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Abstract 

The purpose of this paper is to explain both the need and the procedures of unit-root testing 

to a wider audience. The topic of stationarity testing in general and unit root testing in particular is 

one that covers a vast amount of research. We have been discussing the problem in four different 

settings. First we investigate the nature of the problem that motivated the study of unit-root 

processes. Second we present a short list of several traditional as well as more recent univariate and 

panel data tests. Third we give a brief overview of the economic theories, in which the testing of the 

underlying research hypothesis can be expressed in a form of a unit-root / stationary test like the 

issues of purchasing power parity, economic bubbles, industry dynamic, economic convergence and 

unemployment hysteresis can be formulated in a form equivalent to the testing of a unit root within 

a particular series. The last, fourth aspect is dedicated to an empirical application of testing for the 

non-stationarity in industrial production of CEE-4 countries using a simulation based unit-root 

testing methodology. 
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Introduction 

Since the first simulation published by Granger – Newbold (1974), the importance of 

statistical properties of time series received increasing importance in academic and empirical 

research. Their simulation suggested that when all (dependent and independent) time series are non-

stationary, the classical regression results may be misleading. By a simple and partial reproduction 

of their simulation and by the review of empirical application of stationarity/unit-root tests we 

underlined the importance of studying the statistical properties of time series, particularly the 

stationarity of time series for empirical research. Our approach is not rigorous, but rather heuristic 

and more intuitive. The target audience of this paper are practitioners and students who engage in 

empirical research of time series models. 

The first section of the paper reviews basic concepts of the stationarity of time series. The 

second section addresses testing for (non)stationarity, while the third section reviews some of the 

most debated applications of these tests in economics. The fourth section presents an empirical 

application, where we verify whether economic activity measures (Industrial Production Index, IPP 

henceforth) for Central and Eastern European Countries (Poland, Czech Republic, Hungary and 

Slovakia, CEE-4) may be regarded as stationary. 

1. Non-stationarity and Spurious Regression 

Before we review the standard univariate and multivariate stationarity/unit-root tests, we 

briefly define the stationarity property of time series and explain the intuition behind the spurious 

regression results. We say that a stochastic process {yt}
T

t=1 is strictly stationary if it has a 

probability distribution, which is time invariant. More formally, if t is a time index and Z be a set of 

integers, then for any vector (t1,t2,….th) of  Z  and any integer k: 

),...,,(),...,,(
2121 ktktktttt hh

yyyFyyyF   holds, where F(.) is the joint distribution function of the h 

values. This property implies that yt are identically distributed. The weak (covariance) stationarity 

property focuses only on the first two moments of the stochastic process. The mean and variance of 

the stochastic process are finite and time invariant and the covariance between two observations 

depends only on the distance between those observations and not on the actual time t itself. That is: 

(1) E[yt] = μ, (2) D[yt] = ζ2, (3) cov(yt, yt+k) = cov(yt+h, yt+h+k) = γk. The simple intuition behind both 

of the definitions is that the observations in one time series should not be from different 

populations. However, for most empirical applications we need another property, that yt and yt+k are 

almost independent as k increases. We say that if for a weakly stationary process corr(yt,yt+k) → 0 

for k → ∞ holds, than the process is asymptotically uncorrelated. This property is sometimes 

referred to as weak dependence of the time series. This property is important for the use of Central 



3 
 

Limit Theorem and the Law of Large Numbers, thus for the Ordinary Least Squares estimators as 

well. 

 Most of the economic time series are non-stationary. As was shown in numerous studies 

(starting with Granger – Newbold, 1974) and also in Table 1 of this paper, the use of non-stationary 

variables in regressions might lead to spurious results. Analytically, the spurious regression was 

first explained by Phillips (1986). However, more heuristic explanations follow from simulation 

studies. First, let us consider the following Data Generating Process (DGP):  

A) j
t

jj
t ty            (1) 

Where yt
j is the j-the time series, t is the time index, t = 1,2,…,T, βj is the slope of the 

deterministic trend and εt
j the error term (white noise). Clearly, if β1

j ≠ 0, the mean of the series yt
j 

will not be constant, as the values of yt
j deterministically depend on the time trend, thus the series is 

non-stationary. Such trend is called a deterministic trend. It’s a form of variation of the series, 

which is predictable. 

If we randomly generate two such series, j = 1,2, where εt
j
 ~ N(0,1), βj ~ U(- 0.15,+ 0.15), T 

= 100, and regress y1 on y2, chances are, that we will find a significant relationship, with high R2. 

What we would actually find is the relationship between the two trends of the series (see Table 1). 

Moreover, with the increasing effect of the linear trend component βjt on the values of the series yt, 

the signalling of such a relationship increases as well. This is clearly a spurious regression. 

However, after removing the trend component in both of the series, we could obtain meaningful 

results. 

Observed economic processes are rarely that simple. A more complicated form of trend is 

the so called stochastic trend. The random component of the series at time t, εt
j, can directly affect 

all the remaining values of the series yt+1, yt+2,…,yT. This introduces some form of an 

autocorrelation in the series. If the size of this effect is not decaying, we regard such series to have a 

stochastic trend. For illustration purposes, one form of the stochastic trend may be written in the 

following DGP: 

B) 
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ty          (2) 

In this type of DGP, the error terms are cumulating, thus the value of εt
j will affect every 

subsequent observation of yt. Such series usually resembles to series with changing trends. As 

before, if we randomly generate two series, j = 1, 2, where εt
j
 ~ N(0,1), δj ~ U( - 0.99, + 0.99), T = 

100 and regress y1 on y2, we might find spurious results, (see Table 1). As the effects of the error 

terms are cumulative, it is possible for the two series to share a temporary co-movement within the 

sample. This would translate into a spurious relationship that could be detected by general 
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estimation procedures. Working with such DGPs is much more complicated than with the DGP in 

Eq. (1), and often we are left only to consider the transformation of the series (i.e. differencing). A 

special case, when both series have common stochastic trend is called cointegration1. 

 

 
Figure 1 Sample time series plots of DGPs 

Note: The figure contains four time series plots with following DGPs: A) yt = α+ βt + εt, B) yt = Σi=1
t εi + δΣ i=1

t-1 εi, C) 
yt =  βt + Σi=1

t εi + δΣ i=1
t-1 εi, D) yt =  εt. Where T = 150, εt ~ N(0,1), α = 0, β = 0.05 and δ = 0.6. 

 

A combination of the previous two DGPs is possible as well. Such series incorporates a 

deterministic trend and a stochastic trend. The model might look as follows: 

C) 
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As before, regressing two randomly generated series on each other will most probably yield 

a spurious regression.  

