark area (referred as “sea”) represents cases where relative welfare
VH

VF

(ϕ,λ ) < 1, light area (referred as “shore”) corresponds to case
VH

VF

(ϕ,λ ) > 1 and “coastline”
VH

VF

(ϕ,λ ) = 1

represents set of all interior equilibria. Consider a “map” of Black Hole case as an example. We see that all

“southern” (i.e. for λ = 0) points are “in the sea”
VH

VF

(ϕ,λ ) < 1 and thus stable, all “northern” (i.e. for λ = 1)

points are “on the shore”
VH

VF

(ϕ,λ ) > 1 and thus stable, and “coastline” consists of unstable interior equilibria,

because going north we cross it from sea to shore, i.e.
VH

VF

(ϕ,λ ) increases with respect to λ . Figure 12 represent

all Black Hole cases, the only difference in other Black Hole cases concerns an exact form of coastline. Arrows

show directions of industral labor migration, more exactly, the upward arrow indicates immigration into Home

country, the downward one — the opposite process.

The rest classification concerns No-Black-Hole cases only. Let’s define one more threshold value for trade

freeness ϕ , the “turn point”, that will be useful for our classification

ϕT (θ ,ρ,µ) =

√

max

{

0,
(1−θ)(θρ − (1+θρ)µ)

θ((1−θ)ρ +(1+θρ)µ)

}

.

It distinguish the possible cases of relative welfare behavior in agglomerated state λ = 1. Namely, relative welfare
VH

VF

increases in λ = 1 if and only if ϕ > ϕT (see for details Lemma 11 in Appendix A). Note that in perfectly com-

petitive case (i.e. µ = 0) this value ϕT (θ ,ρ,0) = 1 and for sufficiently large weight of monopolistic competitive

sector µ >
θρ

1+θρ
we obtain ϕT (θ ,ρ,µ)≡ 0.

Consider the class of “asymmetric tomahawks” (see Proposition 7-iii, case of θ <
ρ +µ

2(1−µ)ρ
which is equiva-

lent to α = 2θ −1 <
(1−ρ)µ

(1−µ)ρ
) or in new “geographic” interpretation, class of “maps with two coastlines”, north-

ern and southern ones. It may be divided into two subclasses by distinction ϕT < ϕS
1 and ϕT > ϕS

1 . The first case is

characterized by “hooked” northern coastline, i.e. it goes first eastwards and then turns westwards. In other words,

northern coastline contains U-turn point characterized by “longitude” ϕU . Figure 13 illustrates this case by two ex-
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Pattern 1 Pattern 2

µ = 0.25, ρ = 0.75, θ = 0.501 µ = 0.25, ρ = 0.75, θ = 0.55

Figure 13: Patterns for “hooked coastline” ϕT < ϕS
1

amples: in the left-hand side plot ϕT = 0 and hook is obvious, in right-hand one ϕT = 0.209278 < ϕS
1 = 0.226391

and counter motion of coastline is almost invisible, but still exists. There is a small difference between two

“hooked” patterns in Figure 13: for left-hand side case we have ϕS
0 < ϕE , while for right-hand side one an inequal-

ity ϕE < ϕS
0 holds.

Remark 1. Note that usually ϕE 6= ϕT , i.e. U-turn point is not the same as turn point, yet inequality ϕT < ϕS
1

holds if and only if U-turn point exists. We use turn point ϕT instead of U-turn point ϕE for classification purposes

because U-turn point has no analytic presentation and its numerical calculation requires to solve quite tedious

system of equations. For technical details see Appendix B, subsection Existence of U-turn Point.

The case ϕT > ϕS
1 will be considered as “map with regular coastlines”. We consider threshold case ϕT = ϕS

1

as regular one for reasons to be explained in Policy Implications.

Pattern 3

µ = 0.25, ρ = 0.75, θ = 0.560885, ϕT ≈ ϕS
1 µ = 0.25, ρ = 0.75, θ = 0.7, ϕT > ϕS

1

Figure 14: Patterns for “regular coastlines” ϕT > ϕS
1
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As for classification of “axes” (see Proposition 7-iii, case of θ >
ρ +µ

2(1−µ)ρ
⇐⇒ µ 6

(2θ −1)ρ

1+2θρ
) or in new

“geographic” interpretation, class of “maps with one coastline” there is no need to divide it into subclasses. Direct

calculation show that inequality µ 6
(2θ −1)ρ

1+2θρ
implies that

ϕT =

√

(1−θ)(θρ − (1+θρ)µ)

θ((1−θ)ρ +(1+θρ)µ)
> ϕ∗∗ =

√

(1−θ)(1−µ)(ρ −µ)

(1− (1−θ)(1−µ))(ρ +µ)
> ϕS

1 .

It means that the single (former northern) coastline always is regular.

Pattern 4

Figure 15: Pattern for “single regular coastline” µ = 0.15, ρ = 0.75, θ = 0.75, ϕS
0 = 1

Let’s call for short patterns from Figures 12-15 as follows: Pattern 0 for very special Black Hole case, Pattern

1 and Pattern 2 (hooked ones) are represented in Figure 13, Pattern 3 covers both cases in Figure 14 (there is no

need to separate an intermediate case ϕT = ϕS
1 ), and the Pattern 4 is the last one from Figure 15.

The following statement is not quite “strictly mathematical”, because it uses the fuzzy notion of “the same

pattern”, though it is obvious what is meant.

Proposition 9. i) Let Black Hole condition µ > ρ holds. Then for all values of asymmetry measure α = 2θ − 1

the same Pattern 0 is obtained.

ii) Let No-Black-Hole condition µ < ρ and µ >
ρ

1+ρ
hold, then for sufficiently small values of α Pattern 1

comes out, while for larger ones it transforms into Pattern 2.

iii) Let No-Black-Hole condition µ < ρ and
ρ

1+2ρ
< µ <

ρ

1+ρ
hold, then increasing α from 0 to 1 changes

the pattern gradually from Pattern 1 through Pattern 2 to Pattern 3.

iv) Finally, let No-Black-Hole condition µ < ρ and µ >
ρ

1+2ρ
hold, then increasing α from 0 to 1 changes

the pattern gradually from Pattern 1 through Patterns 2 and 3 to Pattern 4.

This Proposition follows from “comparative statics” of threshold values ϕS
0 , ϕS

1 , ϕB and ϕT with respect to α

(see Lemmas 13, 15, 16 in Appendix B).
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5 Summary

In present paper, a complete study of Krugman’s CP model with agricultural labor asymmetry is carried out. State-

ments are proved which generalize the known results of Mossay (2006) on existence and uniqueness of short run

equilibrium for asymmetric CP model, as well as the results of Robert-Nicoud (2005) on number and stability

of long run equilibria. The comparative statics of equilibrium wages, price indices and welfare (nominal and

relative) with respect to agricultural and industrial labor allocations were studied. All typical patterns of agglomer-

ation, generalizing the well-known “tomahawk diagram” for symmetric CP model, were found and studied. From

substantive point of view it was shown that the statement of Berliant and Kung (2009) on non-robustness of con-

clusions and policy implications based on symmetric CP model is not quite true: for sufficiently small degree of

asymmetry all substantial qualitative conclusions stay true. Only under sufficiently large asymmetry considerable

changes do occur.

All possible cases of comparative statics, number and stability of long-run equilibria may be classified in terms

of relations among series of critical or threshold values: sustain points, break point, U-turn point, etc. Analytical

results of presented paper allow to calculate these values for particular model parameters (i.e. trade costs, labor

shares, consumption characteristics). Comparing the values of these critical points one can identify actual Pattern

of the economy and predict, in some extent, some implications of varius policy options.

Policy Implications

One can consider the following types of economic policy, i.e. purposeful influence of government upon economy,

which is described by CP model: “trade policy” — changing (for example, increasing) of trade freeness, measured

by ϕ , “industral labor policy” — changing (for example, increasing) of industral labor supply, measured by λ , and

“agricultural labor policy” — changing of agricultural population share θ . The first two policies are conducted

in the range of fixed Pattern, while the last one may change initial Pattern, as shown in Proposition 9. However,

conducting of “agricultural policy”, i.e. resettlement of immobile population is very hard task. So we focus

ourselves on discussion of first two policies.

Trade policy

What is the substantial difference between the regular and hooked patterns? Suppose that we start slowly moving

from autarky ϕ = 0 toward full trade liberalization ϕ = 1 being in stable long run equilibrium state. In regular case

we shall move along “northern” coastline until meeting sustain point ϕS
1 and then staying in stable agglomerated

equilibrium λ = 1. There is no abrupt junctions on our way. In contrast to this, on the hooked coastline in the most

eastern point we face the “catastrophe” — sharp leap from interior equilibrium to the agglomerated one.

In other words, under sufficiently large asymmetry tariff decreasing unambiguously leads to agglomeration in

big country, leaving no chance to the small one. An the only way for government to change situation is to increase

local demand, which may be considered as substitution for local immobile population. One can say that asymmetry

is more favorable for bigger country. On the other hand, under moderate asymmetry trade policy allows for smaller

country to obtain the favorable conditions for efficient application of industral labor policy.

Industrial labor policy

Suppose that government’s purpose is to become an industrial Core. The taken measures and their result depend

on economy Pattern and starting point.
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It is obvious that in case of Pattern 4 any policy is ineffective — for any given ϕ there is unique long run

equilibrium. The same holds for Pattern 3 in the case sufficiently small trade freeness, more exactly, ϕ 6 ϕS
0 . For

larger freeness there are two stable long run equilibria — the agglomerated ones, and “historical choice” of one of

them is path dependent.

