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ABSTRACT

Here, we show that agents who are ex ante rational, if allowed to interact locally, may 
generate clustering of volatility. Hence, there is no need to reject the notion of rationality 
in agent based models.
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Rational Interacting Agents and Volatility Clustering: A New Approach

An intriguing statistical property of financial market data is clustering of volatility 

where large absolute price changes tend to follow large absolute price changes and small 

absolute price changes tend to follow small absolute price changes. Mandelbrot (1963) 

first discovered this phenomenon in commodity prices.  However, it is the pioneering 

work of Engle (1982) and Bollerslev (1986) on autoregressive conditional 

heteroskedastic (ARCH) models and their generalization GARCH models that brought 

this phenomenon to the forefront of financial market research.

 In empirical work, volatility clustering is usually modeled by a statistical model 

such as GARCH or one of its extensions. As noted by Engle (2001), these models are 

only statistical descriptions of the data and they do not provide any structural explanation 

as to why the phenomenon arises. Rather, the statistical models postulate that volatility 

clustering has an exogenous source and is for example caused by the clustered arrival of 

random news about the economic fundamentals. 

Representative agent finance models cannot explain this phenomenon (see Kurz 

(1997)). Consequently, researchers have been looking at models with heterogeneous

interacting agents for clues regarding this phenomenon. In this spirit, several studies have 

considered modeling financial markets in analogy with ecological systems where various 

trading strategies co-exist and evolve via a “natural selection” mechanism (Arifovic et al 

(2000), Arthur et al (1997), Lebaron et al (1999), Lebaron (2001)). The idea behind these 

models, the prototype of which is the Santa Fe artificial stock market, is that a financial 

market can be viewed as a population of agents that differ in the decision rules they use. 

A decision rule is defined as a mapping from an agent’s information set to the set of 

actions. These decision rules evolve according to profitability with the most profitable 

decision rules favored by “natural selection”, usually via genetic algorithms. Notably, 

Lux and Marchesi (2000) study an agent-based model in which volatility clustering arises

from behavioral switching of market participants between fundamentalist and chartist 

behavior. Fundamentalists expect that the price follows the fundamental value in the long 

run. Noise traders try to identify price trends, which results in a tendency to herding.
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Agents are allowed to switch between these two behaviors according to the performance 

of the various strategies. 

These types of models typically have two features in common. Firstly, they do not 

allow agents to interact with each other directly. All interactions are mediated through the 

price system. Specifically, prices are realized through agents’ actions resulting in 

different profits to agents using different decision rules. Agents evaluate their decision 

rules and corresponding switch from one rule to another, giving rise to a new set of 

prices, and the process repeats. Agents are not allowed talk to each other directly; hence, 

social influences operating via direct communication are ignored.  Secondly, all agents 

are not ex ante rational. Some agents are not doing the best they can given the 

information that they have. Noise traders are a notable example. Here, it is important to 

distinguish between ex post and ex ante rationality. Ex post rationality requires that given 

the realized outcomes, a person must have done the best that could be done. It is 

rationality in hindsight. That is, in order to be ex post rational, a person’s beliefs must 

have correctly predicted the realized outcomes (expectations thereof). Ex ante rationality 

requires that a person must be doing the best he or she can do given the information he or 

she has at the time of making his or her decision. A person can be ex ante rational and ex 

post irrational. For example, if new information arrives between the time of making the 

decision and realization of outcomes then a person can easily be ex ante rational and ex 

post irrational. Agent based models not only reject ex post rationality but also  ex ante 

rationality by allowing noise traders, as one example. It is reasonable to reject ex post

rationality, however, rejecting ex ante rationality may be considered a stretch. 

In this paper, I put forward an agent based model of asset pricing in which all 

agents are ex ante rational and also directly interact with other agents in their circle of 

influence. I show that such a model can generate volatility clustering, hence, in agent 

based modeling one does not have to reject the reasonable notion of ex ante rationality.