Frequently, the notion of spurious regression and stationarity is explained by the so called 

order of integration of a time series. Following Davidson and MacKinnon (2003), it can be defined 

in the following manner. Consider a process for which as the number of observation grows, the 

mean, variance and covariances tend to fixed values and covariances depend only on the lag 

between the observations. Thus, it can be seen that such a process is similar to the weakly 

                                                           
1 The probably simplest type of non-stationary process is the random walk, rt = rt-1 + εt, εt ~ N(0,1). Since Pearson’s 

1905 article in the Nature, it is also known as a drunkard’s walk. Murray (1994) explains the co-integration of two 
series on the behaviour of a drunkard and her dog. Separately, both might seem to follow a simple random walk (their 
walks are still non-stationary), however they are not. Both continuously asses the gap between them and if they are 
too far away from each other, they close the gap. Their walks are said to be co-integrated. They both added an error-
correction mechanism to their steps. 

-10

-5

0

5

10

15

20

25

0 25 50 75 100 125 150

y
(t

)

time

A)

-10

-5

0

5

10

15

20

25

0 25 50 75 100 125 150

y
(t

)

time

B)

-10

-5

0

5

10

15

20

25

0 25 50 75 100 125 150

y
(t

)

time

C)

-10

-5

0

5

10

15

20

25

0 25 50 75 100 125 150

y
(t

)

time

D)



5 
 

(covariance) stationary process defined above, except it fulfils all the requirements only 

asymptotically. A process obeying these requirements is called integrated of order 0, or I(0). After 

establishing the definition for this process, it is easy to define all other orders of integration. 

Specifically, a series is called I(d) if it has to be differenced d times to fulfil the requirements for a 

I(0) process. From this definition follows, that a series generated as a linear trend with IID Gaussian 

error terms would be I(1) (as the first differences would produce a series oscillating around a 

constant). A similar series following a quadratic trend would be I(2). For the purposes of our 

discussion it is important to note, that the problem of spurious regression is usually associated with 

series that are integrated of order higher than zero. It can be seen that our DGP (A) clearly fulfils 

this definition. 

The Table 1 summarizes the results from a Monte Carlo simulation, where the fourth DGP 

(D) process is a yt
j = εt

j, i.e. white noise (which is stationary). There are other possible components 

of a DGP which we have not considered, like structural breaks in the mean, trend or volatility of the 

series, or cyclical components. These could be incorporated into the simulation as well. 

Table 1 Type I error with different DGPs 

DGPs A) B) C) D) 

A) Linear Trend 58.7% (0.483) 
   

B) Stochastic Trend 80.5% (0.303) 83.3% (0.240) 
  

C) Linear and 

Stochastic Trend 
69.3% (0.401) 81.9% (0.294) 83.3% (0.370) 

 
D) White noise 5.23% (0.010) 4.74% (0.010) 4.83% (0.010) 4.96% (0.010) 

Note: For each combination of DGPs we ran 10000 iterations of the simple linear regression model yt
1 = a0

j + bjyt
2, 

where the proportion of significant (at 0.05) bj is the percentage value in the table. The value in the brackets 
corresponds to the average coefficient of determination. The series yt

1 and yt
2 was generated for each iteration 

according to the corresponding DGP (A, B, C, D) with sample size of T = 100. In A and B the βt
j were generated from a 

uniform distribution with parameters -0.15 and 0.15. In B and C the δt
j were generated from a uniform distribution with 

parameters -0.99 and 0.99. As the error terms in each iteration are uncorrelated, one would expect the rejection rate of 
the H0: b

j = 0 at 5% significance level to be roughly 5%, for the AA, AB, AC, BB, BC, CC this is clearly not the case. 
 

 For example when we regressed model A series on a model B series, the rejection rate of the 

true bj = 0 was 80.5%. The highest number was for model C against model C (83.3%). As we 

choose 5% critical values for the rejection of the bj = 0 hypothesis, we would expect that the type I 

error would be around 5%. Such results were found only when at least one of the series was a 

stationary white noise. As was shown by Banerjee et al. (1993) and consequently analytically by 

Marmol (1996), even if the series in the regression are not integrated of the same order (e.g. the 

dependent variable is stationary and the independent variable non-stationary) the results are 

spurious. This problem is not that serious if one of the series is stationary. Nevertheless, it is 

advised that we should only use variables with the same order of integration. 
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2. Stationarity and Unit-Root tests 

 A simple rule of thumb2 that a regression generates spurious results was suggested by 

Granger – Newbold (1974); i.e. low Durbin – Watson statistics and a high R2. One approach to 

prevent such results is to test, whether the time series in the regression analysis are I(1), and if so, 

compute the differences or other data transformations before entering the variables into the 

regression (Granger, 2003). An alternative option is (Granger, 2003, p. 558): “to add lagged 

dependent and independent variables, until the errors appear to be white noise” (a Durbin – 

Watson or Ljung – Box tests are usually carried out on the error terms)3. 

 Reviewing 155 papers from 17 journals4 (2000 – 2010, as of 17.09.2010) it seems, that the 

most popular strategy for testing of the stationarity property of a single time series involves using 

the Augmented Dickey Fuller or Dickey Fuller test (ADF and DF respectively), with 64.9% of 

cases where the test was used. In 9% the DF-GLS test, in 12.3% the Phillips – Perron test, in 3.3% 

Ng – Perron tests, in 7.1% KPSS test was used. Other tests including those which take into account 

structural breaks were used only rarely. More interestingly, in 66.5% cases the researchers used 

only one test and in 27.7% cases two tests. When the overall results were inconclusive, the 

researchers usually continued the analysis with a warning note, or simply assumed one of the 

alternatives. 

 The ADF test runs the following regression: 

j
t

j
it

k

i

j
i

j
t

jjj
t yyty   


 

1

1       (4) 

 with an interest in the test of a null hypothesis of γj = 0. Clearly, if we cannot reject the null, 

than the series contains a unit root and the series is regarded as non-stationary. The number of 

lagged values ∆yt-i is usually selected to eliminate the autocorrelation in the error term, so that the 

test statistics has desired statistical properties (e.g. Ng – Perron, 1995). However, the methodology 

for correctly choosing the number of lags is very extensive on its own. Choosing too many lags 

                                                           
2  For a simple simulation of this rule see Baumöhl – Lyócsa (2009). 
3  This procedure is not without limitations. Some tests (F-test of the joint null hypothesis that the coefficients under 

consideration are statistically not different from zero) may not be carried out using standard methodology (Hamilton, 
1994, p. 562). 

