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We discuss linear regression approaches to conditional Value-at-Risk and Average Value-at-Risk (Condi-
tional Value-at-Risk, Expected Shortfall) risk measures. Two estimation procedures are considered for each
conditional risk measure, one is direct and the other is based on residual analysis of the standard least
squares method. Large sample statistical inference of the estimators obtained is derived. Furthermore, finite
sample properties of the proposed estimators are investigated and compared with theoretical derivations in
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1. Introduction

In financial industry, sell-side analysts periodically publish the recommendation of underlying secu-
rities with target prices. (i.e., Goldman Sach’s Conviction Buy List). Those recommendations reflect
specific economic conditions and influence investors’ decisions and thus price movements. However,
this type of analysis does not provide risk measures associated with underlying companies. We
see the similar phenomena in the buy-side analysis as well. Each analyst or team covers different
sectors (e.g., Airlines VS Semi-conductors) and they typically make separate recommendations for
the portfolio managers without associated risk measures. However, risk measures of covering com-
panies are one of the most important factors to make investment decisions. Our methods in this
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paper provide efficient ways to estimate risk measures for a single asset at given market conditions.
These information could be useful for investors and portfolio managers to compare prospective
securities and pick the best. For example, when portfolio managers expect the crude oil price hike
(due to inflation or geo-political conflicts), they could select securities less sensitive to oil price
movement in the airline industry.

Let (€2, F) be a measurable space equipped with probability measure P. A measurable function
Y :Q — R is called a random variable. With a random variable Y, we associate a number p(Y)
to which we refer as risk measure. We assume that “smaller is better”, i.e., between two possible
realizations of random data we prefer the one with smaller value of p(-). The term “risk measure”
is somewhat unfortunate since it can be confused with the probability measure. Moreover, in appli-
cations one often tries to reach a compromise between minimizing the expectation (i.e., minimizing
on average) and controlling the associated risk. Thus, some authors use the term “mean-risk mea-
sure”, or “acceptability functional” (e.g. Pflug and Rémisch 2007). For historical reasons, we use
here the “risk measure” terminology. Formally risk measure is a function p:Y — R defined on an
appropriate space ) of random variables. For example, in some applications it is natural to use
the space Y = L,(Q, F, P), with p € [1,00), of random variables having finite p-th order moments.

It was suggested in Artzner et al. (1999) that a “good” risk measure should have the following
properties (axioms), and such risk measures were called coherent.

(A1) Monotonicity: If YY" €)Y and Y = Y”, then p(Y') > p(Y").
(A2) Convexity:
p(tY + (1= Y") < tp(Y) + (1= 1)p(Y)
forall Y)Y’ €Y and all t € [0,1].
(A3) Translation Equivariance: If a e R and Y € ), then p(Y +a) =p(Y) +a.
(A4) Positive Homogeneity: If t >0 and Y € Y, then p(tY) =tp(Y).
The notation Y = Y’ means that Y (w) > Y'(w) for a.e. w € Q.

An important example of risk measures is the Value-at-Risk measure

V@R, (Y) = inf{t: Fy (t) > al, (1)



where « € (0,1) and Fy(t) = Pr(Y <t) is the cumulative distribution function (cdf) of Y, i.e.,
V@R, (Y) = Fy ' () is the left side a-quantile of the distribution of Y. This risk measure satisfies
axioms (A1),(A3) and (A4), but not (A2), and hence is not coherent. Another important example

is the so-called Average Value-at-Risk measure, which can be defined as
_ )L _
AV@R,(Y) = %gﬂg{w (1—a) ' BlY —t]4} (2)
(cf., Rockafellar and Uryasev 2002), or equivalently
1 1
AVQR,(Y) = 14 / V@R, (Y)dr. (3)
—a,

Note that AVQR, (Y') is finite iff E[Y' ], < co. Therefore, for the AV@QR,, risk measure it is natural to
use the space Y = L, (£, F, P) of random variables having finite first order moment. The Average
Value-at-Risk measure is also called the Conditional Value-at-Risk or Expected Shortfall measure.
(Since we discuss here “conditional” variants of risk measures, we use the Average Value-at-Risk
rather than Conditional Value-at-Risk terminology.)

The Value-at-Risk and Average Value-at-Risk measures are widely used to measure and man-
age risk in the financial industry (e.g., see Jorion 2003, Duffie and Singleton 2003, for the finan-
cial background and various applications). Note that in the above two examples, risk mea-
sures are functions of the distribution of Y. Such risk measures are called law invariant. Law
invariant risk measures have been studied extensively in the financial risk management litera-
ture (e.g., Acerbi and Tasche 2002, Frey and McNeil 2002, Scaillet 2004a, Chen and Tang 2005,
Zhu and Fukushima 2009, Jackson and Perraudin 2000, Berkowitz et al. 2002, Bluhm et al. 2002,
and reference therein).

Now let us consider a situation where there exists information composed of economic and market
variables X, ..., X}, which can be considered as a set of predictors for a variable of interest Y. In
that case one can be interested in estimation of a risk measure of Y conditional on observed values
of predictors X1,..., X;. For example, suppose we want to measure (predict) the risk of a single

asset given specific economic conditions represented by market index and interest rate. Then, for a



random vector X = (X1, ..., X;)" of relevant predictors, the conditional version of a law invariant
risk measure p, denoted p(Y'|X) or p)x (Y'), is obtained by applying p to the conditional distribution
of Y given X. In particular, VAR, (Y|X) is the a-quantile of the conditional distribution of Y
given X, and

1 1
AV@RC,(Y|X):E/ V@R, (Y|X)dr. (4)

Recently several researchers have paid attention to estimation of the conditional risk measures.
For the conditional Value-at-Risk, Chernozhukov and Umantsev (2001) used a polynomial type
regression quantile model and Engle and Manganelli (2004) proposed the model which specify the
evolution of the quantile over time using a special type of autoregressive process. In both models,
unknown parameters were estimated by minimizing the regression quantiles loss function. For
conditional Average Value-at-Risk, Scaillet (2004b) and Cai and Wang (2008) utilized Nadaraya-
Watson (NW) type nonparametric double kernel estimation while Peracchi and Tanase (2008) and
Leorato et al. (2010) used the semiparametric method. To the best of our knowledge, no research
addresses the statistical inference of parametric approach (e.g. quantile regression based procedure)
for the conditional Average Value-at-Risk.

