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Abstract 

Negative prices for electricity are a novelty in European power markets. At the German EEX spot 

market negative hourly prices have since occurred frequently, down to values as extreme as minus 

several hundred €/MWh. However, in some non-European markets as USA, Australia and Canada, 

negative prices are a characteristic for a longer period already. Negative prices are in fact natural for 

electricity spot trading: plant flexibility is limited and costly, thus, incurring a negative price for an 

hour can nevertheless be economically optimal overall. Negative prices pose a basic problem to 

stochastic price modelling: going from prices to log-prices is not possible. So far, this has been dealt 

with by “workarounds”. However, here a thorough approach is advocated, based on the area 

hyperbolic sine transformation. The transformation is applied to spot modelling of the German EEX, 

the ERCOT West Texas market and the exemplary valuation of an option. It is concluded that the area 

hyperbolic sine transform is well and naturally suited as a starting point for modelling negative power 

prices. It can be integrated in common stochastic price models without adding much complexity. 

Moreover, this transformation might be in general more appropriate for power prices than the log 

transformation, considering fundamentals of power price formation. Eventually, a thorough 

treatment of negative prices is indispensable since they significantly affect business.      
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Introduction 

The German power exchange EEX permitted negative price outcomes for the spot auction in 

autumn 2008. Since then, negative prices have occurred frequently, down to values as low 

as -500 €/MWh, see Fig. 1. This has triggered considerable attention and debates, not only in 

the energy trading business but even in the media. Paying money instead of demanding 

when selling a commodity to a counterparty appears counterintuitive. However, this is a 

natural consequence of the properties of the commodity power. Generally, this is because 

generation of power is of limited flexibility due to technical and regulatory constraints. 

When it is not possible for a generation facility to follow a demand slump closely, its 

generation is sold off with discount, even down to negative prices. 

For the modeller negative prices pose a basic problem: the usual initial transition from prices 

to log prices is not possible. Surprisingly, (to the author’s best knowledge) no solution 

dealing realistically with this issue has been proposed so far. Instead, the existing 

approaches are workarounds. The simplest being just the exclusion of all negative 

occurrences from analysis, or, introducing a shifted price with zero level at the observed 

minimum price (eg, -500 €/MWh), see Sewalt and De Jong (2003) and Knittel and Roberts 

(2001). The justifications given are that the workaround solution is supposed to be sufficient 

or that negative prices do not really have an influence because they are relatively rare. 

However, energy traders and business practitioners do not feel comfortable with this, see 

Sprenger and Laege (2009). Quite the contrary, they notice a significant impact of negative 



 

 

prices on the value of their position, eg, when holding a structured Off-Peak position
2
. 

Looking again at the EEX price history of 2009 (Fig. 1), it indeed appears justified to consider 

negative or downward jumps as having replaced the upwards spikes in the times before 

economic downturn.  

In this article a simple but effective way to deal realistically with negative (as well as positive) 

spot prices is developed. Namely, replacing the log transformation by the area hyperbolic 

sine transformation. An appealing feature of this approach is that it complicates stochastic 

price modelling not seriously. Basic cases can still be expressed by closed-form expressions. 

Moreover, indications are found that the log transformation is in general not well suited for 

power prices, but the area hyperbolic sine transformation is, independently of the 

occurrence of negative prices. 

Negative power prices 

In this section, a brief account of the economical and technical background of negative 

power spot prices is given. For detailed overviews on this subjects see, eg, Dettmer and 

Jacob (2009). 

The German EEX spot exchange was the first market in Europe permitting negative prices. 

The Scandinavian Nordpool spot followed in the end of 2009. However, outside Europe, 

power markets permitting negative price are an established institution. The possibility of 

negative prices was built in their design from the beginning on. Two striking examples are  

ERCOT West Texas and AEMO, region South Australia. They exhibit very frequent, often 

strongly negative prices.    