4 American Economic Review, Economic Policy, Journal of Economic Growth, Journal of Economic Perspectives, 
Journal of Finance, Journal of Financial Economics, Journal of International Economics, Journal of Marketing 
Research, Journal of Monetary Economics, Journal of Money Credit and Banking, Journal of Political Economy, 
Journal of Public Economics, Management Science, Review of Economic Dynamics, Review of Economics and 
Statistics, Review of Financial Studies, World Bank Economic Review. The sample may be severely biased, although 
it is the belief of authors that it is representative enough to give a glance at the popularity of specific tests. One form 
of bias may be that in some journals one topic (e.g. PPP hypothesis) was dominant, thus researches tended to use 
similar tests to make connections to previous research. It was not our goal to make general inferences on the 
popularity of tests, rather only some insights.  
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usually lowers the power of the test. Various selection criteria were analysed and constructed; see 

Ng – Perron (1995) and Ng – Perron (2001). 

 For empirical researcher there are plenty of tests at hand, which may be considered as 

alternatives for the analysis. This may naturally cause some confusion. For example, if the series 

has one or more structural breaks, one might erroneously conclude (using standard tests), that the 

series is non-stationary, while it is stationary with structural breaks5 (Perron, 1989). Further on, 

stationarity/unit-root tests have notoriously low power for near unit root processes. Unfortunately, 

this is often the case of economic time series. If possible, one can increase the power using panel 

tests, but this has its problems as well6. The null and the corresponding alternative hypothesis are 

often not that informative. For example, one might test whether all series in the panel are non-

stationary against an alternative, that at least one series is stationary. As Breuer et al. (2002, p. 527) 

put it:”Rejection of the null hypothesis only tells the researcher that at least one panel member is 

stationary, with no information about how many series, or which ones, are stationary”.  

Some of the available univariate tests are reviewed in the Table 2 and the panel 

stationarity/unit-root tests are in the Table 3. Our list is far from exhaustive. Our goal was to 

provide the reader with a list of some of the widely used tests with some relatively new tests as 

well. 

The choice of the right tests depends on the set up of the problem which is of interest to the 

researcher. It is difficult to follow the latest advances or to understand the nuisances between 

employing various tests. The following remarks should be considered as potential pitfalls for 

practitioners, who start time series analysis. One of the “conjectures” why most of the papers use 

similar tests is the uncertainty of practitioners over which test to use. The rule “newer the better” 

may in most cases be true. However in this case there are at least two issues. One is often left with 

the task to write his own codes and scripts for these tests, as these are rarely available. Even if they 

are, there is no common language (thus software) where tests are being written (R, GAUSS, 

STATA, MATLAB, RATS just to mention a few). This naturally imposes other problems. It is 

difficult to verify the correctness of such codes, in terms of the calculation of the test statistics and 

finite sample critical values (if necessary). Even if one chooses to run the “best” test(s), one is often 

left with many options which need to be considered like: the model specification, the method for 

choosing the number of truncation lags, the critical values to mention the traditional suspects. As 

the testing for (non)stationarity is often the first task in the analysis of time series data and not the 

ultimate goal of the analysis, it seems by itself to be a demanding process. 

                                                           
5  A structural break in the series is usually represented with a shift in the level of the series, or a change in the rate of 

the trend. 
6 Contemporaneous cross-sectional dependence, possible presence of structural break(s) in the individual series, 

heterogeneous structure of autocorrelation if we were to just name a few.  
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Table 2 List of univariate unit root and stationarity tests 

Unit Root tests with H0: Series has a Unit-Root against H1: Series is stationary 

Dickey – Fuller test (1979); DF test 
Dickey – Fuller test (1979, 1981); ADF test 
Phillips – Perron (1988) - PP test 
Elliott et al. (1996); DF-GLS test 
Point optimal test; P test 
Ng – Perron (2001); MZd

α test 
Ng – Perron (2001); MZd

t test 
Ng – Perron (2001); MSBd test 
Ng – Perron (2001); MPd

T test 

Stationarity tests with H0: Series is stationary against H1: Series has a Unit-Root 

Kwiatkowski et al. (1992); KPSS test 
Leybourne – McCabe (1994) 

Unit root tests which allow for structural break both in H0 and H1 

Perron (1989)a 
Perron – Vogelsang (1992)b  
Clemente et al. (1998)c 
Lee – Strazicich (2003)d 
Lee – Strazicich (2004)e 
Kim – Perron (2009)f  

Unit root tests which allow for structural break in H1 
Zivot – Andrews (1992)g; ZA test 
Lumsdaine – Papell (1997)h; LP test 
Perron (1997)i 

Stationarity tests with structural breaks 

Lee – Strazicich (2001)j  
Carrion-i-Silvestre – Sansó (2007)k 

Special unit-root tests 

Kapetanios et al. (2003)l; KSS test 
Elliott – Jansson (2003)m; EJ test 

Note: a - Break dates are exogenously specified. The H0: Series has a Unit-Root with a structural break, H1: Series is 
stationary with a structural break. Three structural break models were considered: A) change in the level of the series, 
B) change in the slope of the (linear) trend and C) simultaneous change in the level and slope of the trend. In recent 
works on unit root test models A and C are considered. Further on, if the structural break occurs suddenly, one assumes 
an additive outlier model (AO model), if it occurs gradually, than an innovation outlier model (IO model). The two 
models specify the transition mechanism of the structural breaks. A simple example of a model with two AO is: yt = α + 
δ1DUt,1 + δ2DUt,2 + εt, where DUt is a dummy variable with DUt = 1 for t > Tb + 1, and 0 elsewhere, where Tb is a date 
of break. This model assumes two shifts in the level of the series. An example of an IO model in this context could be: yt 
= α + ω1DTt,1 + ω2DTt,2 + δ1DUt,1 + δ2DUt,2 + ρyt-1 + εt, where DTt is a dummy variable with DTt = 1 if t = Tb + 1 and 
0 elsewhere and |ρ| < 1. b - Break dates are endogenously determined. Other tests with structural breaks allow some 
form of endogenous structural break detection. c - Clemente et al. (1998) considered non-trending series only (an 
additive and innovation outlier models) H0: Series has a Unit-Root with two structural breaks, H1: Series is stationary 
with two structural breaks. d - Lee – Strazicich (2001, 2003, 2004) consider model A and C. In Lee – Strazicich (2003, 
2004) their methodology implies that by rejecting the null hypothesis, the series is stationary with breaks, regardless of 

whether structural break(s) occur under the null of Unit-Root. Thus we included both their tests to this category. H0: 

Series has a Unit-Root, H1: Series is stationary with two structural breaks. e - H0: Series has a Unit-Root, H1: Series is 

stationary with one structural break. f – H0: Series has a Unit-Root with a structural break, H1: Series is stationary 

with a structural break. g – H0: Series has a Unit-Root, H1: Series is stationary with one structural break. h – H0: 

Series has a Unit-Root, H1: Series is stationary with two structural breaks in trend.  i – H0: Series has a Unit-Root, H1: 