In this paper, we discuss estimation procedures for conditional risk measures, specifically for
conditional Value-at-Risk and Average Value-at-Risk measures. We assume the following linear
model (linear regression)

Y:/BO+BTX+€7 (5)

where 8, and B = (fi, ..., ;)" are unknown parameters of the model and the error (noise) random
variable ¢ is assumed to be independent of random vector X. Meaning of the model (5) is that
there is a true (population) value 35, 8" of the parameters for which (5) holds. Sometimes we will
write this explicitly, and sometimes suppress this in the notation.

Let p(-) be a law invariant risk measure satisfying axioms (A1),(A3) and (A4), and p;x () be its
conditional analogue. Note that because of the independence of € and X, it follows that p;x(¢) =

p(e). Together with axiom (A4), this implies

px(Y)=px(Bo+B X +e)=Bo+B X +px(e) =B+ B X +p(e). (6)



Since By + p(e) = p(e + Po), we can assume that p(e) =0 by adding a constant to the error term. In
that case, for the true values of the parameters, we have p|x (Y) = 85 + B*TX . Hence, the question
is how to estimate these true values.

This paper is organized as follows. In Section 2 we review the quantile regression approach for the
estimation of conditional Value-at-Risk and compare it to another approach based on residuals of
the least squares estimation procedure. Section 3 describes two different estimation procedures for
the conditional Average Value-at-Risk — one is based on the mixed quantiles and the other is based
on residuals of the least squares estimation procedure which is similar to the respective approach
for the estimation of conditional Value-at-Risk described in Section 2. Asymptotic properties of
both estimators are provided as well. In Section 4 we investigate the finite sample and asymptotic
properties of the considered estimators. We present Monte Carlo simulation results under different
error distribution assumptions. Later, we illustrate the performance of different methods on the
real data (different financial asset classes) in Section 5. Finally, Section 6 gives some remarks and

suggestions for future directions of research.
2. Estimation of Conditional Value-at-Risk

Suppose that we have N observations (data points) (Y;, X;), i =1,..., N, which satisfy the linear
regression model (5), i.e.,

K:/BO'l_ﬂTXz-l_Sza Z:]-aaN (7)

We assume that: (i) X;, i =1,..., N, are iid (independent identically distributed) random vectors,
and write X for random vector having the same distribution as X, (ii) the errors ey, ..,ex are iid
with finite second order moments and independent of X ;. We denote by o = Var[e;] the common
variance of the error terms.

Note that (7) can be written as

Y:X[/B0§,6]+ev (8)

where Y = (Y1,...,Yn)" is N x 1 vector of responses, X is N x (k + 1) data matrix of predictor

variables with rows (1,X), i=1,...,N, (i.e., first column of X is column of ones), 8= (B4, ..., B)"



vector of parameters and €= (g1,..,ey)" is N x 1 vector of errors. By [fy; 8] we denote (k+ 1) x 1
vector (B, 8")T. It is also possible to view data points X; as deterministic. In that case, we assume
that X has full column rank k + 1.

Next we review the quantile regression approach to estimation of V@R, (Y| X') and then consider

an alternative method which is based on least squares residuals.

2.1. Review of Quantile Regression Approach to Estimation of VAR, (Y|X)

Let ¢ : R — R, be a nonnegative valued convex function. The robust regression procedure

approaches the estimation problem by solving the following optimization problem (Huber 1981)

N
hﬁg;g;w (Yi—Bo—B7X), (9)
i.e., a solution (Bo,[i') of (9) is viewed as an estimator of (8;,8"). The function 9(-) is referred to
as an error function. By the Law of Large Numbers (LLN) we have that N ! times the objective
function in (9) converges (pointwise) w.p.1 to the function ¥ (f,,8) :=E [’(/)(Y — By — ﬂTX)]. We

also have

V(Bo,B) = E [ (Bs+ BT X +c—fo— BT X)] (10)
= E[$ (e~ (Bo— B;) — (B 6" X)].

Under mild regularity conditions derivatives of ¥ (f,, 3) can be taken inside the integral (expec-

tation) and hence

vﬁolll(ﬁOMB) = E[vﬁof‘/} (8_(50_186)_(13_13*)1—)()] (11)
= -E[y' (e = (Bo—B5) — (B-B")"X)],

VU (60, 8) = E[Vat (e — (Bo— ;) — (B~ F7)' X)] 1)
= B[/ (e~ (fo— 3) — (B— ) X) X].

Since € and X are independent, we obtain that derivatives of U (f,,3) are zeros at (5;,8") if the

following condition holds
E[¢' (e)] = 0. (13)

Since function U(-,-) is convex, it follows that if condition (13) holds, then W(-,-) attains its

minimum at (55, 8%). If the minimizer (55, 8") is unique, then the estimator (Bo, B) converges w.p.1
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to the population value (85,8%) as N — oo, i.e., (BO,B) is a consistent estimator of (85,8") (cf.
Huber 1981). That is, (13) is the basic condition for consistency of (5o, B).
For example if 9(t) :=t*, i.e., (9) is the least squares method, then condition (13) means that

E[e] =0. As another example for some o € (0,1) let (Recall that [¢]; = max{0,t}.)

$(t) = altly + (1 —a)[-1]4, (14)
i.e., (9) is the quantile regression method. In that case
vy ) a—11ift <0,
4 (t)_{ if¢> 0. (15)
(Note that here the error function (t) is not differentiable at ¢t =0 and its derivative ¢'(¢) is

discontinuous at ¢t = 0. Nevertheless all arguments can go through provided that the error term has

a continuous distribution.) Consequently
E[¢' (e)] = (@ = 1) FL(0) + (1 = F1(0)) = e = F2(0), (16)

and hence condition (13) holds iff F.(0) = «, or equivalently £~ («) = 0 provided this quantile is
unique. In that case the estimator (ﬁo,ﬁ) is consistent if the population value S is normalized
such that V@R, (e) = 0. That is, for this error function, /3’0 + BT:U is a consistent estimator of the
conditional Value-at-Risk VAQR, (Y'|z) of Y given X =.