Negative prices at EEX occur when very low demand coincides with high supply. Low 

demand situations are constituted, eg,  by public holidays and Sunday nights, amplified by 

slumps in industrial activity due to the economic crisis. A typical high supply situation is 

constituted by high wind power infeed. The grid operator, who has to take the wind 

production with priority, then bids this power at EEX for a negative price to achieve market 

clearing. Also, production from conventional power plants can be bid into the market for a 

negative price. This is, eg, when the plant produces above the marginal generation costs for 

matching the total demand in some hour. It can then nevertheless be economically optimal 

to leave the plant online for that hour when the loss from the negative price is smaller than 

the costs from a modified production schedule. An alternative production schedule would 

have to take into account a number of factors  incurring costs, eg, ramping costs, start-up 

costs, costs for procuring energy from alternative sources during a mandatory downtime of 

the plant. Another negative price situation is constituted by grid transmission bottlenecks, 

eg, high wind production in Denmark cannot be sufficiently transported to hydro pump 

storages in northern Scandinavia. 

Summarizing, negative prices occur because production of power has limited flexibility for 

economical, technical and regulatory reasons. When it is not possible for a power generation 

facility to follow a demand slump closely, its generation is sold off with discount. This is why 

it was consequential to allow for negative prices at EEX
3
. It was shown that this is 

                                                           

2
 A profile with hourly varying loads in the low demand periods. 

3
 Before, spot auctions at EEX frequently attained no intersection of bid and offer curves, necessitating partial 

market clearing only.  



 

 

economically rational in order to optimize market clearing, see Viehmann and Sämisch 

(2009).     

It remains to be seen if other markets follow the model of EEX and Nordpool. Especially, 

when considering that European power markets are getting more and more integrated. 

Interestingly, for another commodity, natural gas (delivered to NBP), there were some 

negative prices in the past. The situation was analogous to power: a production facility (a gas 

field) provided excess production in a low demand period which could not be sufficiently 

adapted for technical reasons.    

Modelling concept 

The area hyperbolic sine transformation 

Stochastic modelling of power prices usually starts with log transforming px ln of the 

original prices p . Instead, I propose to replace the log transformation by the area hyperbolic 

sine transformation:  

 







 
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
p

x
1sinh           (1) 

 

, where  is an offset and a scale parameter. The behaviour of this function compared to 

the natural logarithm is depicted in Fig. 2. The most important property is the asymptotic log 

behaviour 

 

     ||2ln)(sign1lnsinh 21
ppppp   

 

for || p
4
. The log function is a good approximation for small 2|| p already. The 

positive and negative log-like parts are connected by an approximately linear part at 0|| p .  

The transformation appears to be a natural choice because it preserves the log behaviour 

which is a proven method. However, it is now presupposed that the properties of prices 

0p are a “mirror image” of 0p . We recall a basic rationale for the log transformation: 

the volatility/variability of prices increases with the absolute price level: pdp ~ . This is why 

returns )(t
p

dp
or log returns )1(ln)(ln  tptp are studied. It appears to be plausible that 

this is also the case for negative power prices: ||~|| pdp for 0p . This can be substantiated 

by studying bid / ask curves of EEX spot auctions, see Fig. 3. As it is well known the curves 

are getting steeper when going to high prices and thus the spot price gets more variable/ 

spiky when the auction outcome (intersection of curves) moves into that price region. We 

see that the same holds for the negative price region. Note: this finding already rules out the 

„shift zero price level down to a negative lowest level” approach to the problem.        
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 The offset and scale parameter are temporarily omitted. The discussed properties do not qualitatively depend 

on these, of course. 



 

 

Basic stochastic differential equation and price distribution 

As a start, it is necessary to understand basic stochastic and statistical features of modelling 

built on the area hyperbolic sine function
5
:  

 

 px
1sinh   

 

To this end, the same standard route as for the log transformation can be taken: analysing a 

basic model for the spot price process, the Ornstein-Uhlenbeck (OU) process: 

 

dWdtxmkdx  )(     (2) 

 

, with k and m the mean reversion rate and level, W the standard Wiener process and 

volatility  . 