Pattern 2 is more sophisticated. We have well-known path dependency for sufficiently large trade freeness

ϕ > ϕS
0 , and full determinacy for all ϕ 6 ϕS

1 and ϕU 6 ϕ 6 ϕS
0 where any industrial labor policy is useless. As for

values ϕS
1 < ϕ < ϕU result depends on agricultural asymmetry. The bigger country (Home in our case) could reach

the industrial Core position using relatively small policy energies (especially if ϕ is sufficiently close to U-turn

point ϕU ), while any policy of smaller (i.e. Foreign) country is ineffective.

Finally, for Pattern 1 all conclusions of symmetric CP model still hold. The only inessential difference is

that sustain points for each country may be different ϕS
0 6= ϕS

1 . More exactly, for sufficiently large trade freeness

ϕ > ϕU we obtain full agglomeration with path dependency, for ϕS
0 < ϕ 6 ϕU both countries may reach Core

position, though the smaller country needs substantially more political energies. In the case ϕS
1 < ϕ 6 ϕS

0 only

Home (i.e. larger country) may be efficient, finally, in the case ϕ 6 ϕS
1 result is predetermined any policy is

ineffective.

In other words, under sufficiently large asymmetry an industral labor policy turns out inefficient as well as

trade one. As for industral labor policy under moderate asymmetry it is also more favorable to bigger country,

however, if trade barriers are sufficient small, the industral labor policy of smaller country may be effective, but it

may be too expensive. On the other hand, under sufficiently large tariff barriers industral labor policy is inefficient

for both countries. Under intermediate tariff barriers situation is ambiguous but more favorable to bigger country.

Moreover, when the competing countries are almost equal, the ambiguity of direction enables an attempt to

redirect the agglomeration process towards your region. Then two remarks are in place:

(a) in some cases the critical mass of these efforts is needed: small measures do not pay, but big ones do;

(b) in contrast, sometimes propaganda of future development without any real investment is sufficient to deter-

mine the direction and self-fulfilling expectations make the process self-enforcing.
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A Appendix A

A.1 Short Run Equilibrium: Existence and Uniqueness

We get the following two equations (6), (7), connecting nominal wages with exogenous parameters

µ

(

wH ·λ +θ · La

L

λw1−σ
H +(1−λ )ϕ ·wF

1−σ
+

ϕ
(

wF(1−λ )+(1−θ)La

L

)

λϕwH
1−σ +(1−λ )w1−σ

F

)

= wσ
H ,

λwH +(1−λ )wF =
µ

1−µ
·

La

L
.

Using the second equation we can substitute
1−µ

µ
(λwH +(1−λ )wF) instead of La

L
and after simplifying trans-

formations we obtain the following equation:

(1−λ )
[

1− ((1−θ)+µθ)(1−ϕ2)−ϕ ·
(

wH

wF

)σ]

−

−λ

[

(

1− ((1−µ)θ +µ)
(

1−ϕ2
))

wH

wF
−ϕ ·

(

wH

wF

)1−σ
]

= 0
(11)

defining equilibrium relative wage rate wH

wF
. This equation is analytically insolvable (except the case σ = 2 with

cubic equation).

Denote x =
(

wH

wF

)σ
, A(µ,ϕ,θ) = 1− ((1−θ)+µθ)(1−ϕ2), B(µ,ϕ,θ) = 1− ((1−µ)θ +µ)(1−ϕ2). Note

that 0 < A(µ,ϕ,θ)< 1, 0 < B(µ,ϕ,θ)< 1. Now we can rewrite the previous equation as follows

F(x; µ,ϕ,θ ,λ ) = (1−λ )(A(µ,ϕ,θ)−ϕ · x)−λx1−ρ(B(µ,ϕ,θ)−ϕx−1) = 0. (12)

For fixed values of parameters (µ,ϕ,θ ,λ ) we shall simplify notion of left-hand side to F(x).

Lemma 1. (Existence and uniqueness)

i) Function F(x) decreases with respect to x.

ii) For all admissible values of (µ,ϕ,θ ,λ ) there exists the unique positive root x̄ of equation F(x) = 0 which

belongs to interval (ϕ,ϕ−1).

iii) This root x̄ > 1 if and only if θ > λ + ϕ(1−2λ )
(1+ϕ)(1−µ) . Analogously, x̄ < 1 if and only if θ < λ + ϕ(1−2λ )

(1+ϕ)(1−µ) .

iv) For all admissible values of (µ,ϕ,θ ,λ ) there exists the unique short-run equilibrium.

Proof. Note that
∂F

∂x
=−

(

(1−λ )ϕ +(1−ρ)B(µ,ϕ,θ)λx−ρ +ρ ·λϕx−ρ−1
)

< 0,

for all admissible values of parameters and x > 0, i.e. F(x) is a strictly decreasing function w.r.t. x > 0. On the

other hand,

F(ϕ) = (1−λ )(1−µ)θ(1−ϕ2)+λϕ1−ρ((1−µ)θ +µ)(1−ϕ2)> 0,

F(ϕ−1) =−(1−λ )((1−θ)+µθ)(1−ϕ2)−λϕρ−1(1−µ)(1−θ)(1−ϕ2)< 0

It implies that there exists a unique root x̄ of equation F(x) = 0 which belongs to interval (ϕ,ϕ−1).

This interval always contains the value 1 that distinguishes between cases x̄ < 1 and x̄ > 1. From decreasing of

function F(x) follows that for equilibrium values of wage rates 1 > x̄ ⇐⇒ F(1)< F (x̄) = 0 and F(1)> F (x̄) = 0

analogously. On the other hand,

F(1) = (1−λ )(A(µ,ϕ,θ)−ϕ)−λ (B(µ,ϕ,θ)−ϕ) = (1−ϕ)((1+ϕ)(1−µ)(θ −λ )−ϕ(1−2λ )) .
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It implies that

x̄ < 1 ⇐⇒ θ < λ +
ϕ(1−2λ )

(1+ϕ)(1−µ)
, x̄ > 1 ⇐⇒ θ > λ +

ϕ(1−2λ )

(1+ϕ)(1−µ)
.

The root x̄ defines the equilibrium relative wage as follows wH

wF
= (x̄)1/σ

. On the other hand, the following

equation

λwH +(1−λ )wF =
µ

1−µ
·

La

L

allows to obtain the nominal wages as follows:

wF =
µ

1−µ
·

La

L
(

λ wH

wF
+(1−λ )

) =
µ

1−µ
·

La

L
(

λ x̄1/σ +(1−λ )
) ,

wH = wF ·
wH

wF

=
µ

1−µ
·

La · x̄
1/σ

L
(

λ x̄1/σ +(1−λ )
)

The rest of equilibrium values, i.e. prices, demand and number of firms, may be explicitly expressed via wages

and model parameters (see (2)-(5)).

A.2 Comparative Statics of Wages

Considering root of equation (12) as implicit function x(θ ,λ ,ϕ,µ,σ) we study its comparative statics, i.e. reaction

on changes in certain parameters. Note that sign of implicit function derivative

sign
∂x

∂ν
= sign

(

−

(

∂F

∂ν

)

/

(

∂F

∂x

))

= sign
∂F

∂ν
(13)

for all ν ∈ {θ ,λ ,ϕ,µ}, because
∂F

∂x
< 0. Besides wH

wF
= x

1
σ = x1−ρ strictly increase with respect to x, thus

comparative statics of x and relative wage wH

wF
are equivalent.

Comparative statics with respect to θ

Lemma 2. Relative wage wH

wF
increases with respect to θ .

Proof. Calculating partial derivative we obtain

∂F

∂θ
= (1−µ)(1−ϕ2)((1−λ )+λx1−ρ)> 0

for all admissible parameter values and x > 0, therefore
∂x

∂θ
> 0 due to (13).

Lemma 3. Nominal wage wH in home region H increases with respect to agricultural labor share θ , while wF

decreases.

Proof. Consider a nominal wage wH as an implicit function of parameters. From equation (7)

λwH +(1−λ )wF =
µ

1−µ
·

La

L

we obtain

wH = wH(y) =
µ

1−µ
·

La

L ·

(

λ +
(1−λ )

y

)
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where y = wH

wF
is a relative wage. It is obvious that wH(y) increases with respect to y, i.e.

∂wH

∂y
=

µ

1−µ
·

La

L
·

1−λ

(λy+(1−λ ))2
> 0

and
∂y

∂θ
> 0 (see Lemma 2). Thus

∂wH

∂θ
=

∂wH

∂y

∂y

∂θ
> 0 for all admissible values of parameters.

Comparative statics with respect to λ

We assume (without loss of generality) that home region H posses the greater share of agricultural labor than

foreign F , i.e. θ > 1/2. Consider the following value α = 2θ −1 ∈ [0,1) interpreted as measure of asymmetry in

agricultural population.

Lemma 4. 1. Relative wage wH

wF
strictly increases with respect to λ if and only if ϕ >

√

1−α2
(

1+µ
1−µ

)2

−α2
. Respectively,

wH

wF
strictly decreases with respect to λ if and only if ϕ <

√

1−α2
(

1+µ
1−µ

)2

−α2
.

2. Threshold value
√

1−α2
(

1+µ
1−µ

)2

−α2
strictly decreases with respect to asymmetry α .

3. If ϕ >
1−µ

1+µ
, relative wage wH

wF
increases with respect to λ regardless of asymmetry measure.

Proof. Due to (13) it is sufficient to determine sign of
∂F

∂λ
in short run equilibrium x̄. Represent function F(x) as

follows F(x) = (1−λ )F1(x)−λF2(x) where F1(x) = A(µ,ϕ,θ)−ϕx, F2(x) = x1−ρ(B(µ,ϕ,θ)−ϕx−1). Note that
∂F1

∂x
< 0,

∂F2

∂x
> 0 for all x > 0. Let x̄ be a root of equation F(x) = 0, then F2(x̄) =

1−λ

λ
F1(x̄) and consequently

∂F

∂λ
(x̄) =−(F1(x̄)+F2(x̄)) =−

1

λ
F1(x̄).

