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A non-cooperative Pareto-efficient solution to
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Abstract

The Prisoner’s Dilemma is a simple model that captures the essential contradic-
tion between individual rationality and global rationality. Although the single-shot
Prisoner’s Dilemma is usually viewed simple, in this paper we will propose an al-
gorithmic model and a non-binding scheme to help non-cooperative agents obtain
Pareto-efficient payoffs self-enforcingly. The scheme stems from quantum game the-
ory, but is applicable to the macro world immediately.
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1 Introduction

The Prisoner’s Dilemma (PD) is perhaps the most famous model in the field
of game theory. In the original version of PD, two prisoners are arrested by
a policeman. Each prisoner must independently choose a strategy between
“Confessing” (denoted as strategy “Defect”) and “Not confessing” (denoted
as strategy “Cooperate”). The payoff matrix of PD is shown in Table 1. It
has been known that even if two agents can communicate and sign a non-
binding contract to cooperate before moving, the contract cannot be self-
enforcing. As long as two agents are rational, the unique Nash equilibrium
shall be (Defect, Defect), which results in a Pareto-inefficient payoff (P, P).
That is the dilemma.

Table 1: The payoff matriz of PD, where T > R > P > S, and R > (T'+S)/2.
The first entry in the parenthesis denotes the payoff of agent 1 and the second
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stands for the payoff of agent 2.

agent 2
agent 1 Cooperate | Defect
Cooperate (R, R) (S, T)
Defect (T, S) (P, P)

Roughly speaking, there are two sorts of PD: single-shot PD and iterated
PD. Nowadays a lot of studies on PD are focused on the latter case. For
example, Axelrod [1] investigated the evolution of cooperative behavior in
well-mixed populations of selfish agents by using PD as a paradigm. Nowak
and May [2] induced a spatial structure in PD, i.e., agents were restricted to
interact with his immediate neighbors. Santos and Pacheco [3] found that when
agents interacted following scale-free networks, cooperation would become a
dominating trait throughout the entire range of parameters of PD. Perc and
Szolnoki [4] proposed that social diversity could induce cooperation as the
dominating trait throughout the entire range of parameters of PD.

Compared with the iterated PD, the single-shot PD is usually viewed simple.
In 1999, Eisert et al [5] proposed a quantum-version model of PD. The model
showed “quantum advantages” as a result of a novel quantum Nash equilib-
rium, which help agents reach the Pareto-efficient payoff (R, R). Hence, the
agents escape the dilemma. In 2002, Du et al [6] gave an experiment to carry
out the quantum PD.

In Eisert et al’s model, there exists an arbitrator and he must perform quan-
tum measurements to readout the messages of agents. This demand is some-
what not practical for macro disciplines such as politics and economics, be-
cause the arbitrator should play a neutral role in the game: His reasonable
actions should be to receive agents’ strategies and assign payoffs to agents
according to Table 1. If he is willing to work using an additional quantum
equipment which lets agents to obtain Pareto-efficient payoffs (R, R), then
why does not he directly assign the Pareto-efficient payoffs to the agents?

In order to make Eisert et al’s model more practical, in Section 2 we will give
an amended version of Eisert et al’s model. In Section 3, we will propose an
algorithmic model to simulate the amended model. Section 4 is the main part
of this paper, where we will categorize the single-shot PD into five types, and
propose a non-binding scheme to help non-cooperative agents obtain Pareto-
efficient payoffs self-enforcingly. Section 5 gives some discussions. The last
section draws conclusion.
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Fig. 1. The amended version of Eisert et al's model . Each agent has
a quantum coin and a classical card. Each agent independently
performs a local unitary operation on his/her own quantum coin.
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2 An amended version of Eisert et al’s model

Let the set of two agents be denoted as N = {1,2}. Following formula (4) in
Ref. [7] and Ref. [8], two-parameter quantum strategies are drawn from the
set:

5060, ) = eild’ .COS((Q/Q) iAsin(9/2)
isin(0/2) e cos(6/2)
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where 7 is an entanglement measure), I = ©(0,0), D = &(m,7/2), C
w(0,7/2).