By means of the Ito formula and standard relations for hyperbolic functions we get the 

stochastic differential equation 
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This is relatively similar to the SDE for the log case 
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Both SDE generate the same dynamics for large p . Additionally, (3) exhibits a linear form 

dWdtpLdp  )( for small || p . There is an explicit probability distribution solution to 

(3). The stationary distribution to the OU process for x:    
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for p . f is known as the Johnson SU distribution (Johnson et al 1994). Summarizing, it has to 

be pointed out that switching from the log to the hyperbolic sine transformation has not 

qualitatively complicated the analysis. We still get a closed-form solution, the Johnson 

distribution replacing the log-normal distribution. 

                                                           

5
 Stochastic processes involving the hypebolic sine have been employed before to model volatility smiles. 

However, prices in that context are strictly positive and described by ordinary returns, see Brigo et al (2003) 

and Carr et al (1999). 



 

 

Fig. 4 depicts typical examples of the Johnson distribution for different means and variances, 

overlaid with log-normal distributions with the same mean and variance with respect 

to p (not feasible for negative means). Additionally, empirical histograms of EEX spot prices 

are displayed. For large (positive) mean and large variance, both the Johnson and log-normal 

distribution cannot be distinguished, as expected. Empirically, this case corresponds to the 

histogram of typical high price hour types (working day, early evening). A right-skewed, 

upward spiking (fat tail) behaviour is observed. Going to typical lowest price hour types 

(Sundays and holidays, deep night), the opposite is observed: left-skewed and downward 

spiking. This is (qualitatively) matched by a specification of the Johnson distribution, but of 

course not by a log-normal type distribution.     

Spot price modelling 

It now needs to be analysed how the hyperbolic sine transformation integrates with state-

of-the-art spot price models and if the simulation results are satisfactorily able to reproduce 

the spot price histories with negative prices.  

As the state-of-the-art spot price model the “independent spike model” is taken, see De Jong 

(2006) and De Jong and Schneider (2009). The model produces daily spot prices by means of 

a three-regime switching process, regimes for normal prices and upward and downward 

spikes. This is the model formulated as a discrete time process: 
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The normal price process is an OU process with mean-reversion level and rate  and . The 

(log) prices in the spike regimes are directly drawn from fat-tailed distributions (Poisson 

compounded Gaussians). For further explanations, especially on the parameter estimation 

method, see the articles. 

Besides applying the area hyperbolic sine transformation it is necessary to remove the 

deterministic component from the (daily) prices: 

 

 tttt pxxs
1sinh'   

 

The day type specific components are captured by dummy variables )(1 tD , D={Mon, .., Fri, 

Sat/Bridge days, Sun/holidays} being the day type set. Seasons and trends are captured by a 

moving average )'()'(')( ttGtxtMA  , )'( ttG  being a Gaussian convolution kernel with 

standard deviation of 20 days. This choice of the standard deviation is appropriate to 

capture winter-summer effects as well slowly moving fundamentals. Additionally, for the 

moving average calculation spikes from the price series are removed beforehand, applying a 



 

 

standard 3 standard deviation iterative method. This is because the )(tMA is meant to refer 

to the mean-reverting level of the normal price process. The coefficients of the components 

)(tMAb  , )(1 td Di   are finally estimated by linear regression. 

Case EEX 

As a first case study, the EEX hourly price history from Oct 2008 – the point in time from 

which on negative prices have been possible – till Jan 2010 are modelled. The modelling 

consists of two stages. First, the independent spike model is employed to produce scenarios 

of daily prices. Secondly, the daily prices are endowed with hourly profiles by means of a 

historical price sampling and re-scaling method. Fig. 5 shows the historical daily as well as 

hourly prices of the period. The two day which visibly stick out from the daily price series 

have been removed (Oct and Dec 2009). These days, the only ones so far at EEX with a 

negative price of the full day, are exceptionally strong downward spikes. It does not yet 

appear to be meaningful to define an own regime or distributions for this kind of extreme 

event at this point in time, based on two examples only so far. Nevertheless, there are still 

many days in the truncated history with quite negative hourly prices. 