It is also possible to derive asymptotics of the estimator (Bo, ['3) We assume in the remainder of
this section that condition (13) holds. Then under mild regularity conditions N'/2 [ﬁo — BB — B*]

. . . . . . . o -1
converges in distribution to normal with zero mean vector and covariance matrix £ ?n*€Q~", where
T

at2 t=0"

] L pi=EX], S:=E[XXT], 12 = B[ ()], n? := E[¢ (¢)?] and r := LELEH0L)
provided this derivative exists (cf., Shapiro 1989).

2 we have that k=2n* = o2, where 0% :=

For example in case of least squares, where 9(t) : =t
Var[e;]. In case of quantile regression, where #(+) is given in (14), we have (cf. Koenker 2005) that

k72n* = w?, where

w?i=—— (17)



provided the cdf F.(-) has nonzero density f.(-) = F/(-) at F'(«) (recall that it is assumed here

g

that F'(a) =0). Thus, the asymptotic variance of the corresponding quantile regression estimator

is (cf., Koenker 2005)

N 'Lz ;2] (18)

REMARK 1. Note that by LLN we have that N=' 3> X, and N=' 3>~ X, X converge w.p.1
as N — oo to the vector g and matrix X, respectively, and that ¥ — pp' is the covariance matrix
of X. In case of deterministic X;, we simply define vector g and matrix 3 as the respective
limits of N"'S_ X, and N"'3_~ X, X, assuming that such limits exist. It follows then that

NIX'X — Q.

2.2. Least Squares Residual Based Estimator of VAR, (Y|X)

Let Bo and B be the least squares estimators of the respective parameters of the linear model
(7). Recall that these estimators are given by [By; 8] = (X' X) 'X"Y, and vector of residuals e :=
Y - X[BO, B] is given by

e=Iy—H)Y =(Iy— H)e,

where Iy is the N x N identity matrix and H = X(X'X)"'X" is the so-called hat matrix. Note

that trace(H )=k +1 and we have that
gi—e;=[1;X]](X'X)'X"¢, i=1,...,N. (19)

If we knew errors ¢y, ..,ey, we could estimate p(e) by the corresponding sample estimate. How-
ever, the true values of the errors are unknown; therefore, we replace them by the residuals com-

puted by the least squares method. In case of p:=V@R,, this gives the estimate

— A

V@Ra(e) = Fﬁl(a) = €([Na]) (20)

€

of VAR, (¢), where ey < ... < ey are order statistics (i.e., numbers ey,...,ey arranged in the

increasing order), F,(-) = N} Zf;l [fe,00) () is the empirical cdf associated with ey, ...,en, L4(-) is



the indicator function of set A and [a] denotes the smallest integer > a. The estimate (7) can be

compared with the sample quantile

of the errors €, ..,en.

Residual based estimator for VOR,(Y|X)

We refer to B, +x '8 +\ﬁ@\Ra(e) as the residual based estimator of V@R, (Y |x). Suppose that
the set of population a-quantiles is a singleton. Then the residual based estimator Bo +x'B+
V/@\Ra(e) is a consistent estimator of VQR,(Y|x). Also, under the condition (13) and mild
regularity conditions, asymptotic variance of the residual based estimator can be approximated
by

N (w*+ 0Lz 17 [L;2"]T), (22)

where w? is given in (17).

For the derivation of above asymptotics, see Appendix A.
3. Estimation of Conditional Average Value-at-Risk

The following simple arguments (due to Gneiting 2009) explain why an analogue of quantile regres-
sion for estimation of AV@QR, does not exist. In order to construct such an estimator we would need
to find a function h(y,0) of y € R and # € R, convex in #, such that the minimizer of Es [h(Y,6)]
will be equal to AV@QR,, (F), i.e., AVAQR,, (F) = argming Ex [h(Y,0)]. Here F' denotes the probability
distribution of ¥ and we sometimes write AVQR, (F") instead of AV@R,(Y). Recall that AV@R,
has the property that AVQR, (Y 4+ a) = AVQR,(Y) + a for any a € R. It follows that the function
h(y, @) should be of the form h(y,0) = (y — @) for some convex function 7 : R — R. Consider
function ¥(t) =¢'(t). The function ¥(-) is monotonically nondecreasing, probably discontinuous,

and AV@R,, (F') should be a solution of the equation

Er[T(Y — )] =0. (23)
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Now let us consider the following probability distributions F; := ad, + (1 — @) (0y + d4), F» :=

ad. + (1 — @)d(p+ay/2 and
T+ F)=2ad,+1(1—a)dy+ 0.+ (1 — )04+ 3 (1 — @)d(s4a) 2,

where 0, denotes measure of mass one at z, a € (3,1) and a < b < ¢ < d are such that ¢ < $(b+d).
It is straightforward to calculate that AVQR,(F;) = AV@QR,(F,) = £(b+ d). This implies that if

AV@R, (F) is indeed a solution of (23), then AV@R, (1(F; + F)) should be also 1(b+ d). However,

1
2

since a € (3,1),

AVAR, (L(F + F>)) = 3(b+2ca(l — ) ' +2d) > L(b+2c+2d) > L(2b+ ¢+ 2d) > L(b+ d).

2

There are some alternatives for the Average Value-at-Risk, which we will discuss below. One

alternative is based on mixed quantile and the other one is based on least squares residuals.

3.1. Mixed Quantile Approach to Estimation of AV@R,(Y|X)

Let a; € (0,1) and A; >0, j =1,...,r, be such that 33", A\; =1, and

Yoy () = [t + (L= ) [ty J= 1,

Result of the following theorem is due to Rockafellar et al. (2008). Since its proof is short and

informative we give it for the sake of completeness.