Series is stationary with a structural break. j - H0: Series is stationary with a structural break, H1: Series has a Unit-

Root. k - H0: Series is stationary with two structural breaks, H1: Series has a Unit-Root. l – H0: Series has a Unit-Root, 
H1: Series is globally stationary ESTAR (Exponential Smooth Transition Autoregressive) process. m - Test uses 

stationary covariates, for an example see Amara – Papell (2006), H0: Series has a Unit-Root, H1: Series is stationary.  
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Table 3 List of panel unit root and stationarity tests 

Unit Root tests with H0: all time series have a unit root, H1: all time series are 

stationary 

Levin – Lin (1993); LL test 
Levin – Lin – Chu (2002); LLC test 
Harris – Tzavalis (1999) 
Breitung – Das (2005)*a  

Unit Root tests with H0: all time series have a unit root, H1: some time series are 

stationary 
Im – Pesaran – Shin (2003); IPS test 
Maddala – Wu (1999) 
Chang (2002)* 
Pesaran (2007)* 
Phillips – Su (2003)* 
Moon – Perron (2004)* 
Choi (2006)* 
Pesaran – Smith – Yamagata (2009)* 
Taylor - Sarno (1998) *b; MADF test 

Stationarity tests with H0: All time series are stationary, H1: Some series have a 

unit root 
Choi (2001) 
Hadri (2000) 
Harris – Leybourne – McCabe (2004)* 
Demetrescu – Hassler – Tarcolea (2010)* 

Unit root tests which allow for structural breaks 

Lee – Im – Tieslau (2005)*c; LIT test 
Hadri – Rao (2008)*d 
Im – Lee – Tieslau (2010)*e; ILT test 

Special unit-root panel tests 
Taylor – Sarno (1998)f*; JLR test 
Breuer – McNown – Wallace (2001)* g 

Note: Test with * denote those, which take into account cross-sectional dependence in the panel, the so called 2nd 

generation tests. a – They make use of SUR estimation framework. b – H0: all time series in the system have a unit root, 

H1: some time series in the system are stationary. c – The test allows for level shifts in the series. H0: all time series 
have unit-roots, H1: some time series in the panel are stationary with structural breaks. d – The test allows for level and 
trend shifts in the series. H0: all time series are stationary with a structural break (allow for various models of 
structural breaks), H1: some time series in the panel have unit root. e – The test allows for level and trend shifts in the 

series. H0: all time series have a unit-root, H1: some time series in the panel are stationary with structural breaks. 
Similarly as LIT test, this test is invariant to the presence of structural breaks under the null hypothesis, thus rejecting 
the null will imply a stationary process with structural breaks and not unit-root process with structural breaks. f – 
Citing Taylor – Sarno (1998): “Engle and Granger (1987) demonstrate that, among a system of N I(1) series, there can 
be at most N-1 cointegrating vectors. Thus, if we reject the hypothesis that there are less than N cointegrating vectors 
among N series, this is equivalent to rejecting the hypothesis of non-stationarity of all of the series”. This implies, that 
if there are N cointegrating vectors, than all series in the panel are stationary. They used this test to complement the 
MADF test. g – In their test it is possible to discriminate which particular time series in the panel is stationary and 
which not. 
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3. Stationarity and a Review of its Empirical Applications 

 To give a glimpse of the empirical application of these tests, we made a short review of 

selected economic theories taking advantage of stationarity/unit-root tests, that is far from being 

comprehensive. In addition to these theories, stationarity/unit-root tests are used in most 

applications of time series econometrics. These were not covered as we have focused only on 

immediate applications of these tests. 

If a time series is stationary, than any shocks that occur are transitory, their individual 

effects decay and eventually disappear as t → ∞. If a series is non-stationary, than shocks have 

permanent effect on the series. This property can be easily visualized (see Figure 2). 

 
Figure 2 The non/stationary effect of shock on the time series 

Note: Each of the series is an autoregressive process: yt = ρyt-1 + γDt + εt, εt ~ N(0,1), Dt = 1 for t = 100, Dt = 0 for t ≠ 
100, and γ = 10 denotes the size of the shock. With ρ = 1 being the non-stationary alternative, where the shock has a 
permanent effect. With the decreasing value of |ρ| the transition of the shock into the following observations decreases. 
 

Macroeconomic data 

One of the early empirical applications of stationarity/unit-root tests was concerned with 

macroeconomic time series, particularly the output of the economy. Until the seminal work of 

Nelson – Plosser (1982) many economists believed, that the output of the economy fluctuates 

around a deterministic trend. However, they were unable to reject the presence of a unit root in the 

GNP data (US). This finding had far reaching implications. For example, if the output is stationary, 

than: (1) the uncertainty about future values is by definition limited, (2)the fluctuations of output 

correspond to the business cycle, (3) the fluctuations may be controlled by monetary and fiscal 

means, (4) any effect of interventions will eventually “vanish”. However, if the output is non-

stationary than: (1) the uncertainty grows without bound, (2) the effect of monetary and fiscal 

policies on the output is limited while the real shocks are much more important, (3) the output is not 

a mean-reverting process, thus any intervention (causing real shocks to the economy) which needs 
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to be corrected needs another intervention (another shock)7. The debate on the nature of the output 

is still open. For the results supporting the unit root in US output see Murray – Nelson (2002, 2004), 

Darné (2009) or Kejriwal – Lopez (2009) for nineteen OECD countries or Lyócsa et al. (2011) for 

Slovakia, Czech Republic, Poland and Hungary. Papell – Prodan (2004, 2007) advocate the 

stationarity of US output, Chang et al. (2010) for eleven Middle East Countries or Murthy – Anoruo 

(2009) for selected countries of Africa. 

  

 Bubbles and asset prices 

 If the order of integration between asset prices and their fundamentals differ, it is more 

likely that asset prices contain a bubble. Kirikos – Rich (1994) compared the order of integration 

between logarithm of CPI and M1. “If the two series are integrated of the same order, we conclude 

that the price level does not exhibit bubble behaviour, which implies that the relevant exchange rate 

also does not exhibit bubble behaviour” (Kirikos – Rich, 1994). Similarly Jirasakuldech et al. 

(2006) found that logarithms of exchange rates (US dollar against British pound, Canadian dollar, 

Danish krone, the Japanese yen and the South African rand) and their fundamentals (logarithms of 

M1, industrial production and the interest rate) are all integrated of order one. Thus existences of 

rational bubbles on these exchange rates were not confirmed. Cunado et al. (2007) found rational 

market bubbles on the S&P 500 index (1871:01–2004:06) testing for the orders of integration on the 

logarithm of the price to dividend ratio. 