The parameter estimation is accomplished as described above and the determined 

parameters are shown in Tab. 1 . Up spiking is marginal, but down spiking is pronounced (see 

the values of the normal-to-spike regime jumping probability 
MX  and the Poisson 

parameters ). This is, of course, plausible, since as stated above, downward jumps have 

replaced the upwards spikes in the times before economic downturn. 

Scaling of hourly profiles 

A simulated daily price is converted into 24 hourly prices by drawing an appropriately similar 

day from history and matching it to the day’s price by a scaling transformation. Beforehand, 

the EEX historical days are tagged by month, day type D and spike regime. The historical 

spike regime characterisation is provided by the parameter estimation algorithm. It outputs 

a triple of probabilities
6
 for each day, indicating this day’s price being in one of the regimes. 

For simulated day with price sim

tp  the spike regime is definite and, so, among all historical 

days with matching month and day type a historical regime probability weighted random 

choice is carried out. The historical hourly profile hist

hS   then is transformed to 
sim

htS , such that 

average price equals the day’s price,
sim

t

sim

ht pS , . In the past, with positive prices only, there 

was a simple way to transform: multiplying each hour by a factor
hist

h

sim

t

S

p
C  7

. Thereby, in 

terms of hourly price differences, Offpeak hour prices are shifted a bit, Peak hours prices 

strongly, which is realistic. However, when some hours of
hist

hS  are negative, the 

transformation yields an implausible result. Imagine the case of a “stronger market” in 
simulation than in history,

hist

t

sim

t pp  . The factor transformation, the C being >1, would 

                                                           

6
 The estimator’s output are likelihoods which are converted into probabilities  

7
 A similar sampling re-scaling method has been employed in Culot et al (2006) for power spot market modeling 

(no negative power prices in Europe at that time).  



 

 

shift positive hour upwards which is correct. However, negative hours would take on even 

more negative prices which is of course the opposite of what is observed on a real market.  

The search for a plausible new transformation has been guided by the following 

considerations. The factor transformation preserves log normal distributions, which is the 

basic price distribution for the positive prices only world, assuming a log transformation on 

the prices and a basic OU model for the price process. So, if all hours of a historical day are 

distributed log-normally, ),(~ln hist

h

hist

h

hist

h mNS  , scaling with the factor C yields new log 

normal distributions ),ln(~ln hist

h

hist

h

sim

h CmNS   with equally shifted means. This principle 

is transferred to the hyperbolic sine transformation and Johnson distribution world. We 

again consider a sample day. Find a  such that 
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and 
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t
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ht pS , . With 1sinh  we get 
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by means of an addition theorem. In contrast to the log normal case the sine hyperbolic case 

cannot explicitly be solved for  . Instead, we simplify by noticing |cosh||sinh| xx  , an 

approximation which is very good already for small || x , eg, 2|| x . Thus, we can 

approximate:  
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The approximation does in fact not need to be very exact because for the purpose of solving 

for   we only need price means:  
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resulting in 

hist

h

hist

h

sim

h SSS  1sinhcosh||  

 

, which can easily be solved numerically for  . 

Fig 6 shows two examples of applying the transformation. For an hourly profile with positive 

prices only, the new transformation and the old factor transformation yield basically the 

same result (left). For the profile containing negative prices the new transformation only 

yields a plausibly looking result (right).  



 

 

Simulation results 

The simulated trajectories, for daily as well as for hourly prices, resemble the historical 

trajectories very well, see Fig 7. The goodness is confirmed by comparing price statistics and 

their moments, Fig. 8 and Tab 2. Only the kurtosis of the historical hourly prices is not fully 

captured which is, however, a typical issue affecting virtually all power spot price models.  