It remains to determine the sign of F1(x̄). Define

x∗ =
A(µ,ϕ,θ)

ϕ
, x∗∗ =

ϕ

B(µ,ϕ,θ)
,

which are the positive roots of equations F1(x)= 0 and F2(x)= 0 respectively. Note that x̄∈ [min{x∗,x∗∗} ,max{x∗,x∗∗}]

since F1(x̄) and F2(x̄) should have the same sign. Direct calculations show that

x∗ > x∗∗ ⇐⇒ ϕ <

√

(1−µ)2θ(1−θ)

(1−µ)2θ(1−θ)+µ
=

√

√

√

√

1− (2θ −1)2

(

1+µ
1−µ

)2

− (2θ −1)2

.

Substitute α = 2θ −1 and consider all of possible cases:

ϕ <
√

1−α2
(

1+µ
1−µ

)2

−α2
, it implies x∗ > x∗∗, thus x̄< x∗ and F1(x̄)>F1(x

∗)= 0, because
∂F1

∂x
< 0. In this case

∂F

∂λ
(x̄)< 0.

ϕ >
√

1−α2
(

1+µ
1−µ

)2

−α2
, it implies x∗∗ > x∗, thus x̄> x∗ and F1(x̄)<F1(x

∗)= 0, because
∂F1

∂x
< 0. In this case

∂F

∂λ
(x̄)> 0.

ϕ =
√

1−α2
(

1+µ
1−µ

)2

−α2
, it implies x̄ = x∗ = x∗∗ and F1(x̄) = F(x̄) = 0. In this case

∂F

∂λ
(x̄) = 0.

It is obvious that threshold value
√

1−α2
(

1+µ
1−µ

)2

−α2
decreases with respect to α , thus it reaches maximum value

1−µ

1+µ
under α = 0 (or θ = 1/2). Consequently, for all ϕ >

1−µ

1+µ
relative wage wH

wF
increases w.r.t λ .
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A.3 Comparative Statics of Price Indices

Consumer’s Price Index in Home region (see, for example, Combes et al, 2008, 3.1.1.3) are equal to

PH =

(
ˆ NH

0

p1−σ
HH ( j)d j+

ˆ NF

0

p1−σ
FH ( j)d j

)

1
1−σ

.

Analogously, price index in region F is equal to

PF =

(
ˆ NH

0

p1−σ
HF ( j)d j+

ˆ NF

0

p1−σ
FF ( j)d j

)

1
1−σ

.

Substituting equilibrium values of prices (4), (5), and numbers of firms NH =
λL

f σ
, NF =

(1−λ )L

f σ
we obtain

PH =

(

NH

(

wHmσ

σ −1

)1−σ

+NF

(

wFmστ

σ −1

)1−σ
) 1

1−σ

=
m ·σ

σ −1

(

L

f σ

) 1
1−σ
(

λw1−σ
H +ϕ · (1−λ )w1−σ

F

)
1

1−σ ,

PF =
m ·σ

σ −1
·

(

L

f σ

) 1
1−σ
(

λϕw1−σ
H +(1−λ )w1−σ

F

)
1

1−σ .

Comparative statics with respect to θ

Lemma 5. Price index PH increases with respect to θ while PF decreases, thereby relative price index
PH

PF

increases

with respect to agricultural population share θ .

Proof. From equation (7)

λwH +(1−λ )wF =
µ

1−µ
·

La

L

we obtain

wF =
µ

1−µ
·

La

L
(

λ wH

wF
+(1−λ )

) .

Therefore

PH =
m ·σ

σ −1
·

(

L

f ·σ

) 1
1−σ

(

wF
1−σ ·

(

λ

(

wH

wF

)1−σ

+(1−λ )ϕ

))

1

1−σ
=

=
m ·σ

σ −1
·

(

L

f ·σ

) 1
1−σ µLa

(1−µ)L
·





(

λ +(1−λ )

(

wH

wF

)−1
)σ−1

·

(

λ +(1−λ )ϕ

(

wH

wF

)σ−1
)





1

1−σ

Recall that σ > 1, therefore PH increases if and only if

(

λ +(1−λ )

(

wH

wF

)−1
)σ−1

·

(

λ +(1−λ )ϕ

(

wH

wF

)σ−1
)

decreases. Equilibrium relative wage wH

wF
is increasing function with respect to θ (see Lemma 2), thus is is sufficient

to prove that the following function

G(y) =
(

λ +(1−λ )ϕyσ−1
)

(

λ +
1−λ

y

)σ−1

.
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decreases with respect to y. Note that

∂G

∂y
= (1−λ )ϕ(σ −1)yσ−2

(

λ +
1−λ

y

)σ−1

− (σ −1)
(

λ +(1−λ )ϕyσ−1
)

(

λ +
1−λ

y

)σ−2
1−λ

y2
=

= (1−λ )(σ −1)

(

λ +
1−λ

y

)σ−2(

ϕyσ−2

(

λ +
1−λ

y

)

−
(λ +(1−λ )ϕyσ−1)

y2

)

=

=
λ (1−λ )(σ −1)

y2

(

λ +
1−λ

y

)σ−2

(ϕyσ −1)< 0

if yσ < ϕ−1. On the other hand, for equilibrium relative wage yσ =
(

wH

wF

)σ
∈ (ϕ,ϕ−1) (see Lemma 1-ii). Finally

∂

∂θ
G(y(θ)) =

∂G

∂y
·

∂y

∂θ
> 0,

i.e. price index always increases with respect to θ . Analogously price index in foreign region

PF =
m ·σ

σ −1
·

(

L

f ·σ

) 1
1−σ
(

λϕw1−σ
H +(1−λ )w1−σ

F

)
1

1−σ

increases with respect to its share of agricultural labor 1−θ and therefore decreases with respect to θ . Increasing

of relative price index
PH

PF

is a trivial consequence of these two statements.

Comparative statics with respect to λ

Lemma 6. Relative price index
PH

PF

decreases with respect to industrial labor share λ .

Proof. Consider relative price index
PH

PF

(λ ) as a function of industrial labor share λ . Note that

PH

PF

(λ ) =

(

λw1−σ
H (λ )+(1−λ )ϕwF

1−σ (λ )

λϕw1−σ
H (λ )+(1−λ )wF

1−σ (λ )

)

1
1−σ

which is equivalent to

(

PH

PF

(λ )

)σ−1

=
λ ·ϕ +(1−λ )

(

wH

wF
(λ )
)σ−1

λ +(1−λ )ϕ
(

wH

wF
(λ )
)σ−1

.

Moreover, x =

(

wH

wF

(λ )

)σ

is a root of equation

(1−λ )(A−ϕ · x)−λx1−ρ(B−ϕx−1) = 0

where A = 1− ((1−θ)+µθ)(1−ϕ2), B = 1− ((1−µ)θ +µ)(1−ϕ2).

Consider the special case A ·B = ϕ2, then the root x =
A

ϕ
=

ϕ

B
and

(

PH

PF

(λ )

)σ−1

=

λ ·ϕ +(1−λ )

(

A

ϕ

) σ−1
σ

λ +(1−λ )ϕ

(

A

ϕ

) σ−1
σ

=

(

A

ϕ

) σ−1
σ

+λ ·

(

ϕ −

(

A

ϕ

) σ−1
σ

)

ϕ

(

A

ϕ

) σ−1
σ

+λ ·

(

1−ϕ

(

A

ϕ

) σ−1
σ

) .
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Note that

∂

∂λ













(

A

ϕ

) σ−1
σ

+λ ·

(

ϕ −

(

A

ϕ

) σ−1
σ

)

ϕ

(

A

ϕ

) σ−1
σ

+λ ·

(

1−ϕ

(

A

ϕ

) σ−1
σ

)













=−

(

A

ϕ

) σ−1
σ
(

1−ϕ2
)

(

ϕ

(

A

ϕ

) σ−1
σ

+λ ·

(

1−ϕ

(

A

ϕ

) σ−1
σ

))2
< 0,

i.e. in this case
(

PH

PF
(λ )
)σ−1

strictly decreases as well as PH

PF
(λ ).

Let A ·B 6= ϕ2 then from equation (8) we obtain

λ

(1−λ )
=

A−ϕx

x1−ρ(B−ϕx−1)
=

xρ(A−ϕx)

Bx−ϕ
,

thus
(

PH

PF

(λ )

)σ−1

=

λ
(1−λ ) ·ϕ + xρ

λ
(1−λ ) +ϕ · xρ

=

xρ (A−ϕx)
Bx−ϕ ·ϕ + xρ

xρ (A−ϕx)
Bx−ϕ +ϕ · xρ

=
(A−1) ·ϕ +(B−ϕ2)x

(A−ϕ2)+(B−1) ·ϕ · x
= S(x).

Note that relative price index
PH

PF

(λ ) increases if and only if S(x(λ )) increases, moreover,
∂S

∂λ
=

∂S

∂x
·

∂x

∂λ
. The

first multiplicand

∂S

∂x
=

∂

∂x

(

(A−1) ·ϕ +(B−ϕ2)x

(A−ϕ2)+(B−1) ·ϕ · x

)

=
(1−ϕ2) · (AB−ϕ2)

((A−ϕ2)+(B−1) ·ϕ · x)2
,

therefore
∂S

∂x
> 0 if and only if A ·B > ϕ2. On the other hand, it is easily to see that

A ·B > ϕ2 ⇐⇒ ϕ <

√

√

√

√

1− (2θ −1)2

(

1+µ
1−µ

)2

− (2θ −1)2

and ∂x
∂λ < 0 (see proof of Lemma 3). The last implication follows from Lemma 4. Analogously,

A ·B < ϕ2 ⇐⇒ ϕ >

√

√

√

√

1− (2θ −1)2

(

1+µ
1−µ

)2

− (2θ −1)2

and ∂x
∂λ > 0. It implies that in case A ·B 6= ϕ2 derivative

∂S

∂λ
(x(λ )) =

∂S

∂x
·

∂x

∂λ
< 0, i.e. relative price index

PH

PF

(λ )

decreases for all admissible values of parameters.