Without loss of generality, we assume:

1) Each agent j € N has a quantum coin j (qubit) and a classical card j
connected to the arbitrator. The basis vectors |C) = (1,0)7, |D) = (0,1)T of
a quantum coin denote head up and tail up respectively.

2) Each agent j € N independently performs a local unitary operation on
his/her own quantum coin. The set of agent j’s operation is Qj = 0. A
strategic operation chosen by agent j is denoted as w; € Qj. If w; = I, then
w;(|C)) = 1C), w;(ID)) = |D); I &; = D, then w;(|C)) = |D), w;(|D)) = [C).
I denotes “Not flip”, D denotes “Flip”.

3) The two sides of a card are denoted as Side 0 and Side 1. The messages writ-
ten on the Side 0 (or Side 1) of card j is denoted as card(j,0) (or card(j,1)).
card(j,0) represents “Cooperation”, and card(j, 1) represents “Defect”.

4) There is a device that can measure the state of two quantum coins and
send messages to the designer.

Fig. 1 shows the amended version of Eisert et al’s model. Its working steps
are shown as follows:
Step 1: The state of each quantum coin is set as |C). The initial state of the



two quantum coins is |1y) = |CC).

Step 2: Let the two quantum coins be entangled by J. [¢) = J|CC).

Step 3: Each agent j independently performs a local unitary operation w; on
his/her own quantum coin. |13) = [y ® &y]J|CC).

Step 4: Let the two quantum coins be disentangled by J*. [i)3) = Jt[o; ®
@y]J|CC).

Step 5: The device measures the state of the two quantum coins and sends
card(j,0) (or card(j,1)) as the message m; to the arbitrator if the state of
quantum coin j is |C) (or |D)).

Step 8: The arbitrator receives the overall message m = (my, mg) and assigns
payoffs to the two agents according to Table 1. END.

Obviously, in the amended model the arbitrator does not need to work on
an additional quantum equipment as Eisert et al’s model requires. Thus, the
amended model is more suitable for macro applications.

3 An algorithmic version of the amended Eisert et al’s model
3.1 Matriz representations of quantum states

In quantum mechanics, a quantum state can be described as a vector. For
a two-level system, there are two basis vectors: (1,0)7 and (0,1)”. In the
beginning, we define:

C) =[1,0", |D) = [0, 1), |CC) = [1,0,0,0]",
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Fig. 2. The inputs and outputs of the algorithmic model.
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Following Ref. [11], since only two values in [¢);) are non-zero, we only need
to calculate the leftmost and rightmost column of @& ® wy to derive [ihy) =

01 ® Wol|9h).

3.2 An algorithmic model

Following Ref. [11], here we will propose an algorithmic model that simulates
the amended Eisert et al’s model. Since the entanglement measurement + is
a control factor, it can be simply set as its maximum /2. The inputs and
outputs of the algorithmic model are shown in Fig. 2. The Matlab program is
shown in Fig. 3(a)-(d).

Inputs:

1) &,¢4, j = 1,2: the parameters of agent j’s local operation w;, §; €
[077]7(% < [0771—/2]'

2) card(3,0),card(j,1), 7 = 1,2: the messages written on the two sides of
agent j’s card.

Outputs:
m; € {card(j,0),card(j,1)}, j = 1,2: agent j’s message that is sent to the
arbitrator.

Procedures of the algorithmic model:

Step 1: The computer checks the number of channels that it controls.

Step 2: If only one channel is available to the computer (suppose the channel
belongs to agent j), then the computer sends card(j, 1) as message m; to the



arbitrator. END.

Step 3: Reading two parameters &; and ¢; from each agent j (See Fig. 3(a)).
Step 4: Computing the leftmost and rightmost columns of &y ® W, (See Fig.
3(b)). A

Step 5: Computing the vector representation of |¢g) = [ ® W] Jr/2|CC).
Step 6: Computing the vector representation of |¢3) = j;r/2|¢2>.