THEOREM 1. Let S(X):=arg mi£5(X—c), where X is a random variable (having finite first order
ce

moment) and

E(X) = inf B{ b, (X —7): 22 Ay =0} (24)

TER”

Suppose that the minimizer S(X) is unique. Then
S(X)=>_A\V@R,, (X). (25)
j=1
Proof Let us consider the problem

l\gl‘irnE Z;:1 Yo, (X —c— Tj)j| s.t. Z;:1 AT =0. (26)
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By making change of variables n; =c+17;, j =1,...,r, we can write this problem in the form
MInE |27, oo, (X —my)] st 325 Ay =c. (27)

We have that V@R, (X) is a minimizer of E [1,baj (X —n;)], and hence (25) follows provided it is
unique. O
We can view the right hand side of (25) as a discretization of the integral = f: V@R, (Y)dr if

we set A = (1 —«)/r and take
N=1-a)'Ayaj=a+(j —0.5)A, j=1,..,r (28)

For this choice of A;, a;, and by formula (3), we have that

AV@R,(X)~ S(X). (29)
Cousider now the problem
Min€(Y — By — B X). (30)
Bo.B

By the definition (24) of £(-), we can write this problem in the following equivalent form

Min E [Z}; G, (Y = fo— X — Tj)] st YT ATy =0, (31)
7,80,8

The so-called Sample Average Approximation (SAA) of this problem is

N T T
o1
M;%WZZ%J (Yi—Bo—BTX; — 7)) 5.8 ) N\, =0. (32)
i=1 j=1 Jj=1

The above problem (32) can be formulated as a linear programming problem.

Mixed quantile estimator for AVQR,(Y|X)
We refer to S, —I—BTm as the mized quantile estimator of AVQR, (Y |x) where (7,5,,8) is an

optimal solution of problem (32).

Asymptotics of the mixed quantile estimators are discussed in Appendix B.
The estimator S, + BT:B can be justified by the following arguments. We have that an optimal

solution (7, B, 8) of problem (32) converges w.p.1 as N — oo to the optimal solution (v*, 5%, 8%)
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of problem (31), provided (31) has unique optimal solution. Because of the linear model (5), we

can write problem (31) as

Min E [23;1 Yoy (€ + 05 = Po+ (B =B) X —7))| st 325, Ay =0, (33)

where S5 and B are population values of the parameters. Similar to (26)-(27), by making change

of variables n; = By +7;, j =1,...,7, we can write problem (33) in the following equivalent form

Min B[S, v, (4 B = n;-+ (8" = BT X)] st S, Ay = o (34)

It follows that if

D A V@R,, (e) =0, (35)
j=1

then (6%, 8%) = (85, 8%). That is, By + B'x is a consistent estimator of > i1 A V@R, (Yx). Con-

sequently for A\; and «; given in (28), we can use Bo + BT:B as an approximation of AVAR,, (Y|x).

3.2. Least Squares Residual Based Estimator of AV@R, (Y |X)

Consider p := AVQR,, risk measure. Its residual based estimator can be developed in a straightfor-

ward way. That is, consider

AV@\Ra(e) = inf;cp {t + (1_+)N Eivzl le; — t]+}
= V@R, () + k55 S, [ei = VR, (¢) (36)
+

(1—a)N

N
= €([Na)) + (172)1\7 Zz‘:(NaHl [e(i) - e(ma])] .

Residual based estimator for AVQR, (Y |x)
We refer to fo+ 23 +AVG@R, (e) as the residual based estimator of AVQR, (Y |x). This estimator

is counsistent and its asymptotic variance is given by

N7 (v + o’ L)), (37)

u X

where 72 = (1 — @) ~2Var([e — V@R, ()], ), Q:= [ L “T] , pi=E[X]and Z:=E[XX"].

The above asymptotics are discussed in Appendix C.
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Figure 1 Normal Q-Q plot for different error distributions

60

50

Quantiles of Input Sample
Quantiles of Input Sample
Quantiles of Input Sample

-4 -2 0 2 4 -4 -2 0 2 4

Standard Normal Quantiles Standard Normal Quantiles Standard Normal Quantiles
(a) N(0,1) vs. t(3) (b) N(0,1) vs. CN(1,9) (¢) N(0,1) vs. LN(0,1)

REMARK 2. It should be remembered that the above approximate variances are asymptotic results.
Suppose for the moment that N < (1—a)~*. Then [Na| = N and hence \7@\Ra(s) =max{ey,...,en}.

Consequently [Q — \//@\Ra(a)]Jr =0 for alli=1,..., N, and hence
AV@R, (¢) = V@R, (¢) = max{e, ..,en }-

In that case the above asymptotics are inappropriate. In order for these asymptotics to be reason-

able, N should be significantly bigger than (1 —«)™'.

4. Simulation Study

To illustrate the performance of the considered estimators, we perform the Monte Carlo simulations
where errors (innovations) in linear model (7) are generated from following different distributions;
(1) Standard Normal (denoted as N(0,1)), (2) Student’s ¢ distribution with 3 degrees of freedom
(denoted as £(3)), (3) Skewed Contaminated Normal where standard normal is contaminated with
20% N(1,9) errors (denoted as C'N(1,9)), (4) Log-Normal with parameter 0 and 1 (denoted as
LN(0,1)). Note that error distributions (2)-(4) are heavy-tailed in contrast to the normal errors as
shown in Figure 1. In fact, financial innovations often follow heavy-tailed distributions. We consider

a=0.9,0.95,0.99, sample size N = 500,1000,2000 and R = 500 replications for each sample size.
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Figure 2  Conditional VaR and AVaR: True vs. Estimated (Errors~ CN(1,9), « =0.95, N =1000)

MAE(QVaR)=0.4771, MAE(RVaR}=0.2145 MAE(QAVaR)=0.6336, MAE(RAVaR)=0.2466

7 T T T T T T 8 T T T T T T
—True —True

6l o -QvaR o || o oavaR 0
% RVaR % * - RAVaR *|

conditional VaR
conditional AVaR

(a) Conditional VaR (b) Conditional AVaR

Conditional Value-at-Risk (VaR) and Average Value-at-Risk (AVaR) are estimated and compared
with true (theoretical) values at given 500 test points =, (K =1,2,...,500), which are equally spaced
between -2 and 2 for each replication. Estimators obtained from different methods are computed;
quantile based estimator (referred to as “QVaR”) and residual based estimator (referred to as
“RVaR”) for the conditional VaR (as described in Section 2), mixed quantile estimator (referred
to as “QAVaR”) vs. residual based estimator (referred to as “RAVaR”) for the conditional AVaR
(as described in Section 3).