Lemma 7. Price indicies PH and PF are equal if and only if the following identity holds

1− ((1−θ)+µθ)(1−ϕ)

1− ((1−µ)θ +µ)(1−ϕ)
=

(

λ

1−λ

) σ
σ−1

.

Inequality PH > PF holds if and only if

θ >
(1−µ)+µϕ

(1−µ)(1−ϕ)
−

(1−µ)+(1+µ)ϕ

(1−µ)(1−ϕ)

(

1+
(

λ
1−λ

) σ
σ−1

)
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or, equivalently,

λ

1−λ
<

(

1− ((1−θ)+µθ)(1−ϕ)

1− ((1−µ)θ +µ)(1−ϕ)

)ρ

.

Proof. Note that equation

PH

PF

=

(

λw1−σ
H +(1−λ )ϕwF

1−σ

λϕw1−σ
H +(1−λ )wF

1−σ

)

1
1−σ

= 1

is equivalent to
(

wH

wF

)σ−1

= λ
1−λ . Substituting this term twice into equation (11)

(1−λ )

[

1− ((1−θ)+µθ)(1−ϕ2)−ϕ ·
(

wH

wF

)σ−1

·
(

wH

wF

)

]

−

−λ

[

(

1− ((1−µ)θ +µ)
(

1−ϕ2
))

wH

wF
− ϕ
(

wH
wF

)σ−1

]

= 0,

leaving term wH

wF
untouched, we obtain the following identity wH

wF
= 1−λ

λ · 1−((1−θ)+µθ)(1−ϕ)
1−((1−µ)θ+µ)(1−ϕ) . From the other hand,

identity
(

wH

wF

)σ−1

= λ
1−λ implies wH

wF
=
(

λ
1−λ

) 1
σ−1

, therefore

1− ((1−θ)+µθ)(1−ϕ)

1− ((1−µ)θ +µ)(1−ϕ)
=

(

λ

1−λ

) σ
σ−1

is an necessary and sufficient condition of price indices equalization. Consider this identity as as an equation with

respect to θ . Then its solution is

θ ∗ =
(1−µ)+µϕ

(1−µ)(1−ϕ)
−

(1−µ)+(1+µ)ϕ

(1−µ)(1−ϕ)

(

1+
(

λ
1−λ

) σ
σ−1

) .

Relative price index
PH

PF

increases with respect to θ therefore θ > θ ∗ ⇐⇒ PH

PF
> 1 ⇐⇒ PH > PF and θ < θ ∗ ⇐⇒

PH < PF . Analogously, equalization condition may be considered as equation with respect to λ withe the unique

root λ ∗ satisfying

λ ∗

1−λ ∗
=

(

1− ((1−θ)+µθ)(1−ϕ)

1− ((1−µ)θ +µ)(1−ϕ)

)ρ

.

Note that function
λ

1−λ
increases with respect to λ , while relative price index

PH

PF

decreases, therefore

PH

PF

(λ )> 1 ⇐⇒ λ < λ ∗ ⇐⇒
λ

1−λ
<

λ ∗

1−λ ∗

.

A.4 Comparative Statics of Industrial Welfares

Now consider the welfare (or real wage) of industrial workers in both regions

VH =
wH

P
µ
H

=

(

σ −1

m ·σ

)µ

·

(

L

f ·σ

)
µ

σ−1

·
wH

(

λw1−σ
H +(1−λ )ϕwF

1−σ
)

µ
1−σ

.
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Analogously,

VF =
wF

P
µ
F

=

(

σ −1

m ·σ

)µ

·

(

L

f ·σ

)
µ

σ−1

·
wF

(

λϕw1−σ
H +(1−λ )wF

1−σ
)

µ
1−σ

.

Comparative statics with respect to θ

Lemma 8. Welfare VH(θ) increases with respect to θ , while VF(θ) decreases, thus relative welfare
VH

VF

(θ) in-

creases with respect to θ .

Proof. Representing welfare formula as follows

VH(θ) =

(

σ −1

m ·σ

)µ

·

(

L

f ·σ

)
µ

σ−1

·w
1−µ
H (θ)

(

λ +(1−λ )ϕ ·

(

wH

wF

(θ)

)σ−1
)

µ
σ−1

and recalling that both relative wage wH

wF
(θ) and nominal wage wH(θ) increase with respect to θ (see Lemma 2

and Lemma 4), we obtain that welfare VH(θ) increases with θ . Analogously, the foreign welfare

VF(θ) =

(

σ −1

m ·σ

)µ

·

(

L

f ·σ

)
µ

σ−1

·w
1−µ
F (θ)

(

λϕ +(1−λ ) ·

(

wH

wF

(θ)

)1−σ
)

µ
σ−1

.

decreases with respect to θ . Therefore, relative welfare
VH

VF

(θ) increases with respect to θ .

Comparative statics with respect to λ

The relative welfare considered as function of industrial labor share is equal to

VH

VF

(λ ) =
wH

wF

(λ ) ·

(

λϕw1−σ
H (λ )+(1−λ )wF

1−σ (λ )
)

µ
1−σ

(

λw1−σ
A (λ )+(1−λ )ϕwB

1−σ (λ )
)

µ
1−σ

=

=







(

wH

wF

(λ )

) σ−1
µ

·

λ
(1−λ ) +

(

wH

wF
(λ )
)σ−1

ϕ

λ
(1−λ )ϕ +

(

wH

wF
(λ )
)σ−1







µ
σ−1

.

Recall that x =
(

wH

wF

)σ
is a root of equation

(1−λ )(A−ϕ · x)−λx1−ρ(B−ϕx−1) = 0,

where A = 1− ((1−θ)+µθ)(1−ϕ2), B = 1− ((1−µ)θ +µ)(1−ϕ2), 0 < A < 1, 0 < B < 1.

Suppose that A ·B 6= ϕ2 or ϕ 6=

√

√

√

√

√

1− (2θ −1)2

(

1+µ

1−µ

)2

− (2θ −1)2

, then

λ

1−λ
=

A−ϕx

x1−ρ(B−ϕx−1)
=

xρ(A−ϕx)

Bx−ϕ

and
VH

VF

(λ ,ϕ) = (R(x(λ ),ϕ))
µ

σ−1 , (14)
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where x(λ ) is implicit function defined by equation mentioned above and

R(x,ϕ) = x
ρ
µ

xρ (A−ϕx)
Bx−ϕ +ϕxρ

xρ (A−ϕx)
Bx−ϕ ϕ + xρ

= x
ρ
µ

(1−µ)θ − ((1−µ)θ +µ)ϕx

(1−µ)(1−θ)x− ((1−θ)+µθ)ϕ
.

Note that
µ

σ−1
> 0 thus sign

∂

∂λ

VH

VF

(λ ) = sign
∂

∂λ
R(x(λ ),ϕ) = sign

∂R

∂x
sign

∂x

∂λ
. Let a = (1−µ)(1−θ),

b = ((1−θ)+µθ)ϕ , c = (1−µ)θ , d = ((1−µ)θ +µ)ϕ , then

∂R

∂x
= x

ρ
µ −1 ·

ρ
µ · (ax−b)(c−dx)+(bd −ac)x

(ax−b)2
=

x
ρ
µ −1

(ax−b)2
·Q(x)

where Q(x) = ρ
µ · (ax−b)(c−dx)+(bd −ac)x and sign

∂R

∂x
= sign Q(x).

Lemma 9. Let ϕ >

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
then relative welfare function

VH

VF

(λ ,ϕ) increases with respect to industrial

labor share λ .

Proof. Note that

VH

VF

=

wH

wF
(λ )

(

PH

PF
(λ )
)µ

By Lemma 4 for all ϕ >

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
relative wage wH

wF
(λ ) is strictly positive non-decreasing function with

respect to λ , while relative price index strictly decreases with respect to λ due to Lemma 6. Therefore relative

welfare
VH

VF

increases with respect to λ .

Define the following threshold value that will be called “break-point”

ϕB(ρ,µ,θ) =
ρ −µ

ρ +µ

√

√

√

√

1− (2θ −1)2

(

1+µ
1−µ

)2

− (2θ −1)2

Lemma 10. i) Let Black-Hole condition ρ 6 µ holds, then relative welfare
VH

VF

strictly increases with respect to

industrial labor share λ .

ii) Let No-Black-Hole condition ρ > µ holds and ϕ > ϕB(ρ,µ,θ), then relative welfare
VH

VF

strictly increases

with respect to industrial labor share λ .

iii) Let No-Black-Hole condition ρ > µ holds and ϕ 6 ϕB(ρ,µ,θ), then there are real values

0 < λ1(θ) 6 λ2(θ) coinciding only for ϕ = ϕB(θ) such that relative welfare
VH

VF

(λ ) increases for all λ < λ1(θ)

and λ > λ2(θ) while for all λ1(θ)< λ < λ2(θ) it decreases.

Proof. i) The case ϕ >

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
was considered in Lemma 9. Now assume that

ϕ <

√

√

√

√

1− (2θ −1)2

(

1+µ
1−µ

)2

− (2θ −1)2

⇐⇒ bd −ac < 0 ⇐⇒
∂x

∂λ
< 0.
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Then

Q(x) =
ρ

µ
· (ax−b)(c−dx)+(bd −ac)x 6 (ax−b)(c−dx)+(bd −ac)x =−(adx2 −2bdx+bc)< 0,

due to Black-Hole condition
ρ

µ
6 1 and the fact that discriminant D = 4b2d2 −4(ad)(bc) = 4bd(bd −ac)< 0. It

implies that
∂R

∂x
< 0,

∂x

∂λ
< 0, thus

∂

∂λ

VH

VF

> 0.

ii) Let

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
> ϕ >

ρ −µ

ρ +µ

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
, then bd − ac < 0 and

∂x

∂λ
< 0. Moreover quadratic

form

Q(x) =
ρ

µ
· (ax−b)(c−dx)+(bd −ac)x =−

ρ

µ
adx2 +(

ρ −µ

µ
ac+

ρ +µ

µ
bd)x−

ρ

µ
bc

is strictly negative if and only if its discriminant

D =
abcd

µ2

(

(ρ −µ)2 ac

bd
+(ρ +µ)2 bd

ac
−2(ρ2 +µ2)

)

< 0.