Step 7: Computing the probability distribution (13|13) (See Fig. 3(c)).

Step 8: Randomly choosing a “collapsed” state from the set of all four possi-
ble states {|CC), |CD),|DC),|DD)} according to the probability distribution
(3|¢3).

Step 9: For each j € I, the computer sends card(j,0) (or card(j,1)) as mes-
sage m; to the arbitrator if the j-th basis vector of the “collapsed” state is

|C) (or |D)) (See Fig. 3(d)).

4 Five types of PD

Up to now, PD has been generalized to many disciplines such as politics, eco-
nomics, sociology, biology and so on. Despite these widespread applications,
people usually do not care how agents obtain their payoffs. For example, Axel-
rod [1] used the word “yield” to describe how the agents obtained the payoffs.
Nowak and May [2] used the word “get”, and Santos and Pacheco [3] used the
word “receive” respectively. One may think that such question looks trivial
at first sight. However, as we will show in this section, there is an interesting
story behind this question. In what follows, we will categorize the PD into five
different types.

Type-1 PD:

1) There are two agents and no arbitrator in the game.

2) The strategies of agents are actions performed by agents. The agents’ payoffs
are determined by the outcomes of these actions and satisfy Table 1.

For example, let us neglect the United Nation and consider two countries (e.g.,
US and Russia) confronted the problem of nuclear disarmament. The strategy
C means “Obeying disarmament”, and D means “Refusing disarmament”. If
the payoff matrix confronted by the two countries satisfies Table 1, the nuclear
disarmament game is a type-1 PD.

Type-2 PD:

1) There are two agents and an arbitrator in the game.

2) The strategies of agents are actions performed by agents. The arbitrator
observes the outcomes of actions and assign payoffs to the agents according
to Table 1.

For example, let us consider a taxi game. Suppose there are two taxi drivers
and a manager. Two drivers drive a car in turn, one in day and the other



in night. The car’s status will be very good, ok or common if the number
of drivers who maintain the car is two, one or zero. The manager observes
the car’s status and assigns rewards Ry, Ry, Ry to each driver respectively,
where Ry > Ry > Ry. The whole cost of maintenance is c. Let the strategy C
denote “Maintain”, and D denote “Not maintain”. The payoff matrix can be
represented as Table 2. If Table 2 satisfies the conditions in Table 1, the taxi
game is a type-2 PD.

Table 2: The payoff matrix of type-2 PD.

agent 2
agent 1 ¢ D
C (R2 — 0/2, R2 — 0/2) (Rl — C, Rl)
D (Rl, R1 — C) (Ro, Ro)
Type-3 PD:

1) There are two agents and an arbitrator in the game.

2) The strategy of each agent is not an action, but a message that can be sent
to the arbitrator through a channel. The arbitrator receives two messages and
assign payoffs to the agents according to Table 1.

3) Two agents cannot communicate with each other.

For example, suppose two agents are arrested separately and required to report
their crime information to the arbitrator through two channels respectively. If
the arbitrator assigns payoffs to agents according to Table 1, this game is a
type-3 PD.

Type-4 PD:

Conditions 1-2 are the same as those in type-3 PD.

3) Two agents can communicate with each other.

4) Before sending messages to the arbitrator, two agents can construct a non-
binding scheme (We will show that this scheme is self-enforcing), which spec-
ifies a dynamic game with three stages:

Stage 1 (Initialization): Two agents design an algorithmic model specified in
Section 3.2.

Stage 2: (Actions of two agents) For each agent j € N, he independently faces
two strategies:

S(j,0): Participate the algorithmic model, i.e., leave his channel to the com-
puter, and submit &;, ¢;, card(j,0), card(j, 1) to the computer.

S(j,1): Not participate the algorithmic model, i.e., take back his channel, and
submit a message m; to the arbitrator directly.