Case ERCOT West 

ERCOT West is a power grid zone in Western Texas. This market region is specific insofar as it 

has quite a high share of wind power production, in conjunction with low population density 

and restricted transmission to other regions. The price plots, Fig 9, show extremely volatile 

and spiky quarter-hourly prices, strong spikes occurring for positive as well as negative 

prices. Even the daily prices are remarkably volatile and spiky, with a lot of days exhibiting 

completely negative average price.   

Here, the aim is to reproduce the daily prices from Jan 2008 – Feb 2010 (the history is 

chosen to be roughly the same time period as for EEX). Modelling is restricted to daily prices 

because the quarter-hourly structure is too irregular to be captured with the means applied 

in this work. Further, it can be seen from the price plot that the time series is structurally 

changing, being significantly more spiky and negative in the first half of the period. This will 

be subjected to a simplification, see below, since the overarching aim of this work is to show 

how to generally integrate negative prices into stochastic spot price modelling, not yet 

dealing with very specific features.  

Extended area hyperbolic sine transformation 

When applying the hyperbolic sine transformation  tpx
t

1' sinh   as in EEX case above, we 

get an unsatisfying result, see Fig 10. Compared to the original time series the downward 

spikes are strongly amplified whereas the upward spikes suppressed, comparatively. The 

transformation does not preserve the characteristics of the data
8
. This is because the 

 p
1sinh 

 transformation effectively, compared to range of price levels p , behaves step-

like, see Fig 11. The main body of prices are around a mean level at 0p  therefore gets 

compressed, the downward spikes crossing the axis gets torn away. So, one should look for a 

less disruptive transformation around 0p . To this end the original form of the 

transformation (1) is reconsidered:  

 







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
p

x
1sinh'           

  

where offset  and scale can be chosen arbitrarily.  For 0 and 1 the stochastic 

process characteristics stay the same. The Johnson distribution is still the basic solution to 

the OU process. Here, 20 and 30  are taken, see Fig 11. This shifts the turning point 

to the mean level of prices and widens the linear part of the transformation. Now, the 

transformed time series 
'

t
x  looks much more “natural”, see Fig 10. The choice of values for 

                                                           

8
 Nevertheless, a parameter estimation for the spot price model was carried out on this data. This is, however, 

only successful when the model’s spike regimes are endowed with a more extremer and fat-tailed distribution.   



 

 

 and had been ad hoc, guided by the appearance of the data
9
. In a naive fashion, the 

parameterization of the transformation here is somewhat similar to the idea of the Box-Cox 

transformation, providing an appropriate local transformation for every price level p .   

Interestingly, Weron (2008) has already remarked – though for a set-up with positive power 

prices only – that the log transformation does not appear appropriate for power prices. It 

produces artificial downward spikes for 0p , although those prices are not judged as 

extraordinarily jumping from an expert’s view. He then employs no transformation to the 

data at all (thus, equivalent to the trivial linear transformation). This, however, produces the 

drawback of leaving spikes undamped and requires therefore special distributions for the 

spike regime. 

The transformation elaborated in this work combines the advantages of both the log and the 

linear approach. The choice of  and produces a linear regime of the transformation 

encompassing the main, non-spiking range of prices. In the positive and negative spike price 

range, however, the transformation behaves again log like, allowing for the “conventional” 
modelling.  

Why is the modified area hyperbolic sine transformation working well? It is posited that this 

is because the transformation function reflects fundamental economics of power prices. The 

linear range of the function coincidences with the middle part of the generation stack (merit 

order curve). There, we find the variable power generation cost function of mid-load 

producing plants (hard coal, CCGT). This function increases with little curvature, 

approximately linear with demand, and is not sensitive to changes in demand or supply. 