Rational expectations finance cannot explain volatility clustering because it maintains the 

assumption of ex post rationality. Agent based finance explains volatility clustering but it 

goes too far in rejecting rationality and rejects not only ex post but also ex ante

rationality. This paper seeks to make a contribution to agent based finance by 
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demonstrating that a system of interacting agents that are ex ante rational and also talk to 

each other may generate volatility clustering.

I. The Model

Our model has two sets of assumptions regarding 1) the data generating process 

and 2) the belief formation of agents. Manski (2003) argues that in many economic 

situations, the underlying model or the data generating process is only partially 

identifiable. It is impossible to correctly identify the date generating process because of 

the inherent structural instability in the system. The true model can only be partially 

identified. Econometricians agree about the part which has been identified but disagree 

about what has not been identified. They complete the model by using their own 

subjective judgments as they need to make a decision. True model is only partially 

known and they know that the true model is only partially known. However, at all times, 

they are very clear about what is objectively known and what has been assumed 

subjectively. Any two econometricians in this situation would disagree if they have 

different subjective judgments. However, none of them can be proven to be wrong ex 

ante as long as their predictions remain consistent with the objectively known part of the 

model. Hence, econometricians making forecasts can disagree and still be ex ante

rational. In the spirit of Manski (2003), we assume the following:

All agents have partial knowledge about the true model in the following way. 

There is a commonly known part about which every one agrees and there is an unknown 

part about which agents disagree. Each period all agents receive the same information. 

Let tp be the interpretation of this information according to the commonly known part of 

the model. The magnitude of tp indicates the expectation about the next period’s price 

level according to the commonly known part of the model. That is, tptt pE  ][ 1 .
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Each agent’s private belief (private expectation about the next period’s price level), itx  is 

some perturbation of tp :

][ 1 titittpit pEx        (1)

Where it has a mean of zero and a uniform distribution with a range fixed by the 

partially known true model.

Each agent interacts with people in his social circle. These interactions influence his 

belief. This is captured by considering a 2-dimensional lattice and assigning a cell to each 

agent with neighboring cells as his neighbors. Each agent’s belief is affected by his 

interactions with his neighbors. Let itz represent the belief of agent i after interacting with 

his neighbors:

  ]|[,' 1 nsInteractioSocialpExbeliefsneighborsfz tititit  (2)

where f  is some function describing how neighbors’ beliefs influence an agent’s belief.

Each agent is a mean-variance maximizer. Each agent optimizes given his belief, itz . The 

standard optimization exercise with one risk-free and one risky asset produces a demand 

curve for the risky asset of each agent. Assuming that the number of shares outstanding is 

constant and by equating them with aggregate demand, we can solve for the equilibrium 

price:2












   

N

i

N

i

tittitt dEnsInteractioSocialpE
Nr

p ][]|[
)1(

1
11 (3)

where r  is the one period risk free net return, N  is the total number of agents and 1td is 

the intervening dividend. Similarly, in the next period, the whole process repeats, new 

information arrives  pt )1(  , new private beliefs  )1( tix  are formed, new beliefs after 

social interactions are formed, and the new equilibrium price 1tp is determined. 

                                                
2

See the Appendix for a derivation of this equation. Brock and Hommes (1998) derive this equation as an extension of
asset pricing model to the case of heterogeneous expectations. Some authors such as Arthur et al. (1997) derive this 
equation from no-arbitrage arguments without any explicit optimization exercise. Also see Chiarella and He (2001, 
2002, 2003), Farmer and Joshi (2002), Lebaron (2000), Lebaron et al. (1999), Lux and Marchesi (1999), and Lesourne 
(1992). 
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Once 1tp is known, each agent compares the expectation error of his private belief, 

][ 11   titt pEp  with the expectation errors of his neighbors. If his expectation error is 

greater than the expectation error of his neighbors, he assigns a greater weight to their 

opinion in the next period. If his error is smaller, he assigns a lower weight to the opinion

of his neighbors in the next period. The exact functional form of this updating is 

immaterial to the existence of volatility clustering.3

Note that in this model, agents influence each others’ beliefs directly. All agents 

have beliefs consistent with existing information. Each agent is still optimizing given his 

or her belief and these optimal actions, in aggregate, determine the price of the risky 

asset.