Stage 3: (Actions of the arbitrator) The arbitrator receives two messages and
assigns payoffs to agents according to Table 1.

The algorithmic model is triggered if at least one agent transfers his channel
to the computer. From the viewpoints of the arbitrator, nothing is changed.



However, the payoff matrix confronted by two agents is now changed to Table
3. For each entry of Table 3, we give the corresponding explanation as follows:
1) Strategy (5(1,0),5(2,0)): This strategy means two agents both participate
the algorithmic model and submit parameters to the computer. According to
Ref. [11], for each agent j € N, his dominant parameters are £, = 0 and
¢; = m/2, which result in a Pareto-efficient payoff (R, R).

2) Strategy (5(1,0),5(2,1)): This strategy means agent 1 participates the al-
gorithmic model, but agent 2 takes back his channel and submits a message to
the arbitrator directly. Obviously, the unique rational message sent by agent 2
is my = card(2,1). On the other hand, the algorithmic model finds that only
one channel (transferred from agent 1) is available, so the computer will send
my = card(1, 1) to the arbitrator. As a result, the arbitrator will assign (P, P)
to two agents according to Table 1.

3) Strategy (S(1,1),.5(2,0)): This case is similar to the above case. The arbi-
trator will assign (P, P) to two agents.

4) Strategy (S(1,1),5(2,1)): This strategy means two agents both take back
their channels and send messages to the arbitrator directly. Obviously, the
dominant message sent by each agent j is card(j, 1), and the arbitrator will
assign the Pareto-inefficient payoff (P, P) to agents.

Table 3: The payoff matriz of two agents by using the non-binding scheme,
where R, P are defined in Table 1, R > P.

agent 1 a8t 21 g9 0) | 5(2,1)
S(1,0) (R, R) | (P, P)
S(1,1) (P, P) | (P, P)

From Table 3, it can be seen that (S(1,0),5(2,0)) and (S(1,1),5(2,1)) are
two Nash equilibria, and the former is Pareto-efficient. Since two channels
have been controlled by the computer in Stage 1, in the end the Pareto-
efficient payoff (R, R) is self-enforcing. In this sense, the two agents escape the
dilemma.

Type-5 PD:
Conditions 1-3 are the same as those in type-4 PD.
4) The last condition of type-4 PD does not hold.

5 Discussions

The scheme revises common understanding on the Prisoner’s Dilemma. Some
readers may doubt its justification. We will discuss some possible doubts as
follows.



Q1: The scheme seems to be cooperative because in Stage 1, two agents must
agree to construct an algorithmic model, which acts as a correlation between
agents.

Al: As we have pointed out, from the viewpoints of the arbitrator, noth-
ing is changed. Thus, the so-called correlation between two agents is indeed
unobservable to the arbitrator. Put differently, the arbitrator cannot prevent
agents from constructing such algorithmic model. On the other hand, since
each agent can freely not participate the algorithmic model when he chooses
a strategy in Stage 2, the scheme is non-cooperative.

Q2: 1f the algorithmic model finds that two channels are available, can it sim-
ply send (card(1,0), card(2,0) to the arbitrator instead of running Steps 3-97
A2: The algorithmic model enlarges the strategy space of each agent from
a one-dimensional strategy space [0,1] to a two-dimensional strategy space
[0, 7] x [0,7/2], and generates the Pareto-efficient payoff (R, R) in Nash equi-
librium. The new game is non-cooperative. However, the idea in Question 3 re-
stricts the strategy space of each agent from a one-dimensional strategy space
[0,1] to a single point (0,7/2) in the two-dimensional space [0, 7] x [0, 7/2].
In this sense, two agents are required to cooperate and make commitments to
do so. This is beyond the range of non-cooperative game.

Remark: The type-1 and type-2 PD are not suitable for the scheme, because
the computer cannot perform actions on behalf of agents. The type-3 PD is
not suitable either because two agents are separated, therefore no common
device can send messages to the arbitrator on behalf of them. The type-5 PD
is not suitable for the scheme because Condition 4 in type-4 PD is vital and
indispensable for the scheme.