Contrasting, the upper generation stack, consisting of plants with high costs (eg, gas 

turbines), is strongly curved upwards and sensitive to load changes. This can cause upward 

spikes. The lower end of the stack contains generation with variable costs close to 0, 

amongst others, base load plants (lignite, nuclear) and wind generation. There is no 

curvature, but the inflexible, must-run characteristics of these generation types nevertheless 

makes them sensitive to load changes and can lead to spot auction offers far below 

production costs (as shown above).     

Estimation and simulation results 

Concerning the initially described irregularities in the ERCOT price history some 

modifications and simplifications have been made in parameter estimation and simulation, 

compared to the standard method for the EEX case. 

The change of spike intensity over time is not accounted for (by, eg, parameters changing 

over time). Instead, a constant parameter set is estimated from a “homogenized” history. 
This means, only the distribution of historical prices is fitted, discarding the original day-to-

day estimation based on a Bayesian scheme. Since we know that the model price 

distribution is a mixture of a normal (the mean-reverting regime) and two compound normal 

distributions (the spike regimes), most spot price model parameters can be estimated by 

maximum likelihood estimation on the price distributions. One further step is needed. We 

need the day-to-day regime switching probabilities for the Markov matrix, but only know the 

total probability of the process being in the spike regime from the mixture-of-distributions 

weights. To this end the average time the process stays in the spike regime is estimated. All 

                                                           

9
 Clearly, in the future there should be a mathematical method in place for determining the parameter values, 

see Conclusions. 



 

 

days’ prices are labelled as spikes if their normalized likelihoods of belonging to the spike 

price distributions is >0.5. The parameters are shown in Tab. 3. One spike regime was 

discarded by the estimation. Both upwards and downwards spikes are captured by a single, 

wide distribution, which seems a more parsimonious modelling of the strongly volatile price 

dynamics than two distinct spike modes. The pronounced spikiness can be seen from the 

high value of about 20% for the probability of jumping from the normal into the spike 

regime. 

Another model modification had to be applied to the simulation regarding the significant 

inhomogenity of the deterministic price level (which, as for the EEX case, is estimated and 

then re-added to the simulation stochastic process). If in the simulation a price level 

combines with a spike in way that does not correspond to a historical situation (as described 

above: all stochastic parameters including spikes are made uniform over the complete 

period), some spikes with unrealistically large amplitudes are produced ( %5.0 of all 

prices). These are capped and floored to the historically observed absolute maximum and 

minimum. Otherwise, two or three of those events strongly distort the moments of the 

simulated price distribution.            

The simulated trajectories, see Fig 12, reveal that the “average dynamics” is matched. The 
effect of artificial parameter homogeneity can be observed: some spikes occur at 

(historically) wrong times (other trajectories match better).  The moments of simulated and 

historical price distributions match satisfyingly, see Tab 4 (although less well than for the EEX 

case). 

An application example: a simple option on the spot price 

Knowing that the power market can exhibit very low or even negative prices in the future a  

market participant seeks to protect himself against the risk. Eg, a power generator can 

purchase a strip of, eg, daily put options on the spot price to secure minimum revenues for 

his production. The payoff function for the option for day T is the expected value 

 

  0)),((maxE TpKV   

 

, given a strike K and maturity time T
10

. Here, it is shown how this put option value can be 

calculated in the hyperbolic sine framework and how values differ from a conventional log 

approach.  

In order to make the central effect clear the initially introduced simple OU process
11

 is again 

employed, omitting a specific spike regime treatment. As shown above the stationary price 

distribution )(Tp  is the Johnson distribution ( p ): 
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10
 For reasons of simplicity, an interest rate of 0 is assumed. 