 The non-stationarity property of asset prices itself is an interesting issue as well. If asset 

prices are non-stationary, than using only the information set containing historical values, restricts 

price forecasts to the last available price as the expected asset return is zero (under the assumption 

of normally distributed innovations). The empirical findings are not conclusive although much of 

the recent work supports the unit-root, thus random walk hypothesis. Narayan (2005) found that 

stock prices of Australian market (ASX All Ordinaries, 1960:01-2003:04) and New Zealand (NZSE 

Capital Index, 1967:01-2003:04) were nonlinear and non-stationary. Similar results were reported 

by Quian et al. (2008) for the Shanghai Stock Exchange Composite (1990:12-2007:06). Chen 

(2008) further strengthens these results from findings of nonlinearities and unit-roots for 11 stock 

markets of OECD countries. 

 PPP hypothesis 

 With regard to the applications of stationarity/unit-root tests, the probably most debated 

hypothesis is the Purchasing Power Parity (PPP) hypothesis. The amount of research is 

                                                           
7 The merit of such policy is again questionable, as with nonstationary output of the economy, the effect of such an 

intervention would be difficult to assess, and this effect would be a permanent component of the series. These 
characteristics imply, that shocks have significant consequences which are difficult to assess. 
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overwhelming, with many methodological contributions, especially by generating new tests (lately 

mostly panel tests). The PPP hypothesis may be defined empirically as a following model: qt = stpt / 

pt
*, where qt is the real exchange rate, st the nominal exchange rate defined as home currency per 

unit of foreign and pt, pt
* are home and foreign price levels respectively. The equivalent 

specification is used with logarithms, lqt = lst - lpt  - lpt
*. If the PPP holds, than lqt should be 

constant. The answer to the question whether lqt is stationary is important to exchange rate 

modelling. As noted by Taylor – Taylor (2004): “The question of how exchange rates adjust is 

central to exchange rate policy, since countries with fixed exchange rates need to know what the 

equilibrium exchange rate is likely to be and countries with variable exchange rates would like to 

know what level and variation in real and nominal exchange rates they should expect.“ However, 

there are various economical and statistical concerns which made analysis of this hypothesis 

particularly interesting. For example, researchers occupy themselves with how to incorporate 

various exchange rate regimes, which proxy should they use for the price level variable, how to 

solve possible small sample properties of used statistics or how to increase the statistical power of 

tests. Baum et al. (1999) summarizes that “Due to factors such as transaction costs, taxation, 

subsidies, restriction on trade, the existence of non-traded goods, imperfect competition, foreign 

exchange market interventions, and the differential composition of market baskets and price indices 

across countries, one may expect PPP`s implications to emerge only in the long-run”. Current 

research focuses on the long-run PPP, with testing for stationarity using panel tests. For example, 

Narayan (2008) found strong evidence on the presence of PPP for 16 OECD countries with US 

dollar being the numeraire currency (on the monthly data of Main Economic Indicators of OECD 

from8 1973:01-2002:12). On quarterly dataset from 1973:1Q-2001:4Q, Lopez (2008) analyzed 

several panels of data. For example the largest panel of 20 countries with numeraire currency being 

the US dollar, Deutchemark, British Pound and Japanese Yen. Although the results are not 

conclusive, they suggest evidence for the PPP hypothesis. Christidou – Panagiotidis (2010) came to 

an interesting conclusion when they analyzed the evidence of PPP for a sample of 15 European and 

12 Eurozone countries (later without Denmark, U.K. and Sweden) on monthly data from 1973:01-

2009:04 using US dollar as numeraire currency. The panel tests provided evidence for the PPP on 

the whole sample, while surprisingly “The introduction of the single currency has weakened the 

evidence in favour of the parity” (for the Eurozone countries). Divino et al. (2009) used a series of 

panel stationarity/unit-root tests and provided evidence (using monthly data from 1981:01-2003:12, 

26 Latin-American countries with US dollar being the numeraire currency) in favor of long-run 

PPP. For the US as reference currency, the PPP was not so convincing for the emerging markets of 

                                                           
8 Only UK was an exception with data ending 2003:09. Other countries were: Canada, Japan, Austria, Belgium, 

Finland, France, Germany, Italy, Netherlands, Norway, Portugal, Spain, Sweden and Switzerland. 
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Eastern and Central Europe9 (Kasman et al., 2010). However, with Deutschemark the PPP holds for 

Bulgaria, Croatia, Cyprus, Estonia, Romania, Slovakia, Slovenia and Turkey10. 

 

 Interest rates  

 As was shown by Johnson (2006) a stationarity of real interest rates (ir,t) is a necessary 

condition for the existence of the Fisher effect. The effect can be put formally as11: ir,t = in,t - πe
t, 

where in is the nominal interest rate and πe the anticipated change in price level for the next period, 

from time t to t+1. The real interest rate can be calculated ex-post using nominal interest rates from 

short/long-term proxies of interest rates (Treasury bills, Government bonds), which also determines 

whether we are interested in the long-term or short-term Fisher effect. If Fisher effect holds, than 

monetary policy is sometimes interpreted as effective: real interest rate is unaffected by expected 

inflation (assumed to be controlled by central bank) as nominal interest rates move with accordance 

to the expected inflation rate. Earlier empirical results were not that convincing and many do not 

believe in short-run Fisher effect. However, Kapetanios et al. (2003) showed that for some countries 

real interest rates may be regarded as stationary, although with non-linear mean reversion what 

might be the reason of the previous failures to validate the Fisher hypothesis12. Since then, the non-

linear framework used by Kapetanios et al. (2003) had been very popular and extended to other 

applications as well. An interesting conclusion was derived by Ito (2009) who analyzed the Fisher 

effect for Japan under three different monetary policy regimes. He found, that when the inflation 

expectations were high, nominal interest rates followed these expectations accordingly. However, 

when inflation rates were low, the nominal interest rates were not sensitive. This imposes some 

asymmetries when considering Fisher effect. 

 

 Convergence  

 Similar approach as the one used when testing the Fisher effect is when one is interested in 

whether two time series converge. In its simplest form, one tests for the presence of a unit root in 

the difference between two series. As an example, Holmes (2007), Holmes – Grimes (2008) 

                                                           
9 Bulgaria, Croatia, Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Romania, Slovakia, 

Slovenia and Turkey. 
10 Cuestas (2009) found some evidence of PPP for several Eastern and Central European countries as well. Contrary to 

most other studies, data from these countries are rather shorter. In these two studies the monthly data were from 
approximately 13 – 15 years period. 

11  This form of classical Fisher effect is an approximation: (1+ in,t ) = (1+ ir,t)(1 + πe
t) = (1+ ir,t + πe

t + ir,t πe
t) ≈ (1+ ir,t + 

πe
t), from which in,t ≈ ir,t + πe

t. Another form, which is used is: lin,t ≈ lir,t + lπe
t, where lin,t, lir,t and lπe

t are all logarithms 
of the underlying variables. Also in both equations tax rate is often included. 