II. Simulation Results
4

In what follows, subscripts ij denote the location of an agent in a 2-dimensional 

plane divided into cells (lattice). 

We use the following parameter values for simulation, assuming a uniform 

distribution with the lower and upper limits given by:

]05.0,05.0[ pricecurrentpricecurrentpricecurrentpricecurrenttp 

]05.0,05.0[ pricecurrentpricecurrentvijt 

r =0.05, N =40000, tjidE tijt ,,1][ 1 

tp represents the interpretation of new information according to the commonly known 

part of the model. Each period, tp takes a random value from a uniform distribution with 

the range defined above. The role of tp in the model is to ensure a steady arrival of new 

information each period. The results presented here are robust to the range of values 

                                                
3 As long as agents are updating in the right direction, the model generates clustering of volatility.
4 Simulations were carried out in Netlogo.
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tp can take.5 ijtv is the idiosyncratic element in each agent’s belief. Each period, for each 

agent, a random value is drawn from a uniform distribution with the range defined above. 

Together, these two parameters ensure that different agents have different interpretations. 

We use the simplest linear form for the function ijtz  (belief after social interactions, that 

is, ]|[ 1 nsInteractioSocialpEz tijtijt   ):

ijtijtijt xcbaz  (4)

Where a  and c  are positive parameters, ijtb is the average belief in the neighborhood of 

agent ij , that is, 
4

)1()1()1()1(  


jijijiji
ijt

xxxx
b  where ,,, )1()1()1(  jijiji xxx  and 

)1( jix  denote the beliefs of neighbors immediately to the right, left, above, and below the 

agent, respectively. We assume that each agent has 4 neighbors.6 ijtx is the own belief of 

agent ij . Equation (4) states that the belief after social interactions depends on the 

average belief in one’s social circle as well as on one’s own initial predisposition. 

Parameters a  and c  control the relative importance that an agent attaches to others’ 

opinion in his social circle. We will refer to a  as intensity of social influence and c  as 

own confidence.

For updating confidence, if the expectations error of an agent is greater than the 

expectation error of average neighborhood belief, that is,

If ijttijtt bpxp   11 ]

then a  goes up by an amount g which is randomly drawn from a uniform distribution: 

 aag  50.0,10.0 . 

If the expectation error of an agent is less than the expectation error of average 

neighborhood belief then a  goes down by g . 

                                                
5 Of course, negative values are not allowed since price is a strictly non-negative variable.

6 Face-to-face interactions with people with whom one has strong social ties are likely to have the strongest 
influence on one’s judgment. Typically, the number of such people is small. Results are similar for either 4 
or 8 neighbors. Due to the sampling issue, it is clear that results will get weaker for larger neighborhoods 
with our model becoming equivalent to modern asset pricing model for very large neighborhoods (social 
influence will cancel out).
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The rationale behind this assumption is as follows: if a person’s social circle 

outperforms him then plausibly he will assign a greater weight to their opinion in the next 

future. How much greater? That depends on his state of mind at the moment of decision, 

which depends on a lot of environmental factors.  These environmental factors are 

essentially random. 

A number of representative simulations are run:

1. Simulation without social influences. This simulation is run to establish the 

benchmark. 

2. Simulation with social interactions and the following parameter values: a =0.80, 

c =0.20

3. Simulation with social interactions and the following parameter values: a =0.60, 

c =0.20

4. Simulation with social interactions and the following parameter values: a =0.40, 

c =0.20

5. Simulation with social interactions and the following parameter values: a =0.20, 

c =0.20

If there is no social influence, our model reduces to modern asset pricing model 

(substitute a =0, and c =1 in equation 4). See Figure 1. Unsurprisingly, Figure 1 is similar 

to output from a typical modern asset pricing model. Returns are measured as changes in 

log-price. Figures 2, 3, 4, and 5 show the returns generated by our model corresponding 

to simulations 2, 3, 4, and 5 as described above. Tables 1, 2, 3, and 4 show the results 

from a statistical test for volatility clustering corresponding to simulations 2, 3, 4, and 5.