Figure 2 displays an example of estimation results where solid line is true (theoretical)
VaR (AVaR), dash-circle line is QVaR (QAVaR), and dash-cross line is RVaR (RAVaR) given
test points zp. In this example, errors follow CN(1,9), a = 0.95 and N = 1000. In Fig-
ure 2-(a), RVaR estimates are closer to true VaR values as Mean Absolute Error (MAE)
confirms (MAE(QVaR)=0.4771 vs. MAE(RVaR)=0.2145). Performance of both estimators are
worse for AVaR, yet RAVaR estimates are still closer to true AVaR values than QAVaR
(MAE(QAVaR)=0.6336 vs. MAE(RAVaR)=0.2466) as shown in Figure 2-(b).

To compare estimators under different error distributions, MAE (averaged over all test points)

and variance of MAE (in parenthesis) across 500 replications are obtained shown in Table 1.
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Table 1  MAE for different error distributions o =0.95, N = 1000 (averaged over all test points)
Error QVaR  RVaR QAVaR RAVaR
N(0,1) | 0.0762 0.0575 0.0990 0.0674
(0.0037) (0.0020) (0.0058) (0.0026)

£3) | 0.1758  0.1290  0.4255  0.3232
(0.0188) (0.0095) (0.0808) (0.0623)

CN(1,9)| 0.3006 0.1955 0.3844  0.2311
(0.0563) (0.0225) (0.0882) (0.0316)

LN(0,1) | 0.3905 0.2670 0.8957  0.6432
(0.0959) (0.0430) (0.3896) (0.2481)

Regardless of the error distributions, RVaR (RAVaR) works better than QVaR (QAVaR); MAE
and the variance of MAE are smaller. As we can expect, both estimators perform better for the
conditional VaR than AVaR.

Figure 3 presents box-plots for both estimators (QAVaR and RAVaR) given z = 1.006 across
500 replications. Findings are similar to the one from Table 1; there are some evidence to suggest
that RAVaR has smaller MAE than QAVaR. Also, RAVaR is more stable than QAVaR (MAE of
QAVaR is more spread). Note that both estimators work better for normal distributions than other
heavy-tailed distributions. We could observe the similar pattern for conditional VaR.

Table 2 illustrates sample size effect on MAE of estimators. As expected, both estimators perform
better as sample size increases. MAE of RVaR (RAVaR) is still smaller than that of QVaR (QAVaR)
across all sample sizes.

Next, we obtain asymptotic variances (derived in Section 2 and Section 3) and compare that
with empirical (finite sample) variances of both estimators. Figure 4 reports asymptotic and finite
sample efficiencies of both estimators for the conditional VaR where R = 500, and error follows
N(0,1) (results are similar for other error distributions). In Figure 4-(a), we see that asymptotic
variance of RVaR (dash-dot line) is smaller than that of QVaR (solid line) except at z; near
0. In fact, asymptotic variance is affected by how far z; is away from 0 (which is the mean of
explanatory variable in the simulation); when z;, is further from the mean, the difference between
asymptotic variances of both estimators is bigger. Figure 4-(b) provides empirical variance of both

estimators across 500 replications. Empirical variance of RVaR is (equal or) smaller than that of
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Figure 3 MAE for conditional AVaR given  =1.006 under different error distributions (a = 0.95, N = 1000)
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Table 2  MAE for different sample size N with o =0.95 (averaged over all test points)
Error |Estimator N =500 N =1000 NN = 2000
N(0,1) QVaR 0.1129 0.0762 0.0569
RVaR 0.0849  0.0575 0.0418
QAVaR  0.1390  0.0990 0.0737
RAVaR  0.0992 0.0674 0.0498
£(3) QVaR  0.2420  0.1758  0.1277
RVaR 0.1785  0.1290 0.0942
QAVaR  0.5385  0.4255 0.3207
RAVaR  0.4517 0.3232 0.2085
CN(1,9)| QVaR 0.4322 0.3006 0.2180
RVaR 0.2928  0.1955 0.1447
QAVaR  0.5471 0.3844 0.2658
RAVaR  0.3373 0.2311 0.1636
LN(0,1) | QVaR 0.5814 0.3905 0.2959
RVaR 0.4095  0.2670 0.1975
QAVaR  1.1986  0.8957 0.7275
RAVaR  0.9503 0.6432 0.4754

QVaR at all . Figure 4-(c) and Figure 4-(d) compare asymptotic variances to empirical variances

of both estimators. It is clear that asymptotic variances are to provide a good approximation to
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Conditional VaR: asymptotic and empirical variance (Error~ N(0,1), « =0.95, N =1000, R = 500)
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the empirical ones for both estimators.

Figure 5 illustrates asymptotic and empirical variances of both estimators for AVaR. Insights
obtained from the results are similar to the VaR case. However, Figure 5-(¢) indicates that empirical
variances of QAVaR are larger than asymptotic variances, especially when x;, is far from the mean.
For this case, asymptotic efficiency of QAVaR may not very informative on its behavior in finite
sample. Results are similar for other error distributions except ¢(3). When the error follows #(3),
asymptotic (empirical) variances of QAVaR are smaller than that of RAVaR except when z;, is

close to the boundary (as shown in Figure 6).
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Figure 5  Conditional AVaR: asymptotic and empirical variance (Error~ N(0,1), a =0.95, N =1000, R = 500)
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To further investigate the finite sample efficiencies and robustness of both estimators compared to
the asymptotic ones, we provide empirical coverage probabilities (CP) of a two-sided 95% (nominal)
confidence interval (CI) in Table 3 (difference between CP and 0.95 is given in parentheses).
For each replication, the empirical confidence interval is calculated from the sample version of
asymptotic variance (when applied to the values of an observed sample of a given size). Then, for
given zy, the proportion of the 500 replications where the obtained confidence interval contains
the true (theoretical) value is calculated, and these proportions are averaged across all test points.