12 Using quarterly data from 1957:Q1-2000:Q3 of various measures of nominal interest rates (country specific) and price 
deflator, the countries for which the real interest rate might be considered as stationary were: Canada, France, 
Germany, Italy, Netherlands, New Zealand and  Spain (data from 1974), while for Australia, Japan, United Kingdom 
and United states the real interest rates were non-stationary. 
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provides evidence for the convergence of regional house prices in UK. In Holmes (2007), the 

variables under consideration were differentials between natural logarithm of regional house prices 

(13 – regions) and the natural logarithm of UK house prices. More interestingly using 13 price 

differentials, Holmes - Grimes (2008) extracted 13 principal components and tested for the presence 

of unit-root in the largest principal component (LPC, largest in terms of explained variability): “If 

the LPC is stationary, then all remaining principal components will also be stationary thereby 

confirming strong convergence among all the n regions. If the LPC based on the n house price 

differentials is non-stationary, strong convergence among all regional house prices is ruled out“. 

Another example is the economic convergence of regions. Christopoulos et al. (2007) measured the 

convergence between US regions in a similar way as Holmes in the previous example, however 

different tests were used. When testing, Christopoulos et al. (2007) searched for the unit root in the 

ratio between the regional real personal income per capita and the mean of all regions of US (8 

regions with data covering 1921 – 2001), overall the results support convergence among regions13. 

 

Unemployment rates 

Unemployment hysteresis is a property of unemployment where policy interventions which 

change the unemployment level have a tendency to sustain. These changes get “built into the 

natural rate of unemployment resulting in changing the long run equilibrium” (Belke – Polleit, 

2009). Whether unemployment hysteresis is present, is an important question for policy 

implications, particularly regarding the labour market regulations and monetary policy (see NAIRU, 

Non-Accelerating Inflation Rate of Unemployment). Using stationarity/unit-root tests, one can 

distinguish whether unemployment rate is stationary or not, thus indicating the (non)presence of 

hysteresis. Camarero et al. (2006) were unable to reject the hysteresis hypothesis using conventional 

univariate and panel tests. However, when their tests allowed for structural breaks in the series 

(shifts in mean and trend), the hysteresis hypothesis was rejected. The results suggest that policies 

have the potential to change the natural level of unemployment, but the short term shocks are mean-

reverting. Their sample constituted of 19 OECD countries and 46 annual observations (1951-2001). 

Similar results were also found on a sample of transition countries (see Camarero et al., 2006). On a 

sample of Central and Eastern European countries, León-Ledesma – McAdam (2006) found some 

evidence against unemployment hysteresis for Lithuania, Slovak Republic, Czech Republic, 

Bulgaria, Hungary, Slovenia, Romania and Poland (monthly unemployment rates, with country 

specific length of data, starting as early as 1991:01 and ending at 2002:03). They also employed 

                                                           
13 Putting the notion of convergence more formally one is interested, whether the following equation holds: lim E(zi,t – 

zj,t) = 0, with t → ∞. Where z is the variable under consideration (for example: real output per capita, house prices), i 
and j denote two different regions. For the convergence one needs that the difference be stationary, possibly trend 
stationary with negative trend. For more than two regions, the time trends must be identical between all differentials. 
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tests which take into account structural breaks, which confirmed the previous results. In contrast to 

previous studies, results in unemployment hysteresis hypothesis seem to support each other. 

 

 Industry dynamics 

 Stationarity/unit-root tests were also used for measuring industry dynamics, see e.g. Gallet – 

List (2001), Resende – Lima (2005), Sephton (2008), Giannetti (2009). Giannetti (2009) searched 

for the presence of a unit root in market shares of banks in 103 provinces in Italy with only 13 

annual observations or less. The data were divided into four panels (National and North, Centre, 

South Italy) with result suggesting non-stationarity, perhaps except North Italy. Giannetti (2009) 

noted that: “if shares turn out to be mean reverting, then would be reasonable to conclude that the 

industry is rather stable and that competitors had reached positions that were difficult to 

overcome”, thus as it seems such tests may be useful. Another application might be measuring the 

dynamics of industry structure using industry concentration measure. 

 

Fiscal sustainability 

 There is also a wide area of empirical studies which assess the fiscal sustainability applying 

unit root tests. According to the so-called “present value borrowing constraint”14 a stationarity of 

government debts is a sufficient condition for fiscal sustainability. When the analyses are conducted 

on the individual samples of each country data, short span of time series (mostly debt-to-GDP 

ratios, stock of debt or public deficits) causes low power of applied univariate unit root tests. Such 

studies therefore often provide mixed results (see, Wilcox, 1989; Uctum – Wickens, 2000 or 

Bergman, 2001). This methodological issue arises in almost every macroeconomic data. To 

overcome lack of power, several recent empirical papers applied more advanced techniques in a 

panel framework. For example, Holmes et al. (2010) over the sample period 1971 – 2006 analyzed 

annual budget deficits as a percent of GDP for Austria, Belgium, Denmark, Finland, France, 

Germany, Greece, Ireland, Italy, Netherlands, Spain, Sweden and the United Kingdom. Using Hadri 

– Rao (2008) test which allows for cross-sectional dependence and for endogenously detected 

structural breaks, they conclude that EU countries exhibit fiscal stationarity over the full period, 

even in the subsamples 1971 – 1990 and 1991 – 2006 (pre- and post- Maastricht Treaty). Evidence 

against the non-stationarity is considered here as support for the strong form of fiscal sustainability 

insofar as satisfying the present value borrowing constraint. Similar findings are provided by 

                                                           
14 For further details see e.g. Wilcox (1989), Llorca – Redzepagic (2008) and Afonso – Rault (2010). 
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another recent study conducted by Afonso – Rault (2010). For the EU-15 countries during the 

period 1970 – 2006, they found the first differences of debt-to-GDP ratio to be stationary15. 

This short review is of course not exhaustive. Among others, we have not reviewed 

empirical applications of stationarity/unit-root tests for the interest rate parity, inflation or labour 

force participation. 

4. Empirical Application 

For the purposes of our analysis within the CEE-4 markets, we have selected the procedure 

described in Kuo and Mikkola (1999), which is fairly straightforward and visually appealing. Their 

suggested approach is based on the fitting of two different models describing the data. The first one 

is a stationary ARMA model, which after an inclusion of a deterministic trend component can be 

thought of a trend stationary alternative. On the other hand, the second model is from the ARIMA 

class, which corresponds to a difference-stationarity process. The objective of the procedure is to 

estimate the small-sample distributions of the test statistic used in unit-root testing for the two best 

fitting models. By examining the test statistic from the data and comparing it to the established 

distributions, it is possible to draw conclusions about which distribution seems more likely to be the 

one generating the test statistic. This decision is equivalent to the choice of a more likely alternative 

(trend or difference stationarity).  