As can be seen, there is clear evidence of volatility clustering.
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Table 1: ARCH Test

ARCH(1) REGRESSION: TEST FOR VOLATILITY CLUSTERING

Estimate Error t-Value p-Value ARCH EFFECT

ARCH0 0.000093 1.17E-05 7.94 <.0001 Yes

ARCH1 0.9133 0.0689 13.26 <.0001 Yes

Table 2: ARCH Test

ARCH(1) REGRESSION: TEST FOR VOLATILITY CLUSTERING

Estimate Error t-Value p-Value ARCH EFFECT

ARCH0 0.000072 8.80E-06 8.18 <.0001 Yes

ARCH1 0.8818 0.0674 13.07 <.0001 Yes
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Table 3: ARCH Test

ARCH(1) REGRESSION: TEST FOR VOLATILITY CLUSTERING

Estimate Error t-Value p-Value ARCH EFFECT

ARCH0 4.38E-05 5.27E-06 8.31 <.0001 Yes

ARCH1 0.8147 0.0634 12.85 <.0001 Yes

Table 4: ARCH Test

ARCH(1) REGRESSION: TEST FOR VOLATILITY CLUSTERING

Estimate Error t-Value p-Value ARCH EFFECT

ARCH0 2.18E-05 2.65E-06 8.23 <.0001 Yes

ARCH1 0.6922 0.057 12.15 <.0001 Yes

III. Conclusions

This paper shows that one does not need to reject the notion of ex ante rationality 

in financial markets as agent based models normally do. Clustering of volatility can be 

explained within the framework of agent based modeling without rejecting ex ante

rationality if agents are allowed to talk to each other. It remains to be seen whether other 

market anomalies can be explained with this modified approach; a subject of future 

research.
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APPENDIX

Brock and Hommes (1998) put forward a simple model of asset pricing with 

heterogeneous beliefs (BH model). Their model is now a workhorse for literature with 

heterogeneous expectations. Guanersdorfer et al (2003), Guanersdorfer (2000), Chiarella 

and He (2003), Chiarella and He (2002), Chiarella and He (2001), Farmer and Joshi 

(2002), Lebaron (2000), Lebaron et al (1999), Lux and Marchesi (1999), and Lesourne 

(1992) are a few examples of use of this model. 

In Brock and Hommes (1998), there are two types of assets, a risk free asset and a 

risky asset. Risk free asset pays a net return of r , which is between 0 and 1. That is, for a 

dollar of investment, the gross return is )1( r  after a unit interval.  Let tp  denote the 

price of risky asset that pays dividends, d .  The dynamics of wealth of an agent type ‘a’ 

is described by 

attatta SRrWW 11, )1(      (A.1)

where 1tR  is the excess return (in dollars) per share of risky asset over risk free asset, 

that is, tttt prdpR )1(111    and atS  is the number of shares of risky asset 

bought by an agent of type ‘a’.  

Let tE  and tV   denote conditional expectation and conditional variance, and 

let atE and atV  denote the beliefs of investor type ‘a’ about these conditional expectation 

and variance.

Assume that investors are mean-variance maximizers.7 The demand for shares of 

risky asset by an agent of type ‘a’ can be obtained as follows.

                                                
7 Mean-Variance Optimization is a decision making model proposed by Markowitz (1952) as an alternative 
to Expected Utility decision model. The Expected utility model gives the same results as the Mean-
Variance model if the utility function is quadratic or returns are normally distributed. Levy and Markowitz 
(1979) show that mean-variance analysis can be regarded as a Taylor approximation (second order) of any 
given utility function (such as power utility) in the Expected Utility model. Rabin (2000) argues that 
Expected Utility model is absurd as a model of human decision making. The Mean-Variance model is 
simpler, though less general; however, it does not suffer from serious plausibility issues such as the one 
raised by Rabin (2000).
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where e is interpreted as a risk aversion parameter.8

Assume a constant supply of outside shares over time, m . Further, assume that all agents 

agree about the variance and that the market clears:
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Define risk adjusted dividend as, )(` 111   tttt RVe
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Equation (A.9) is the same as equation (3).

                                                
8 Not to be confused with the risk aversion parameter in the Expected Utility Model.
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