For N(0,1) and CN(1,9) error distributions, the resulting CP of RVaR (RAVaR) is very close
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Figure 6  Conditional AVaR: asymptotic and empirical variance (Error~ ¢(3), a =0.95, N = 1000, R = 500)
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to 0.95 while empirical CI for QVaR (QAVaR) under-covers (resulting CP is smaller than 0.95).
For ¢(3) and LN(0,1) error distributions, CP of RVaR (RAVaR) drops, yet maintains somewhat
adequate CP which is a lot better than CP of QVaR (QAVaR). CI of QAVaR under-covers seriously
(resulting CP is about 0.7) and this indicates QAVaR procedure may be very unstable and needs
rather wider CI than other estimators to overcome its sensitivity. Note that RVaR (RAVaR) is
more conservative than QVaR (QVaR) regardless of the error distributions.

We could draw similar conclusions for other sample sizes and « values. That is, RVaR (RAVaR)

performs better and provides stable results than QVaR (QAVaR) under different error distributions.
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Table 3  Coverage probability with a=0.95, N =1000 (averaged over all test points)
Error QVaR RvaR.  QAVaR RAVaR
N(0,1) | 0.9167 0.9551 0.8442 0.9552
(0.0333) (-0.0051) (0.1058) (-0.0052)

£3) | 0.9044  0.9269  0.7088  0.9080
(0.0456) (0.0231) (0.2412) (0.0420)

CN(1,9)| 09262 09428 0.8824  0.9548
(0.0238) (0.0072) (0.0676) (-0.0048)

LN(0,1) | 0.9185  0.9276  0.6930  0.9185
(0.0315) (0.0224) (0.2570) (0.0315)

5. lllustrative Empirical Examples

In this section, we demonstrate considered methods to estimate conditional VaR and AVaR with
real data; different financial asset classes. Let us first present an example of Credit Default Swap
(CDS). CDS is the most popular credit derivative in the rapidly growing credit markets (See
FitchRatings 2006, for a detailed survey of the credit derivatives market). CDS contract provides
insurance against a default by a particular company, a pool of companies, or sovereign entity. The
rate of payments made per year by the buyer is known as the CDS spread (in basis points). We
focus on the risk of CDS trading (long or short position) rather than on the use of a CDS to hedge
credit risk. The CDS dataset obtained from Bloomberg consists of 1006 daily observations from
January 2007 to January 2011. Let the dependent variable Y be daily percent change, (Y (¢4 1) —
Y (t))/Y ()« 100, of Bank of America Corp (NYSE:BAC) 5-year CDS spread, explanatory variables
X be daily return of BAC stock price, and X, be daily percent change of generic 5-year investment
grade CDX spread (CDX.IG). We use the term “percent change” rather than return because the
return of CDS contract is not same as the return of CDS spread (e.g., see O’Kane and Turnbull
2003, for an overview of CDS valuation models). Residuals obtained from this dataset are heavy-
tailed distributed (similar to Figure 1-(b)).

Figure 7 shows estimated conditional VaR (RVaR) of BAC CDS spread percent change (result
of QVaR is similar). Since one can take either short or long position, we present both tail risk with

all values of @ which ranges from 0.01 to 0.99; o < 0.5 corresponds to the left tail (short position)
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and right tail (long position), otherwise. It is clear that RVaR of certain dates are much higher

(lower) than normal level due to the different daily economic conditions reflected by BAC stock

price and CDX spread. This indicates the specific (daily) economic conditions should be taken

and therefore emphasize the importance of conditional

account for the accurate estimation of risk,

, estimated RVaR curve along the different « values

risk measures. Note that given a specific date

is asymmetric since the distribution of CDS spread percent change is not symmetric.

To compare the prediction performance of both estimators, we forecast 603 one-day-ahead

value of explanatory variables using a rolling

5)

today’

(

window of the previous 403 days. Figure 8 presents forecasting results of QVaR and RVaR with

(tomorrow’s) VaR (AVaR) given the current

0.05 on 603 out-of-sample. Both estimators show similar behaviors, but RVaR seems little more

o=

stable. Following ideas in McNeil and Frey (2000) and Leorato et al. (2010), “violation event” is

said to occur whenever observed CDS spread percent change falls below the predicted VaR (we

can find a few violation events from Figure 8). Also, the forecast error of AVaR is defined as the

difference between the observed CDS spread percent change and the predicted AVaR under the
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Figure 8  Risk prediction of BAC CDS: QVaR and RVaR (a=0.05)
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violation event. By definition, the violation event probability should be close to « and the forecast
error should be close to zero. Table 4 presents the prediction performance (violation event prob-
ability for VaR, mean and MAE of forecast error for AVaR in parenthesis) of both estimators for
a=0.01 and 0.05. In-sample statistics show that both estimators fit the data well; the violation
event probabilities are very close to « and forecast errors are very small. Out-of-sample perfor-
mances of both estimators are very similar for « =0.01, even though the forecast errors increase
a little compared to in-sample cases. For o = 0.05, RVaR (RAVaR) seems perform better; event
probabilities are closer to 0.05 and forecast errors are smaller.