We examine the series for industrial production (IPP) within the CEE-4 countries (Czech 

Republic, Hungary, Poland and Slovakia). We conduct our analysis on the logarithms of IPP values 

of each country, as is often the case in order to homogenize the variance of the series. The 

descriptive statistics and normality test are presented in the following table. 

Table 4 Descriptive statistics and normality test of IPP 

 
Obs. Mean Median Min. Max. Std. Dev. Skewness Ex. Kurtosis Jarque-Bera p-value 

Czech rep. 237 4.413 4.380 4.088 4.846 0.216 0.323 -1.188 18.049 0.00012 

Hungary 237 4.236 4.346 3.564 4.837 0.386 -0.143 -1.421 20.739 0.00003 

Poland 237 4.313 4.346 3.600 4.919 0.375 -0.163 -1.072 12.402 0.00203 

Slovakia 237 4.456 4.378 4.041 5.003 0.263 0.472 -0.988 18.447 0.00010 

 

                                                           
15 Some results were mixed in this case. 
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Figure 3 The logarithms of industrial production for CEE-4 countries 

 

The first model to be estimated for each series was of the form 
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where L is the lag operator, c is the intercept term, t is a time variable (t = 1,2,…,T) yt is the IPP 

series for the respective country, θi and θi are the model parameters and εt is the Gaussian error 

term. Effectively, this gives us a model with linear trend and ARMA(p,q) errors ut. As for the 

selection of the order of the ARMA process, we have used the Akaike information criterion to 

choose from the models that have successfully removed serial correlation from the series, as 

indicated by the Ljung-Box portmanteau test on up to twelve lags.  

A similar procedure has been performed on the alternative ARIMA model with the 

functional form 
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After estimating both models, we obtain two possible representations of the analyzed series. 

We treat the results in terms of the model orders and coefficients as data generating processes 

(DGP) to simulate 10 000 new series from the same DGPs. The basic idea of the procedure is the 

estimation of the distribution of the unit-root test statistic for the specific DGPs.  

This leads to the question of the choice of lag orders for the tests used on the simulated 

series. The lag order for the original IP series was chosen with respect to the modified AIC criterion 

of Ng and Perron (2001), with maximum tested lag order following Schwert. In case of DF-GLS, 

we used the same number of lags when testing all generated series, to obtain the distribution of the 
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test statistic. In case of point-optimal test, we used the Schwartz Bayesian information criterion with 

the maximal lag order specified by the Schwert’s rule.  

With all the above mentioned notes considered, we obtain the empirical distribution 

functions for the test statistics specifically for DGPs best corresponding to our sample. The results 

also take into account the precise number of observations in our dataset, as the generated 

ARMA/ARIMA series are set to the length of individual series. The empirical distributions allow in 

theory to decide, what distribution, and hence what process is more likely to produce the unit-root 

test statistics observed for industrial production for the CEE-4 countries. 

Table 5 Estimated ARMA and ARIMA orders and coefficients 

 
Const. AR(1) AR(2) AR(3) AR(4) AR(5) MA(1) MA(2) MA(3) MA(4) MA(5) t 

CZ 
(ARMA) 

4.422 1.225 -1.073 0.848 
  

-0.429 0.875 
   

0.0004 

(43.493) (0.084) (0.103) (0.085) 
  

(0.085) (0.055) 
   

(0.0019) 

HU 
(ARMA) 

3.924 1.852 -0.852 
   

-1.210 0.399 0.045 
  

0.0029 

(19.074) (0.082) (0.082) 
   

(0.102) (0.106) (0.074) 
  

(0.0027) 

PL 
(ARMA) 

3.900 1.808 -1.211 0.701 -0.650 0.351 -1.039 0.632 -0.304 0.297 0.163 0.0045 

(243.269) (0.260) (0.655) (0.776) (0.564) (0.211) (0.260) (0.484) (0.496) (0.309) (0.096) (0.0019) 

SK 
(ARMA) 

4.103 0.554 0.379 0.067 
       

0.0030 

(41.281) (0.072) (0.082) (0.072) 
       

(0.0017) 

CZ 
(ARIMA) 

 
0.481 -0.640 0.429 0.351 0.112 -0.796 0.925 -0.599 

   

 
(0.148) (0.099) (0.112) (0.086) (0.110) (0.137) (0.085) (0.107) 

   

HU 
(ARIMA) 

 
0.897 

    
-1.259 0.456 

    

 
(0.056) 

    
(0.076) (0.063) 

    

PL 
(ARIMA) 

 
1.007 0.119 -0.842 0.427 

 
-1.199 0.126 1.010 -0.810 0.356 

 

 
(0.226) (0.186) (0.174) (0.191) 

 
(0.234) (0.228) (0.155) (0.263) (0.088) 

 

SK 
(ARIMA) 

 
-0.417 

          

 
(0.068) 

          

Note: The numbers in parentheses denote standard errors of the coefficients 
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Table 6 Results from simulation based tests 

 DF-GLS test P-test 
 prob. ηsample prob. ηsample 

Czech Republic     
P(η ≤ ηsample | fARMA(p,q)(η)) 0.955 

(-0.663) 
0.999 

(136.275) 
P(η ≤ ηsample | fARIMA(p,d,q)(η)) 0.564 0.999 
P(η ≤ η5%cv(ARIMA(p,d,q)) | fARMA(p,q)(η)) 0.630  0.033  
Hungary     
P(η ≤ ηsample | fARMA(p,q)(η)) 0.325 

(-1.040) 
0.931 

(49.029) 
P(η ≤ ηsample | fARIMA(p,d,q)(η)) 0.374 0.917 
P(η ≤ η5%cv(ARIMA(p,d,q)) | fARMA(p,q)(η)) 0.046  0.054  
Poland     
P(η ≤ ηsample | fARMA(p,q)(η)) 0.073 

(-2.452) 
0.749 

(22.575) 
P(η ≤ ηsample | fARIMA(p,d,q)(η)) 0.027 0.748 
P(η ≤ η5%cv(ARIMA(p,d,q)) | fARMA(p,q)(η)) 0.117  0.039  
Slovakia     
P(η ≤ ηsample | fARMA(p,q)(η)) 0.037 

(-3.018) 
0.394 

(12.189) 
P(η ≤ ηsample | fARIMA(p,d,q)(η)) 0.039 0.367 
P(η ≤ η5%cv(ARIMA(p,d,q)) | fARMA(p,q)(η)) 0.048  0.057  

Note: P(η ≤ ηsample | fARMA(p,q)(η)) is the probability, that a randomly selected η from the simulated distribution of test 
statistics generated under the ARMA model, is less than the ηsample. P(η ≤ ηsample | fARIMA(p,d,q)(η)) is the probability, that a 
randomly selected η from the simulated distribution of test statistics generated under the ARIMA model is less than the 
ηsample. P(η ≤ η5%cv(ARIMA(p,d,q)) | fARMA(p,q)(η)) is the probability, that a randomly selected η from the simulated 
distribution of the test statistics generated under the ARMA model is less than the 5th percentile (the critical value) from 
the simulated distribution of η, generated from the ARIMA model. 