It is light to see that this takes place if and only if 1 <
ac

bd
<

(

ρ +µ

ρ −µ

)2

. The first inequality is valid due to

assumption bd −ac < 0 and the second one

ac

bd
=

(1−µ)2θ(1−θ)

ϕ2(µ +(1−µ)2θ(1−θ))
=

1− (2θ −1)2

ϕ2

(

(

1+µ
1−µ

)2

− (2θ −1)2

) <

(

ρ +µ

ρ −µ

)2

is equivalent to ϕ >
ρ −µ

ρ +µ

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
. Also for all

ρ −µ

ρ +µ

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
< ϕ <

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
the

following inequalities hold:
∂R

∂x
< 0 and

∂x

∂λ
< 0 therefore R(x(λ )) strictly increases with respect to λ as well as

VH

VF

(λ ).

iii) Consider the following quadratic equation

Q(x) =−
ρ

µ
adx2 +(

ρ −µ

µ
ac+

ρ +µ

µ
bd)x−

ρ

µ
bc = 0.

Previous considerations imply that under assumptions ρ > µ and ϕ 6
ρ −µ

ρ +µ

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
its discriminant is

non-negative and there exists two real roots ξ2 6 ξ1 of equation Q(x) = 0 coinciding each other only for

ϕ =
ρ −µ

ρ +µ

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
. Note that Q(x) > 0 for all ξ2 < x < ξ1 while for x < ξ2 or x > ξ1 imply Q(x) < 0.

Moreover by definition signs of Q(x)and derivative
∂R

∂x
coincide.

In considered case ϕ 6
ρ −µ

ρ +µ

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
<

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
which implies

∂x

∂λ
< 0 (see Lemma 3).

Therefore inverse function λ (x) (that may be explicitly obtained from equation (8)) decreases with respect to

x. Define λ1 = λ (ξ1), λ2 = λ (ξ2), then λ1 6 λ2 and they are equal iff ϕ =
ρ −µ

ρ +µ

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
. Moreover,

derivative ∂R
∂λ (x(λ ),ϕ) =

∂R
∂x

∂x
∂λ < 0 if and only if λ1 < λ < λ2 and it is positive for λ < λ1 or λ > λ2. Note that
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in the case ϕ =
ρ −µ

ρ +µ

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
function R(x(λ ),ϕ) is strictly increasing because λ1 = λ2 and interval of

decreasing is empty.

It is not guaranteed that both λ1,λ2 ∈ (0,1) and numerical simulations show that, for example, case 1< λ1 < λ2

is quite possible. Note that, in λ = 0 relative welfare always increases (see Lemma 11 below) which implies either

0 < λ1 or λ2 < 0. However, the second case is impossible because in No-Black-Hole case for sufficiently small

ϕ > 0 we have
VH

VF

(0)> 1 and
VH

VF

(1)< 1 (see Lemma 13 in Appendix B), i.e. relative welfare should somewhere

decrease between λ = 0 and λ = 1.

Let’s define one more threshold value that could be called “turn point”

ϕT (θ) =

√

max

{

0,
(1−θ)(θρ − (1+θρ)µ)

θ((1−θ)ρ +(1+θρ)µ)

}

.

Note that for all µ >
θρ

1+θρ
identity ϕT (θ)≡ 0 holds.

Lemma 11. For all 0<ϕ < 1 relative welfare
VH

VF

(λ ,ϕ) increases in λ = 0, i.e.
∂

∂λ

VH

VF

(0,ϕ)> 0. Relative welfare

VH

VF

(λ ,ϕ) increases in λ = 1, i.e.
∂

∂λ

VH

VF

(1,ϕ) > 0 if and only if ϕ > ϕT (θ), in particular,
∂

∂λ

VH

VF

(1,ϕ) > 0 for

all ϕ in the case of µ >
θρ

1+θρ
.

Proof. Due to Lemma 9 it is sufficient to consider the case ϕ <

√

1−(2θ−1)2

(

1+µ
1−µ

)2

−(2θ−1)2
only. In this case

∂x

∂λ
< 0 and

VH

VF

(λ ,ϕ) increases if and only if
∂R

∂x
< 0. In turn, x = x(λ ) is a root of equation

(1−λ )(A−ϕ · x)−λx1−ρ(B−ϕx−1) = 0,

where A = 1− ((1−θ)+ µθ)(1−ϕ2), B = 1− ((1− µ)θ + µ)(1−ϕ2). Consider two special cases λ = 0 and

λ = 1, then the corresponding roots are x =
A

ϕ
and x =

ϕ

B
. Recall that

∂R

∂x
< 0 if and only if Q(x)< 0 where

Q(x) =
ρ

µ
· (ax−b)(c−dx)+(bd −ac)x,

a = (1− µ)(1− θ), b = ((1− θ) + µθ)ϕ , c = (1− µ)θ , d = ((1− µ)θ + µ)ϕ . Due to assumption θ > 1/2

we consider an asymmetry measure α = 2θ − 1 ∈ [0,1). Substituting
1+α

2
instead of θ we obtain, after some

transformations, that

Q

(

A

ϕ

)

=
(1−µ)2(1−α2)−

(

(1+µ)2 − (1−µ)2α2
)

ϕ2

16µϕ
f (α,ρ,µ,ϕ),

where

f (α,ρ,µ,ϕ)=−[(1−µ)(1+α)(2+(1−α)ρ)µ−(1−α)ρ)+((1−α)+(1+α)µ)((1+α)ρ+(2+(1−α)ρ)µϕ2)].

Note that the first multiplicand is positive due to assumption ϕ2 <
1−α2

(

1+µ

1−µ

)2

−α2

=
(1−α2)(1−µ)2

(1+µ)2 − (1−µ)2α2
.
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Moreover,

f (α,ρ,µ,ϕ)<−(1+α)[(1−µ)((2+(1−α)ρ)µ − (1−α)ρ)+((1−α)+(1+α)µ)ρ]

because ϕ2 > 0, thus Q

(

A

ϕ

)

< 0 if and only if

g(α,ρ,µ) = (1−µ)((2+(1−α)ρ)µ − (1−α)ρ)+((1−α)+(1+α)µ)ρ > 0.

Routine calculations show that under assumptions 0 6 α 6 1, 0 6 µ 6 1, 0 6 ρ 6 1 minimum value of polinomial

function g(α,ρ,µ) is equal to 0 and it is reached on the set of points (α,ρ,0) for arbitrary 0 6 α 6 1,

0 6 ρ 6 1. Therefore for all admissible values (e.g. µ > 0) the term g(α,ρ,µ) is strictly positive. The case λ = 0

is considered.

Now let λ = 1 and study the sign of Q
(ϕ

B

)

. After some transformations we get

Q
(ϕ

B

)

=
(1−µ)ϕ

[

(1−µ)2(1−α2)−
(

(1+µ)2 − (1−µ)2α2
)

ϕ2
]

4µ((1−α)(1−µ)+(1+µ +(1−µ)α)ϕ2)2
h(α,ρ,µ,ϕ),

where

h(α,ρ,µ,ϕ) = (1−α)((1+α)(1−µ)ρ −2µ)− (1+α)((1−α)ρ +(2+(1+α)ρ)µ)ϕ2.

Note that the first multiplicand is strictly positive due to assumption

ϕ2 <
1−α2

(

1+µ

1−µ

)2

−α2

=
(1−α2)(1−µ)2

(1+µ)2 − (1−µ)2α2
.

On the other hand, h(α,ρ,µ,ϕ) may positive or negative depending on parameter’s relations. More exactly,

h(α,ρ,µ,ϕ)< 0 if and only if

ϕ2 >
(1−α)((1+α)ρ − (2+(1+α)ρ)µ)

(1+α)((1−α)ρ +(2+(1+α)ρ)µ)
.

Reverse substitution α = 2θ −1 transforms this inequality into

ϕ2 >
(1−θ)(θρ − (1+θρ)µ)

θ((1−θ)ρ +(1+θρ)µ)
.

Note that under condition µ >
θρ

1+θρ
numerator is negative and this inequality holds for all ϕ .
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B Appendix B

B.1 Stability of agglomerated equilibria

Direction of labor migration flow depends on welfare levels in both regions. For example, VH(λ ) > VF(λ ) for

some 0 < λ < 1 causes in-flow, i.e. increasing of λ and vice versa. As for limit cases λ = 0 or λ = 1 we interpret

condition VH(0)<VF(0) (or
VH

VF

(0)< 1) as stable state, because λ = 0 cannot be decreased further, while opposite

inequality characterizes unstable situation. Analogously, λ = 1 is stable if VH(1) > VF(1) ⇐⇒
VH

VF

(1) > 1.

Note that the same result may be obtained by linearizing of ad-hoc equation λ̇ = λ · (1−λ )(VA(λ )−VB(λ )) in

neighborhoods of steady states λ = 0 and λ = 1.

Recall that by convention the home agricultural labor share satisfies condition θ > 1/2. Consider the following

value α = 2θ −1 ∈ [0,1) that may be interpreted as measure of asymmetry in agricultural labor.

Lemma 12. In the case of µ > ρ (Black-Hole condition) both agglomerated states λ = 0 and λ = 1 are stable

regardless of other parameter values.