11
 A deterministic component is omitted.   



 

 

 

, here formulated for the full area hyperbolic sine transformation 
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starting out with the log transformation px ln , ( 0p ), the usual log-normal distribution  
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results. For V there are explicit formulas for both the log and the hyperbolic case. For the log 

case it is the usual expression: 
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, with   being the cumulative standard normal distribution function and 
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 . For the hyperbolic case we get: 
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We assume that we know the maturity spot price )(Tp distribution’s expected value 

 )(Em Tp  and standard deviation  12
.  We then can fit both the log-normal and the 

Johnson distribution, comparing the option values based on either assumption. We have  
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An exemplary calculation is carried out with   40)(E Tp , 10K ,  50,...,10,5  and  

20 , 30 . The results are shown in Fig 13. To begin with, SUV is much bigger than 
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 From the forward curve and a market volatility indicator. 



 

 

LNV for large  . This is trivial because )( pf SU then comprises negative prices as opposed to 

)( pf LN . However, LNSU VV  holds for all  , both valuations do not coincidence for the case 

of a positive prices only distribution. The explanation comes from the form of the price 

distribution. The Johnson distribution attributes a bigger mass to small prices 0p . This 

result indicates that the option valuation based on the hyperbolic sine framework should 

always be considered to avoid undervaluation, being aware of the fact that every power spot 

market exhibits a substantial amount of prices 0p , even if negative prices are not 

permitted. 

Concluding remarks 

It is increasingly recognized that negative prices are an inherent feature of the commodity 

power. Constraints on the supply side limit the flexibility of a generation facility and forces to 

sell off production with discount in case of demand slumps. This is why permitting negative 

bid, offers and auction results in the power spot market is economically reasonable.  

 Several non-European power markets pioneered, the European markets EEX and Nordpool 

have introduced negative prices recently. It is an exciting question if with the ongoing 

European market integration the concept is going to spread to other regional markets. Eg, a 

formal spot market coupling is on the way to be realized between Germany/Scandinavia and 

France/Belgium/Netherlands.    

It is obvious that under these circumstances the so far prevailing tendency to deal with the 

“problem” by “workarounds” or exclusion/negligence is to be abandoned and sound 
integration into the various stochastic power price modelling frameworks needs to be 

achieved. 

The solution proposed in this article is to replace the usual initial log transformation of prices 

by the area hyperbolic sine transformation. Several arguments were provided to support this 

approach. Firstly, the choice is natural, leaving the transformation for positive prices almost 

unchanged and mirroring the logarithm feature to the negative price axis. This choice is 

equivalent with the finding that the price dynamics in negative price region is analogous to 

the one in the positive region, volatility basically depending on the absolute price level. 

Secondly, combining the hyperbolic sine transformation with stochastic models does not 

significantly increase the difficulty of treatment compared to the log case. Interestingly, an 

analogue to the log-normal distribution as a theoretical “basic distribution” is found: the 

Johnson distribution. This is consistent with the difficulty argument since it is also a closed 

form expression. This convenient characteristics has been exploited for the valuation of an 

option in the last section. 

Thirdly, the area hyperbolic sine transformation exhibits a connection to fundamentals of 

power prices, the generation stack and its production cost function. This is, eg, constituted 

by a linear regime of transformation for the moderate (normal) price regime. It has been 

noted before (Weron, 2008) that the log transformation does not work well in that price 

regime, producing artificial distortions. Here, it was found that the area hyperbolic sine 

transformation as an effective combination of linear and log transformation performs well, 

preserving the characteristics of the data. 

Summing up, it is posited that the introduction of the area hyperbolic sine transformation is 

the natural step for power price modelling as response to the permit of negative prices at 

power spot exchanges. This is also supported by the fact that the transformation can be 

applied to power markets with positive prices only equally well. 