Next, we apply considered methods to one of the US equities; International Business Machines
Corp (NYSE). The dataset contains 1722 daily observation from December 2005 to December
2010. Let the dependent variable Y be the daily log return, 100*log(Y(t+1)/Y(t)), of IBM stock
price, explanatory variables X, be the log return of S&P 500 index, and X, be the lagged log
return. Similar to CDS example, we forecast 638 one-day-ahead (tomorrow’s) VaR (AVaR) given

the current (today’s) value of explanatory variables using a rolling window of the previous 639
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Table 4  Risk prediction performance of BAC CDS

In-sample a Event(%) Mean MAE
QVaR(QAVaR) [0.01  0.9950  (0.1965) (1.3118)
RVaR(RAVaR) [0.01 0.9950 (-0.8630) (2.8183)

QVaR(QAVaR) | 0.05 4.9751  (0.2287) (2.5016)
RVaR(RAVaR) [0.05 4.9751 (-0.0269) (2.8090)
Out-of-sample | « Event(%) Mean MAE
QVaR(QAVaR) | 0.01  0.8292  (1.4546) (2.4421)
RVaR(RAVaR) | 0.01  0.8292  (1.1052) (4.0615)

QVaR(QAVaR) | 0.05 3.6484  (1.3740) (3.1099)
RVaR(RAVaR) |0.05 4.4776 (-0.3722) (3.3681)

Table 5  Risk prediction performance of IBM stock
In-sample a Event(%) Mean MAE

QVaR(QAVaR) | 0.0 1.0180 (-0.1305) (0.5727)
RVaR(RAVaR) [0.01  0.9397 (-0.3481) (0.8926)

QVaR(QAVaR) | 0.05 5.0117  (0.0468) (1.0204)
RVaR(RAVaR) | 0.05 4.9334  (-0.0225) (1.1579)
Out-of-sample | « Event(%) Mean MAE
QVaR(QAVaR) | 0.01 2.3511  (0.6171) (L.1028)
RVaR(RAVaR) | 0.01 1.8809  (0.5023) (0.6827)

QVaR(QAVaR) | 0.05  6.7398  (0.4787) (1.3086)
RVaR(RAVaR) [0.05 6.1129  (0.4778) (1.2387)

days. Residuals obtained from this dataset are heavy-tailed distributed. Table 4 compares the risk
prediction performance of IBM stock return. Both estimators perform well for in-sample predic-
tion. For out-of-sample prediction, both estimators behave similarly for a = 0.05, but violation
event probability is larger than 0.05. For « = 0.01, RVaR (RAVaR) seems a bit better, but event
probability exceeds 0.01.

Finally, we illustrate how crude oil price had impacted the US airlines’ risk as we mentioned
in Section 1. Crude oil prices had continued to rise since May 2007 and peaked all time high in
July 2008, right before the brink of the US financial system collapse. We compare the movement of
estimated VaR for three airline stocks given crude oil price change; Delta Airlines, Inc (NYSE:DAL),
American Airlines, Inc (NYSE:AMR), and Southwest Airlines Co (NYSE:LUV). Figure 9 depicts
RVaR movement with a = 0.05 from May 2007 to July 2008 (QVaR shows similar patterns). For

easy comparison, we standardize all units relative to the starting date. As we can see, crude oil price
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Figure 9  Airline equities: RVaR conditional on crude oil price (a=0.05)
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had jumped 150% during this time span. On the other hand, RVaR of LUV increased about 15%
while that of AMR increased 120% and that of DAL increased 90% (in magnitude). In fact, different
airlines have different strategies to hedge the risk on oil price fluctuations and this in turn affects
the risk of airlines’ stock movement. For example, Southwest Airlines is well known for hedging
crude oil prices aggressively. On the other hand, Delta Airlines does little hedge against crude oil
price, but operates a lot of international flights. American Airlines does not have strong hedging
against crude oil price either, and operates less international flights than Delta. Our estimation

results confirm the firm specific risk regarding crude oil price fluctuations.

6. Conclusions

Value-at-Risk and Average Value-at-Risk (Conditional Value-at-Risk, Expected Shortfall) are
widely used measures of financial risk. To estimate accurate risk measures taking into account the
specific economic conditions, we considered two estimation procedures for each conditional risk
measure; one is direct (quantile based estimator) and the other is based on residual analysis of the

standard least squares method (residual based estimator). Large sample statistical inferences of
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both estimators are derived and compared. In addition, finite sample properties of both estimators
are investigated and compared as well. Monte Carlo simulation results under different error distri-
butions indicate that the residual based estimator performs better and provides stable estimation;
in general, MAE and asymptotic/empirical variance of residual based estimators are smaller than
that of quantile based estimators. We also observe that asymptotic variance of estimators approx-
imates the finite sample efficiencies well for reasonable sample sizes used in practice. However,
we may need more samples to guarantee an acceptable efficiency of the quantile based estimator
for Average Value-at-risk compared to other estimators. Prediction performances on the real data
example suggest similar conclusions. In fact, residual based estimators can be calculated easily and
therefore residual based procedure could be implemently efficiently in practice. In this study, we
assume a static model with independent error distributions. Extension of considered estimation
procedures incorporating different aspects of (dynamic) time series models could be an interesting

topic for the further study.

Appendix A: Asymptotics of the Residual Based Estimator of VAR, (Y |X)

Suppose, for the sake of simplicity, that support of the distribution of X; is bounded, i.e., X; is

bounded w.p.1. Since N 'X"X converges w.p.1 to  and by (19), we have that
N
|6i — 6i| S Op(N_l) Zé‘j.
j=1
We can assume here that E[e;] =0, and hence Z;\Izl g; = O,(N'/?). It follows that
|e(vat) = eqnan | = Op(N7H2). (38)

Suppose now that the set of population a-quantiles is a singleton. Then ﬁ';l(a) converges w.p.1
to the population quantile F.=' (o) = V@R, (¢), and hence by (38), we have that e([yq]) converges
in probability to F.*(«). That is, \7@\Ra(e) is a consistent estimator of V@R, (¢), and hence the
estimator By + "B + \7@\Ra(e) is a consistent estimator of VAR, (Y |x).