Proof. Note that

VH

VF

(λ ) =
wH

wF

(λ ) ·

(

λϕw1−σ
H (λ )+(1−λ )wF

1−σ (λ )
)

µ
1−σ

(

λw1−σ
H (λ )+(1−λ )ϕwF

1−σ (λ )
)

µ
1−σ

=

=









(

wH

wF

(λ )

) σ−1
µ

·

(

λ
(

wH

wF
(λ )
)1−σ

+(1−λ )ϕ

)

(

λϕ
(

wH

wF
(λ )
)1−σ

+(1−λ )

)









µ
σ−1

where wH

wF
(λ ) is a root equation

(1−λ )
(

(1−µ)θ +((1−θ)+µθ)ϕ2
)

−
(

1− ((1−µ)θ +µ)
(

1−ϕ2
))

λ · wH

wF
−

−(1−λ )ϕ ·
(

wH

wF

)σ
+λϕ ·

(

wH

wF

)1−σ
= 0.

This equation allows explicit solution in the cases λ = 0 or λ = 1.

For λ = 0 we obtain that

VH

VF

(0) = lim
λ→0

VH

VF

(λ ) =
(

θ(1−µ)ϕ
µ−ρ

ρ +ϕ
µ+ρ

ρ (1−θ(1−µ))
)

1
σ
,

where ρ = σ−1
σ . Analogously,

VH

VF

(1) =
(

(1−θ)(1−µ)ϕ
µ−ρ

ρ +ϕ
µ+ρ

ρ (1− (1−θ)(1−µ))
)− 1

σ
.

Consider the following functions

G(µ,ρ,ϕ,θ) = θ(1−µ)ϕ
µ−ρ

ρ +(1−θ(1−µ))ϕ
µ+ρ

ρ ,

H(µ,ρ,ϕ,θ) = (1−θ)(1−µ)ϕ
µ−ρ

ρ +(1− (1−θ)(1−µ))ϕ
µ+ρ

ρ

then agglomerated equilibrium λ = 0 is stable if and only if G(µ,ρ,ϕ,θ) < 1 and λ = 1 is stable if and only if

H(µ,ρ,ϕ,θ)< 1. Under Black-Hole condition µ > ρ both function G and H increase with respect to ϕ . Moreover

G(µ,ρ,1,θ) = H(µ,ρ,1,θ) = 1 thus G(µ,ρ,ϕ,θ)< 1 and H(µ,ρ,ϕ,θ)< 1 for all 0 < ϕ < 1.
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Lemma 13. Suppose that No-Black-Hole condition µ < ρ holds.

1. Let µ >
ρ

1+2ρ
then for all α ∈ [0,1) there exist ϕS

0 (α), ϕS
1 (α) ∈ (0,1) such that ϕS

0 (0) = ϕS
1 (0), for all

α ∈ (0,1) are differentiable and
∂ϕS

0

∂α
> 0,

∂ϕS
1

∂α
< 0, in particular, 0 < ϕS

1 (α) < ϕS
0 (α) < 1. For any given α

agglomerated equilibrium λ = 0 is stable if and only if ϕ > ϕS
0 (α) and λ = 1 is stable if and only if ϕ > ϕS

0 (α).

2. Let µ <
ρ

1+2ρ
and α∗ =

(1+ρ)µ

(1−µ)ρ
. Then for all α ∈ [0,α∗) there exist ϕS

0 (α), ϕS
1 (α) ∈ (0,1) such that

ϕS
0 (0) = ϕS

1 (0), for all α ∈ (0,1) are differentiable and
∂ϕS

0

∂α
> 0,

∂ϕS
1

∂α
< 0, in particular, 0 < ϕS

1 (α)< ϕS
0 (α)< 1.

For all α ∈ [α∗,1) values ϕS
0 (α) ≡ 1 while ϕS

1 (α) < 1. In any case, for any given α agglomerated equilibrium

λ = 0 is stable if and only if ϕ > ϕS
0 (α) and λ = 1 is stable if and only if ϕ > ϕS

0 (α).

Proof. Note that under No-Black-Hole condition ρ > µ we have lim
ϕ→0

G(µ,ρ,ϕ,θ) = +∞, G(µ,ρ,1,θ) = 1. The

first derivative
∂G

∂ϕ
= θ(1−µ)

µ −ρ

ρ
ϕ

µ−2ρ
ρ +

µ +ρ

ρ
(1−θ(1−µ))ϕ

µ
ρ

is equal to zero in the single point ϕ∗ =
√

θ(1−µ)(ρ−µ)
(1−θ(1−µ))(ρ+µ) . Moreover, the second derivative

∂ 2G

∂ϕ2
= θ(1−µ)

µ −ρ

ρ
·

µ −2ρ

ρ
ϕ

µ−3ρ
ρ +

µ +ρ

ρ
·

µ

ρ
(1−θ(1−µ))ϕ

µ−ρ
ρ > 0,

i.e. G is a convex function with respect to ϕ and ϕ∗ is a minimum point for any fixed θ , µ and ρ > µ . The same

holds for function H(ϕ) except that the minimum point value is equal to ϕ∗∗ =
√

(1−θ)(1−µ)(ρ−µ)
(1−(1−θ)(1−µ))(ρ+µ) .

Recall that we assume θ > 1/2 and consider α = 2θ −1 as a measure of agricultural population’ asymmetry.

Substituting θ =
1+α

2
we obtain the following terms of minimum points ϕ∗, ϕ∗∗ as functions of asymmetry

measure α

ϕ∗(α) =

√

(1+α)(1−µ)(ρ −µ)

((1+µ)− (1−µ)α)(ρ +µ)
, ϕ∗∗ =

√

(1−α)(1−µ)(ρ −µ)

((1+µ)+(1−µ)α)(ρ +µ)

Note that for θ = 1/2 (or α = 0) functions G(µ,ρ,ϕ,1/2) = H(µ,ρ,ϕ,1/2) and consequently ϕ∗∗(0) = ϕ∗(0)

while in case of non-zero asymmetry α = 2θ −1 > 0 (or θ > 1/2) the strict inequality ϕ∗∗(α)< ϕ∗(α) holds.

Note that ϕ∗(α) increases with respect to α thus for all α < 1 following inequalities hold

ϕ∗(α) =

√

(1+α)(1−µ)(ρ −µ)

((1+µ)− (1−µ)α)(ρ +µ)
< ϕ∗(0) =

√

(1−µ)(ρ −µ)

µ(ρ +µ)
.

In the case
(1−µ)(ρ−µ)

µ(ρ+µ) 6 1 or equivalently µ >
ρ

1+2ρ
value ϕ∗(α) < 1 is a unique minimum point of function

G(µ,ρ,ϕ,
1+α

2
) therefore G(µ,ρ,ϕ∗(α),

1+α

2
)< G(µ,ρ,1,

1+α

2
)≡ 1 while lim

ϕ→0
G(ϕ) =+∞ and function G

strictly decreases with respect to ϕ in interval (0,ϕ∗(α)) consequently there exist the unique point

ϕS
0 (α) ∈ (0,ϕ∗(α)) such that G(µ,ρ,ϕS

0 (α),
1+α

2
) = 1. Moreover for all 0 < ϕ < ϕS

0 (α) inequality

G(µ,ρ,ϕ,
1+α

2
) > 1 holds while ϕS

0 (α) < ϕ < 1 implies G(µ,ρ,ϕ,
1+α

2
) < 1. Analogously, there exists the

unique value ϕS
1 (α) ∈ (0,ϕ∗∗(α)) such that H(ϕ)< 1 if and only if ϕS

1 (α)< ϕ < 1.

Now consider sustain points ϕS
0 , ϕS

1 as functions of asymmetry measure α = 2θ −1 ∈ [0,1). Note that

ϕS
0 (0) = ϕS

1 (0) because functions G(µ,ρ,ϕ,
1+α

2
) and H(µ,ρ,ϕ,

1+α

2
) coincide for α = 0. For all α ∈ (0,1)
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and fixed ρ > µ sustain point function ϕS
0 (α) is an implicit function defined by equation

G(µ,ρ,ϕ,
1+α

2
) =

α +1

2
(1−µ)ϕ

µ−ρ
ρ +(1−

α +1

2
(1−µ))ϕ

µ+ρ
ρ = 1.

Note that ϕS
0 (α) belongs to interval (0,ϕ∗(α)) where G decreases with respect to ϕ i.e.

∂G

∂ϕ
(ϕS

0 (α))< 0. On the

other hand,
∂G

∂α
=

(1−µ)

2

(

ϕ
µ−ρ

ρ −ϕ
ρ+µ

ρ

)

=
(1−µ)

2

(

(ϕ
µ−ρ

ρ −1)+(1−ϕ
ρ+µ

ρ )
)

> 0

because ϕ ∈ (0,1),
µ −ρ

ρ
< 0 ,

µ +ρ

ρ
> 0. It implies that an implicit function derivative

∂ϕS
0

∂α
=−

∂G

∂α

/∂G

∂ϕ
> 0,

i.e. ϕS
0 increases with respect to α . Analogous considerations show that ϕS

1 decreases with respect to α .

Now consider the case µ <
ρ

1+2ρ
which is equivalent to

(1+ρ)µ

(1−µ)ρ
< 1. Note that inequality

α = 2θ −1 < α∗ =
(1+ρ)µ

(1−µ)ρ
is equivalent to

(1+α)(1−µ)(ρ −µ)

((1+µ)− (1−µ)α)(ρ +µ)
< 1 that implies

ϕ∗(α) =

√

(1+α)(1−µ)(ρ −µ)

((1+µ)− (1−µ)α)(ρ +µ)
< 1.