 

 

There is one important issue for negative power prices to be dealt with in future work. The 

power markets are not yet in a “steady state” regarding the handling of negative price 
occurrences. The changing nature of these occurrences was an issue in this work for the case 

of ERCOT West. It is also obvious when comparing EEX 2010 data with 2009. The frequency 

and severity of negative occurrences is strongly reduced in 2010 compared to 2009. This is 

on the hand attributed to a learning effect of energy traders, eg, changed power plant 

production schedules. On the other hand, this is due to changing regulations concerning 

renewable energy (eg, wind) marketing. So, it is difficult to anticipate currently how a steady 

market state in the future could look like and the energy trading business is reliant on close-

to-the-market modelling activities on this subject.               
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Fig. 1: The history of EEX hourly prices.  
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Fig. 2:  Price transformation  p

1sinh   along with )ln( p and )ln( p for comparison.  
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Fig. 3:  Bid/demand (grey) and ask/supply (red) curves of hours 1 (left) and 14 (right) for the 

EEX auctions of Dec 26th, 2009 (schematically re-drawn).  
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Fig. 4: Qualitative comparison of empirical spot price distributions and theoretical 

distributions. Theoretical distributions: Johnson and log-normal with same mean and 

standard deviation (except for the negative mean case, right). 
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Fig. 5:  EEX hourly and daily price history from Oct 2008 till Jan 2010, time period as taken for 

modelling. 
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Fig 6:  Scaling transformations of historical hourly price profiles EEX to new daily average 

prices (20 €/MWh for both cases). Left: simple factor scaled profile hidden by practically 
identical hyperbolic sine scaled profile. 
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Fig 7: Exemplary simulated and historical trajectories. 
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Fig 8: Histograms of daily ( x ) and hourly prices (the above exemplary simulated scenario 

only for hourly prices). Left: simulation, right: historical.  
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Fig 9:  EROCT West market clearing price history Jan 2008 – Feb 2010. 
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Fig 10:  Applying the arsinh transformation 
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
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x 1sinh' to ERCOT daily prices. Left: 

0 , 1 . Right: 20 , 30 . 
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Fig 11:  Depiction of arcsinh transformations as applied above. 
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Fig 12:  Exemplary simulated and historical trajectory ERCOT. 
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Fig 13:  Top: Value of the put option over standard deviation ))(( Tp  of the spot price at 

maturity.  Bottom: Johnson and log-normal distribution of )(Tp  for two exemplary ))(( Tp . 

 

 



 

 

EEX

Time-series parameters: Switch probabilities

Normal regime α 0,42 from N to H 0,95%

μ 0,02 from H to N 71,15%

σ 0,11 from N to L 1,93%

High-spike regimμH 0,35 from L to N 78,50%

σH 0,06

λH 0,10

Low-spike regimμL 0,24

σL 0,04

λL 2,00  
Tab. 1:   Parameter estimates for the (daily) spot price model, case EEX. 

 

EEX

historical prices simulated prices

daily arsinh prices, deseasonalized

mean 0,00

standard deviation 0,18 0,18

skewness -1,88 -1,56

kurtosis 13,03 11,19

daily prices

mean 44,74 44,86

standard deviation 17,69 17,68

skewness 1,51 1,44

kurtosis 5,92 5,93

hourly prices

mean 44,74 44,83

standard deviation 24,46 23,94

skewness 1,89 1,57

kurtosis 20,02 10,36  
Tab 2: Statistics of historical and simulated prices EEX. Simulation figures aggregated from 

100 scenarios.   

 

ERCOT

Time-series parameters: Switch probabilities

Normal regime α 0,59 from N to S 21,39%

μ 0,03 from S to N 60,62%

σ 0,32

Spike regime μS 0,00

σS 0,74

λ 0,50  

Tab 3: Parameter estimates for the (daily) spot price model, case ERCOT. 

 



 

 

ERCOT

historical prices simulated prices

daily arsinh prices, deseasonalized

mean 0,04

standard deviation 0,53 0,52

skewness -0,43 0,19

kurtosis 6,49 5,51

daily prices

mean 39,40 40,63

standard deviation 32,40 32,83

skewness 2,50 2,73

kurtosis 18,39 19,78  

Tab 4:  Statistics of historical and simulated prices ERCOT. Simulation figures aggregated 

from 100 scenarios.   

 