 

The visual inspection of the distributions of τ convincingly suggest, that all series under 

consideration are non-stationary (see Figure 4). The results for Hungary, Slovakia and Poland seem 

to be very similar. By design we know, that the distribution of statistics under ARIMA model 

corresponds to the non stationary series. As the simulated distributions of τ for ARMA and ARIMA 

models are practically overlapping each other, these results indicate that the assumption of ARMA 

model (the stationarity of the yt series) is not valid. 

These results are further supported by Table 6. All three probabilities should be interpreted 

together (see note under the Table 6)16. The simulation based results from DF-GLS tests suggest, 

that the behaviour of distributions are not necessarily similar, however, the conclusions are the 

same. We were unable to reject the unit-root hypothesis. In case of a unit-root process, one would 
                                                           
16 As an example, consider the DF-GLS test, where the distribution of τ generated from the ARMA model is left of the 

distribution of τ of the ARIMA model. For the convenience let`s denote P(η ≤ ηsample | fARIMA(p,d,q)(η)) as P(η | ARIMA), P(η 
≤ ηsample | fARIMA(p,d,q)(η)) as P(η | ARMA) and P(η ≤ η5%cv(ARIMA(p,d,q))  as P(ARIMA | ARMA). The P(η | ARIMA) = 0.374 (Table 
6, for Hungary) indicates that conditionally on the estimated ARIMA(p,d,q) model, the probability of obtaining a DF-
GLS statistics τ smaller than ηsample is 0.374. We would therefore need a near 40 % significance level to reject the 
hypothesis, that η ≤ ηsample | fARIMA(p,d,q)(η). Larger values than the conventional significance levels suggest non-
stationarity. Values around the conventional significance levels (1 %, 5 % and 10 %) are however not that indicative. 
As an example, consider the scenario of P(η | ARIMA) = 0.01, P(η | ARMA) = 0.05, which would suggest stationarity if 
P(ARIMA | ARMA) = 0.95, but not if P(ARIMA | ARMA) = 0.08. The later is actually the case of Slovakia, with overlapping 
distributions. On the other hand, with P(η | ARIMA) = 0.05, P(η | ARMA) = 0.95, if P(ARIMA | ARMA) = 0.95, the ηsample lies 
between the distributions and such result would alone support the rejection of the unit-root hypothesis, although the 
ηsample is not likely to come from an ARMA DGP either. Another interesting case is the P(η | ARIMA) = 0.08, P(η | ARMA) = 
0.95 and P(ARIMA | ARMA) = 0.05 case, where the distribution of η under the ARMA model lies practically between the 5 
% empirical critical value and the ηsample. 
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expect the ηsample to be much closer to the centre of the simulated distribution generated under 

ARIMA. But the P(η ≤ ηsample | fARIMA(p,d,q)(η)) are rather small. For Slovakia only 3.9 % of η are 

smaller than ηsample in the fARIMA(p,d,q)(η) distribution. But also only 3.7 % of η are smaller than ηsample 

in the fARMA(p,d,q)(η) distribution and finally 4.8 % of η are smaller than η5%cv(ARIMA(p,d,q)) in the 

fARMA(p,d,q)(η) distribution. Thus even though ηsample is not close to the distribution corresponding to the 

non-stationary (unit-root) process, it is also no likely, that the ηsample comes from the stationary 

process. The results of the P-test are much more homogenous, with considerably larger values of 

P(η ≤ ηsample | fARIMA(p,d,q)(η)) which are similar to P(η ≤ ηsample | fARMA(p,q)(η)). These probabilities point 

to the fact that the distributions under both null and alternative are very similar, which is visually 

confirmed. This leads us to the conclusion, that (1) although the series is not stationary, the ARIMA 

model is not describing the non-stationary behaviour of the series sufficiently and (2) that the true 

DGP might be one which is not I(1). It is possible that tests with more statistical power would be 

needed, or tests which allow for fractional order of integration. 

 
Figure 4 Kernel density distributions of simulated τ for DF-GLS tests. 

Note: The solid lines are distributions of η generated from ARMA models, the dashed lines correspond to ARIMA 
models, while the red bars to the test statistic calculated from the sample of IPP. 
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Figure 5 Kernel density distributions of simulated τ for P-tests. 

Note: The solid lines are distributions of η generated from ARMA models, the dashed lines correspond to ARIMA 
models, while the red bars to the test statistic calculated from the sample of IPP. 

 

Conclusion 

The topic of stationarity testing in general and unit root testing in particular is one that 

covers a vast amount of research. In this paper, we have been discussing the problem in four 

different settings. 

First, we investigate the nature of the problem that motivated the study of unit-root 

processes. We deal with the problem of spurious regression, and by means of a simulation show the 

results of analysis of time-series generated by four different DGPs, namely those with deterministic 

and stochastic trends, their combinations as well as white noise. As previously demonstrated by 

others, we show that the rejection rate of the null hypothesis of no relationship is often high, despite 

being purely spurious.  

These results demonstrate the need for proper identification of the nature of the series 

undergoing analysis. The years of research into the problem have produces a number of tests for 

stationarity. Their sheer numbers and specific conditions for their proper use may seem rather 

overwhelming. We therefore continued in our second part with the description of several traditional 

as well as more recent alternatives. Our exposition is divided into two categories of tests, namely 

the univariate ones and those based on panel data. We shortly discuss the benefits of the latter 
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(namely, their potentially better power properties) as well as the new problems introduced by their 

use.  

After describing the technical part of the testing and its alternatives, we give a brief 

overview of the economic theories, in which the testing of the underlying research hypothesis can 

be expressed in a form of a unit-root test. The issues of purchasing power parity, economic bubbles, 

industry dynamic, economic convergence and unemployment hysteresis can be formulated in a 

form equivalent to the testing of a unit root within a particular series. 

The empirical part of our paper is dedicated to testing of stationarity of industrial production 

in CEE-4 countries. Instead of using the whole battery of tests presented in the preceding sections, 

we demonstrate a procedure that despite not being the mainstream solution has an interesting 

background and presents the problem of stationarity testing in an interesting and graphic way. This 

choice is made also with regard to the purpose of our paper, which was to explain both the need and 

the procedures of unit-root testing to a wider audience.  
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