6 Conclusion

In this paper, we categorize the well-known PD into five types and propose
a non-binding scheme to help agents escape a special type of PD, i.e., the
type-4 PD. One point is important for the novel result: Usually people think
the payoff matrices confronted by agents and the arbitrator are the same (i.e.,
Table 1). However we argue that for the case of type-4 PD, the two payoff
matrices can be different: The arbitrator still faces Table 1, but the agents
can self-enforcingly change their payoff matrix to Table 3 by virtue of the
non-binding scheme, which leads to a Pareto-efficient payoff.
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%
%  Step 3 — Step 9 of the algorithmic model
%

% Defining the array of (¢;,¢;), j =1,2
xi=zeros(2,1); S
phi=zeros(2,1);

% Reading agent 1's parameters (¢,,¢,). For example, & = C =dx0,71/2)
xi(1)=0;
phi(1)=pi/2;

% Reading agent 2's parameters (¢,, ¢,). For example, &, = C= 0,71/ 2)
xi(2)=0;
phi(2)=pi/2;

Fig. 3 (a). Reading each agent j's parameters ¢, and ¢,/ = 12.

% Defining two 2*2 matrices A and B
A=zeros(2,2);
B=zeros(2,2);

% Let A represents the local operation &
A(1,1)=exp(i*phi(1))*cos(xi(1)/2);
A(1,2)=i*sin(xi(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(xi(1)/2);

, of agent 1.

% Let B represents the local operation &, of agent 2.
B(1,1)=exp(i*phi(2))*cos(xi(2)/2);

B(1,2)=i*sin(xi(2)/2);
B(2,1)=B(1,2);
B(2,2)=exp(-i*phi(2))*cos(xi(2)/2);

% Computing the leftmost and rightmost columns of &; [ &,
C=zeros(4, 2);

for row=1:2
C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end

A=C;

% Now the matrix A contains the leftmost and rightmost columns of &, [ &,

Fig. 3 (b). Computing the leftmost and rightmost columns of &, [ &,
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% Computing |¢/,) =[@ O &/ ,,|CC)
psi2=zeros(4,1);
forrow=1:4

psi2(row)=(A(row, 1)+A(row,2)*i)/sqrt(2);
end

% Computing “//3> :J;/z‘wz>
psi3=zeros(4,1);
for row=1:4
psi3(row)=(psi2(row) - i*psi2(5-row))/sqrt(2);
end

% Computing the probability distribution (¢, |¢;)
distribution=psi3.*conj(psi3);
distribution=distribution./sum(distribution);

Fig. 3 (¢). Computing |¢,),|&s), (&, |¢;).

% Randomly choosing a “collapsed” state according to the probability distribution <l//3 \403)
random_number=rand;
temp=0;
for index=1: 4

temp = temp + distribution(index);

if temp >= random_number

break;

end

end

% indexstr: a binary representation of the index of the collapsed state
% ‘0" stands for |C), ‘1" stands for | D)

indexstr=dec2bin(index-1);

sizeofindexstr=size(indexstr);

% Defining an array of messages for two agents
message=cell(2,1);

% For each agent j [N, the algorithmic model generates the message m;
for index=1 : 2 - sizeofindexstr(2)
message{index, 1}=strcat(‘card(',int2str(index),',0)");
end
for index=1 : sizeofindexstr(2)
if indexstr(index)=="0' % Note: ‘0’ stands for |C)
message{2-sizeofindexstr(2)+index,1}=strcat('card(',int2str(2-sizeofindexstr(2)+index),',0)");
else
message{2-sizeofindexstr(2)+index,1}=strcat('card(',int2str(2-sizeofindexstr(2)+index),',1)");
end
end

% The algorithmic model outputs the messages m,m, to the arbitrator
for index=1:2

disp(message(index));
end

Fig. 3 (d). Computing the messages m,m, that agents submit to the arbitrator.
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