Thus for α < α∗ all of the previous considerations still hold. In case of α > α∗ an inequality

ϕ∗(α) =

√

(1+α)(1−µ)(ρ −µ)

((1+µ)− (1−µ)α)(ρ +µ)
> 1 holds. It means that function G(ϕ) > 1 for all ϕ ∈ (0,1) which

implies instability of agglomerated equilibrium λ = 0 for all ϕ ∈ (0,1) , i.e. ϕS
0 (α) = 1. For ϕS

1 (α) nothing

changes because

ϕ∗∗(α) =

√

(1−α)(1−µ)(ρ −µ)

((1+µ)+(1−µ)α)(ρ +µ)
6 ϕ∗∗(0) =

√

(1−µ)(ρ −µ)

(1+µ)(ρ +µ)
< 1

for all α > 0.

B.2 Number and Stability of Interior Long Run Equilibria

Note that industrial labor share 0 < λ 0 < 1 defines the interior long run equilibrium if and only if VH(λ
0) =VF(λ

0)

or
VH

VF

(λ 0) = 1.

Consider the special case A ·B = ϕ2.Then an equation (11) has a unique positive root x̄ = A
ϕ while λ ∈ [0,1]

may be arbitrary (see proof of Lemma 6 in Appendix A). It is easy to see that identity A ·B = ϕ2 is equivalent

to ϕ =

√

√

√

√

√

1−α2

(

1+µ

1−µ

)2

−α2

, where α = 2θ − 1 a measure of asymmetry in agricultural labor. On the other hand,

equilibrium relative wage
wH

wF

= (x̄)
1
σ . Substituting it into interior long run equilibrium equation

VA

VB

(λ ) =







(

wH

wF

(λ )

) σ−1
µ

·
λ +(1−λ )

(

wH

wF
(λ )
)σ−1

ϕ

λϕ +(1−λ )
(

wH

wF
(λ )
)σ−1







µ
σ−1

= 1

we obtain the unique solution

λ 0 =
x̄ρ −ϕ · x̄

ρ(1+µ)
µ

x̄ρ −ϕ · x̄
ρ(1+µ)

µ + x̄
ρ
µ −ϕ

.
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Note that condition λ 0 ∈ (0,1) is not guaranteed.

Consider the general case A ·B 6= ϕ2 then the interior long run equilibrium equation

VA

VB

(λ ) =







(

wH

wF

(λ )

) σ−1
µ

·
λ +(1−λ )

(

wH

wF
(λ )
)σ−1

ϕ

λϕ +(1−λ )
(

wH

wF
(λ )
)σ−1







µ
σ−1

= 1

is equivalent to R(x(λ )) = 1 where

R(x) = x
ρ
µ

(1−µ)θ − ((1−µ)θ +µ)ϕx

(1−µ)(1−θ)x− ((1−θ)+µθ)ϕ

(see (14)) and for each root x0 of this equation the corresponding value of λ 0 may be found as a single root of

equation

(1−λ )(A−ϕ · x0)−λ
(

x0
)1−ρ

(B−ϕ
(

x0
)−1

) = 0,

where A = 1−((1−θ)+µθ)(1−ϕ2), B = 1−((1−µ)θ +µ)(1−ϕ2). Note that for this value the case λ 6∈ (0,1)

is quite possible, thus not each root of equation R(x) = 1 corresponds to some interior long run equilibrium.

Lemma 14. Let Black-Hole condition µ > ρ holds. Then there exists the unique interior long run equilibrium

and it is unstable.

Proof. Under Black-Hole condition ρ 6 µ relative welfare VA

VB
(λ ) strictly increases with respect to λ (see Lemma

11-i in Appendix A) and
VH

VF

(0)< 1,
VH

VF

(1)> 1 due to Lemma 12 from Appendix A. It implies that there exists the

unique value λ 0 ∈ (0,1) such that VH(λ
0) =VF(λ

0). Moreover,
∂

∂λ

VH

VF

(λ 0)> 0 (as well as for all λ ∈ [0,1]).

No-Black-Hole Case: Stability Patterns for Interior Long Run Equilibria

Black-Hole case was completely described in Lemma 14, thus we further consider Non-Black-Hole case only.

Note that Lemma 10 from Appendix A hold for arbitrary values λ ∈ (0,+∞) of roots of equation R(x(λ )) = 1.

This root defines long run equilibria only if 0 < λ < 1. Anyway, this lemma implies that there exists threshold

value of trade freeness

ϕB(ρ,µ,α) =
ρ −µ

ρ +µ

√

√

√

√

1−α2

(

1+µ
1−µ

)2

−α2

∈ (0,1)

dividing admissible values set (ϕ,λ ) ∈ (0,1)× [0,1] into two parts. In rectangle [ϕB,1)× [0,1] relative wel-

fare
VH

VF

(ϕ,λ ) is continuous function strictly increasing with respect to λ which implies existence of at most

one long run equilibrium for each ϕ ∈ [ϕB,1). On the other hand, in rectangle (0,ϕB)× [0,1] relative wel-

fare
VH

VF

(ϕ,λ ) is continuous function with dynamics depending on fact if interval (0,1) covers both values of

λ1 < λ2, only one value or none. Anyways, for all admissible values of λ < λ1 relative welfare
VH

VF

(ϕ,λ ) in-

creases, for λ1 < λ < λ2 it decreases and for λ > λ2 increases again. Note that in symmetric case θ = 1
2

(or α = 0)

ϕB(ρ,µ,0) =
ρ −µ

ρ +µ

√

1
(

1+µ
1−µ

)2 =
(ρ −µ)(1−µ)

(ρ +µ)(1+µ)
∈ (0,1) and coincides with symmetric break-point that ends the

“helve of tomahawk” (see Figure 1, left-hand plot).

Lemma 15. Break-point ϕB(α) decreases with respect to α and ϕB(1) = 0. There exists the unique value

α̃ ∈ (0,1) such that ϕB(α̃) = ϕS
0 (α̃), ϕB(α) > ϕS

0 (α) for α ∈ [0, α̃) and ϕB(α) < ϕS
0 (α) for α ∈ (α̃,1]. For all

α ∈ [0,1] inequality ϕB(α)> ϕS
1 (α) holds.
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Proof. It is obvious that ϕB(ρ,µ,α) decreases with respect to α and ϕB(ρ,µ,1) = 0. Moreover sustain point

ϕS
0 (α) increases with respect to α (see Lemma 9 in Appendix A) and in symmetric case we obtain

ϕB(ρ,µ,0)> ϕS
0 (0) = ϕS

1 (0) (see, for example, Robert-Nicaud, 2005, Proposition 5). Thus there exists the unique

value α̃ such that ϕB(ρ,µ, α̃) = ϕS
0 (α̃) and ϕB(ρ,µ,α) > ϕS

0 (α) for α ∈ [0, α̃), ϕB(ρ,µ,α) < ϕS
0 (α) for α ∈

(α̃,1].

Note that both ϕB(ρ,µ,α) and ϕS
0 (α) converge to 0 for α → 1. By definition of sustain point ϕ > ϕS

1 (α) if

and only if relative welfare in agglomerated state λ = 1 satisfies inequality

VH

VF

=

(

(1−α)

2
(1−µ)ϕ

µ−ρ
ρ +(1−

(1−α)

2
(1−µ))ϕ

µ+ρ
ρ

)− 1
σ

> 1

(see proof of Lemma 13). To accomplish lemma’s proof we need to verify that inequality

h(α) =
(1−α)

2
(1−µ)







ρ −µ

ρ +µ

√

√

√

√

1−α2

(

1+µ
1−µ

)2

−α2







µ−ρ
ρ

+(1−
(1−α)

2
(1−µ))







ρ −µ

ρ +µ

√

√

√

√

1−α2

(

1+µ
1−µ

)2

−α2







µ+ρ
ρ

< 1

holds for all α ∈ [0,1) and 0 < µ < ρ < 1. Note that α = 0 satisfies this inequality because ϕB(ρ,µ,0)> ϕS
1 (0).

We shall prove that in fact h(α) is decreasing function with respect to α , therefore inequality h(α) < 1 remains

true for all α > 0.

After differentiation and simplifying we obtain that

∂h

∂α
=

2µ

(

ρ −µ

ρ +µ

√

1−α2
(

1+µ
1−µ

)2

−α2

)
µ+ρ

ρ

· f (α,ρ,µ)

(1−α)(1+α)2(1−µ)((1−α)+µ +αµ)(ρ −µ)2ρ

where

f (α,ρ,µ)=−(1−µ)3ρ2α4+2(1−µ)2µρ2α3+(1−µ)ρ(3µ2+(2−ρ)ρ)−2µ3(1+ρ)2α−(1+µ)ρ(1+ρ)(ρ+µ2)

and sign of derivative
∂h

∂α
obviously coincides with sign of f (α,ρ,µ). Routine, yet very tedious, analysis shows

that polynomial function f (α,ρ,µ) reaches its maximum on set S = {(α,ρ,µ)|0 6 α 6 1, 0 6 µ 6 ρ 6 1} in the

points (α,0,0) for arbitrary α ∈ [0,1], this maximum value is equal to 0, thus for all admissible values 0 < µ < ρ

function f (α,ρ,µ)< 0.

Consider various stability patterns of agglomerated long run equilibria described in Lemma 13 and match them

the corresponding patterns of interior ones. Recall one more definition of “turn point” ϕT represented as a function

of α = 2θ −1

ϕT (α) =

√

max

{

0,
(1−α)((1+α)ρ − (2+(1+α)ρ)µ)

(1+α)((1−α)ρ +(2+(1+α)ρ)µ)

}

.

Lemma 16. 1. Let ϕ < ϕS
1 (α), then both agglomerated equilibria λ = 0 and λ = 1 are unstable, and there

exists the unique stable interior equilibrium.

2. Let ϕ > ϕB(ρ,µ,α) and ϕ < ϕS
0 (α), then agglomerated equilibrium λ = 0 is unstable, λ = 1 is stable,

and there are no interior equilibria.

3. Let ϕ > ϕB(ρ,µ,α) and ϕ > ϕS
0 (α), then both agglomerated equilibria λ = 0 and λ = 1 are stable,

and there exists the unique unstable interior equilibrium.
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4. Let ϕS
1 (α)< ϕ < ϕB(ρ,µ,α), ϕT (α)> ϕS

1 (α) and ϕ < ϕS
0 (α), then agglomerated equilibrium λ = 0

is unstable, λ = 1 is stable and there are no interior equilibria.

5. Let ϕS
1 (α) < ϕ < ϕB(ρ,µ,α), ϕT (α) > ϕS

1 (α) and ϕ > ϕS
0 (α), then both agglomerated equilibria

λ = 0 and λ = 1 are stable, and there exists the unique unstable interior equilibrium.

6. Let ϕT (α) < ϕS
1 (α) < ϕ < ϕB(ρ,µ,α) and ϕ < ϕS

0 (α), then agglomerated equilibrium λ = 0 is

unstable, λ = 1 is stable, and

6a. if λ2 ∈ (0,1) and
VH

VF

(λ2)< 1 then there are two interior equilibria, stable and unstable,

6b. if λ2 ∈ (0,1) and
VH

VF

(λ2) = 1 (non-generic case) then there is unique unstable interior equilibrium,

6c. in all other cases there are no interior equilibria.

7. Let ϕT (α)< ϕS
1 (α)< ϕ < ϕB(ρ,µ,α) and ϕ > ϕS

0 (α), then both agglomerated equilibria λ = 0 and

λ = 1 are stable, and

7a. if λ1,λ2 ∈ (0,1) ,
VH

VF

(λ1)> 1 and
VH

VF

(λ2)< 1 then there exists three interior equilibria, one stable and

two unstable

7b. if λ1,λ2 ∈ (0,1) ,
VH

VF

(λ1) = 1 or
VH

VF

(λ2) = 1 (non-generic cases) there are two interior equilibria,

7c. in all other cases there is unique unstable interior equilibrium.

Proof. For any fixed ϕ,µ,θ ,ρ relative welfare
VH

VF

(λ ) may be considered as one-variable function and its plot is

continuous (even smooth) curve. Interior equilibria are the intersection points of this curve with unit level line
VH

VF

= 1.

Case 1. Condition ϕ < ϕS
1 (α) 6 ϕS

0 (α) implies that
VH

VF

(0) > 1 (i.e. λ = 0 is unstable),
VH

VF

(1) < 1 (i.e.

λ = 1 is unstable), thus plot of
VH

VF

(λ ) intersects at least once and intersection point λ 0 should belong to decreasing

interval (λ1,λ2) (see Lemma 12 in Appendix A), i.e. λ 0 is stable interior equilibrium. On the other hand, for all

λ > λ2 function
VH

VF

(λ ) strictly increases, therefore there are no other intersection points
VH

VF

(λ ) = 1.

Case 2. Let ϕ > ϕB(ρ,µ,α) and ϕ < ϕS
0 (α), it implies that

VH

VF

(0)> 1 (i.e. λ = 0 is unstable) and
VH

VF

(λ )

strictly increases for all λ . Thus
VH

VF

(1)> 1 (i.e. λ = 1 is stable) and there are no intersections
VH

VF

(λ ) = 1.

Case 3. Let ϕ > ϕB(ρ,µ,α) and ϕ > ϕS
0 (α), it implies that

VH

VF

(0) < 1 (i.e. λ = 0 is stable) and
VH

VF

(λ )

strictly increases for all λ . Thus there is unique intersection
VH

VF

(λ 0) = 1 and
VH

VF

(1) > 1 (i.e. λ = 1 is stable).

Moreover,
∂

∂λ

VH

VF

(λ 0)> 0, i.e. λ 0 is unstable.

Case 4. Let ϕS
1 (α) < ϕ < ϕB(ρ,µ,α), ϕT (α) > ϕS

1 (α) and ϕ < ϕS
0 (α), it implies that

VH

VF

(0) > 1 (i.e.

λ = 0 is unstable),
VH

VF

(1)> 1 (i.e. λ = 1 is stable)
∂

∂λ

VH

VF

(0)> 0 and
∂

∂λ

VH

VF

(1)< 0. The last inequality implies

that λ = 1 belongs to decreasing interval (λ1,λ2) while
VH

VF

(1) > 1. It means that there are no intersection points

VH

VF

(λ ) = 1 for λ ∈ (0,1).

Case 5. Let ϕS
1 (α) < ϕ < ϕB(ρ,µ,α), ϕT (α) > ϕS

1 (α) and ϕ > ϕS
0 (α), it implies that

VH

VF

(0) < 1 (i.e.

λ = 0 is stable),
VH

VF

(1) > 1 (i.e. λ = 1 is stable)
∂

∂λ

VH

VF

(0) > 0 and
∂

∂λ

VH

VF

(1) < 0. The last inequality implies

that λ = 1 belongs to decreasing interval (λ1,λ2) while
VH

VF

(1) > 1. It means that there are no intersection points
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VH

VF

(λ ) = 1 for λ ∈ (λ1,1) and there is unique intersection point
VH

VF

(λ 0) = 1 for λ 0 ∈ (0,λ1) which is unstable

interior equilibrium.

The rest cases are more diversified. Numerical simulations show that all listed sub-cases are possible.

Case 6. Let ϕT (α) < ϕS
1 (α) < ϕ < ϕB(ρ,µ,α) and ϕ < ϕS

0 (α), it implies that
VH

VF

(0) > 1 (i.e. λ = 0 is

unstable),
VH

VF

(1) > 1 (i.e. λ = 1 is stable)
∂

∂λ

VH

VF

(0) > 0 and
∂

∂λ

VH

VF

(1) > 0. Sub-case 6a provides exactly two

intersection points λ 0 ∈ (λ1,λ2) – stable, and λ 00 ∈ (λ2,1) – unstable interior equilibrium. In sub-case 6b these

two intersection points run into tangent point λ2 which is unstable (more exactly, half-stable) interior equilibrium.

In all other sub-cases (λ2 6∈ (0,1) or
VH

VF

(λ2)> 1) there are no intersection points.

Case 7. Let ϕT (α) < ϕS
1 (α) < ϕ < ϕB(ρ,µ,α) and ϕ > ϕS

0 (α), it implies that
VH

VF

(0) < 1 (i.e. λ = 0 is

stable),
VH

VF

(1)> 1 (i.e. λ = 1 is stable)
∂

∂λ

VH

VF

(0)> 0 and
∂

∂λ

VH

VF

(1)> 0. Conditions
VH

VF

(0)< 1 and
VH

VF

(1)> 1

provide at least one intersection point for all sub-cases. The rest depends on particular sub-case.

B.3 Existence of U-turn point

Sub-cases 6a and 7a of Lemma 16 define the most sophisticated structure of long run equilibria. Using “geo-

graphic” terminology, introduced in subsection 4.2, one can say that in this cases for any given ϕ0 there exist

two interior long run equilibria reside “on northern coastline”. Sub-case 7a provides an additional third interior

equilibrium “on southern coastline” that is always unstable. As for two ’northern’ equilibria, the lesser value λ 0 is

stable, i.e.
∂

∂λ

VH

VF

(λ 0)< 0, and the greater one λ 00 is unstable, i.e.
∂

∂λ

VH

VF

(λ 00)> 0 (see proof of Case 6, Lemma

16). On the other hand, both points (ϕ0,λ 0) and (ϕ0,λ 00) reside on the same unit equiscalar line
VH

VF

= 1 and gra-

dients ∇0 = grad
VH

VF

(ϕ0,λ 0), ∇00 = grad
VH

VF

(ϕ0,λ 00) of relative welfare function
VH

VF

(ϕ,λ ) applied to these points

directed ’south-eastwards’ and ’north-eastwards’ respectively. Note that this “hook” is possible only if gradient in

sustain point ϕS
1 also directed ’north-eastwards’, i.e.

∂

∂λ

VH

VF

(ϕS
1 ,1)> 0 or, by definition, ϕT < ϕS

1 (see Figure 16).

Figure 16: U-turn point vs regular case
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U-turn point ϕU is a supremum value for all ϕ with two ’northern’ equilibria 0 < λ 0 < λ 00 < 1. It may

be characterized as multiple ’northern’ interior equilibrium (λ 0 = λ 00 = λU) with “horizontal” gradient, i.e.
∂

∂λ

VH

VF

(ϕU ,λU) = 0.

Combining all previous conditions we obtain the following system of equations, that allow to calculate U-turn

point ϕU for given admissible values of parameters θ ,µ,ρ .

1. Short run equilibrium equation of three variables

F1(x,ϕ,λ ) = (1−λ )(A−ϕ · x)−λx1−ρ(B−ϕx−1) = 0,

where x =
(

wH

wF

)σ
, A = 1− ((1−θ)+µθ)(1−ϕ2), B = 1− ((1−µ)θ +µ)(1−ϕ2).

2. Interior long run equilibrium condition VH(ϕ,λ ) =VF(ϕ,λ ), or equivalently,

F2(x,ϕ,λ ) = x
ρ
µ ·

λ +(1−λ )xρϕ

λϕ +(1−λ )xρ
−1 = 0.

3. U-turn condition
∂

∂λ

VH

VF

(ϕU ,λU) = 0 that is equivalent (see proof of Lemma 10 in Appendix A) to the following

equation

F3(x,ϕ,λ ) =
ρ

µ
· (ax−b)(c−dx)+(bd −ac)x = 0,

where a = (1−µ)(1−θ), b = ((1−θ)+µθ)ϕ , c = (1−µ)θ , d = ((1−µ)θ +µ)ϕ .

Solution (x,U ϕU ,λU) of this system (if exists) defines U-turn point in case of its admissibility, i.e. 0 < ϕU < 1,

0 < λU < 1. There is no need, however, to solve this system for classification purposes only, because existence of

U-turn point may be revealed by analytical verification of more simple inequality ϕT < ϕS
1 .
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