Let us consider the asymptotic efficiency of the residual based V@R, estimator. It is



26

known that B, + B is an unbiased estimator of the true expected value B, + '8 and

N/2 [Bo — By + :UT(B — ﬂ*)] converges in distribution to normal with zero mean and variance
o [1;2" Q7 [1; 2. (39)

Also, N1/? (6(“\{&]) — V@Ra(s)) converges in distribution to normal with zero mean and variance

wrim =) (40)
[fe (F7H ()]

provided that distribution of ¢ has nonzero density f.(-) at the quantile F=*(«).
Let us also estimate the asymptotic variance of the right hand side of (19). We have that N

times variance of the second term in the right hand side of (19) can be approximated by
o’E{[1; X171, XzT]T} =o?(k+1).

We also have that random vectors ([5’0, B) and e are uncorrelated. Therefore, if errors £; have normal
distribution, then vectors (BO, B) and e have jointly a multivariate normal distribution and these
vectors are independent. Consequently, [5’0 +2"B and V/@\Ra(e) are independent. For not necessarily
normal distribution, this independence holds asymptotically and thus asymptotically B, + "8 and
\7@\Ra(e) are uncorrelated.

Now, we can calculate the asymptotic covariance of the corresponding terms (6([ ~Na]) — V@R, (6))
and (s([Na]) — e([Na])) as @ Thus, asymptotic variance of the residual based V@R, estima-

tor can be approximated as

N7 (w’+o?[Lz" | 1;2T]"). (41)

Appendix B: Asymptotics of the Mixed Quantile Estimator

It is possible to derive asymptotics of the mixed quantile estimator. For the sake of simplicity,
let us start with a sample estimate of S(X), with A; and «;, j=1,...,r, given in (28). That is,
let X,..., Xnx be an iid sample (data) of the random variable X, and X1y < ... £ X(n) be the

corresponding order statistics. Then the corresponding sample estimate is obtained by replacing
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the true distribution F' of X by its empirical estimate F'. Consequently, by (25), (1 — ) 1S(X) is

estimated by

(1=0) S NP Ha) = 1 3 K (42)

This can be compared with the following estimator of AV@R, (X) based on sample version of (2):

N
X(inal) + Tomw Licinvaro (X6 — X(va)] =

N—[Na] N (43)
(1 T (1—a)N ) X(tNa) + (1—2)1\1 Ei:(NaHl X

Assuming that N« is an integer and taking r:= (1 — @) N, we obtain that the right hand sides of
(42) and (43) are the same.
Asymptotic variance of the mixed quantile estimator can be calculated as follows. Consider

problem (34). The optimal solution of that problem is g* = g%,
n; =By + VAR, (e) = F; +F Yay), j=1,...,m,

and B3 =37"_ A\jn; = f;. Assume that ¢ has continuous distribution with cdf F.(-) and density
function f.(-). Then conditional on X, the asymptotic covariance matrix of the corresponding
sample estimator (3,#) of (8*,n*) is N"'H 'SH™", where H is the Hessian matrix of second
order partial derivatives of E [Z;Zl Yo, (e+ 65—+ (B — ﬂ)TX)] at the point (8*,7*), and X is

the covariance matrix of the random vector
Z:= Vi, (e+B;—ni+ (B —B)X),
j=1
where the gradients are taken with respect to (8,n) at (8,n) = (8*,7*) (e.g., Shapiro 1989). We
have

> Ve, (e+ 85—+ (8= B)TX) = (Zw;j (e+ 85 —m+ (B —ﬂ)TX)> X,

Jj=1 Jj=1

Visthay (€485 —ni + (8" = B) X) =~y (e+ 85 —n; + (8"~ B)'X),

with ¢, (+) is given in (15).

Note that E[yy, (¢ — F7'(a;)] =0, j =1,...,r, (see (16)), and hence E[Z] = 0. Then X =

€
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T - 2
]E[ZZT] and we can compute X = [H]E [‘;(TX ] i], where k :E{ _Z;:1 o (6—F;1(aj))} },

O =[¥,, .., ¥, with

P ) P I B B

and Ay =E |, (6= . (@) ¥, (6= FHay) | ing =1,

-
The Hessian matrix H can be computed as H = [V]E [§TX ] f;] , where v = Z;Zl 7v; with

OE [, (e + By~ +1)]
%= ot t=0
0oy (1= Fe(F7 (o)) =) + (o = ) FL(F7 (o)) — £)]
ot
= ajfs(ngl(aj)) - (1 - aj)fs(Fsil(aj)) = fs(Fsil(aj))v J=1..,m

t=0

F=[F,,.. F,| with F;=vE[X], j=1,...,r, and D =diag(v,...,7r)-
Since B, = A'%, we have that B, + ,BT.’L’ = [z"; A"][B; 7], and hence the asymptotic variance of

Bo+ By @ is given by N~ @, AT H 'S H ‘[z A].
Appendix C: Asymptotics of the Residual Based Estimator of AV@R,(Y|X)

The estimator ma(e) can be compared with the corresponding random variable which is based

on the errors instead of residuals
AV@RQ(E) = infteR {t + m Eiil [61' - t]+}
—_— N ——
= V@R, () + iy T, o= VaR.(e)] (44)
N
= €(Na)) t Toa)N 2oimNal+1 ey = Eivan)] -
Note that ma (€) is not an estimator since errors €; are unobservable.

By (38), we have that

V@R, () —\7@\Ra(e)‘ = 0,(N"'?) (45)

and it is known that AV@\RQ((S) converges w.p.l to AV@R,(e) as N — oo, provided that € has a
finite first order moment. It follows that ma(e) converges in probability to AV@R,(¢), and
hence By + "B + ma(e) is a consistent estimator of AV@QR,, (Y |x).

Lets discuss asymptotic properties of the residual based AV@QR, estimator. As it was pointed

out in Appendix A, random vectors (BO,B) and e are uncorrelated, and hence asymptotically
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Bo+ x'B and ma(e) are independent and hence uncorrelated. Assuming that a-quantile of

F.(-) is unique, we have by Delta theorem

AV@R, (€) = V@R, (&) + (1 — a) N1 [e; — VAR, (€)]+ + 0, (N ?) (46)
and
AV@R, (£) = VAR, (¢) + (1 — a) N~ Y e, — V@R, ()] + 0, (N7V/2). (47)

Equation (47) leads to the following asymptotic result (cf. Trindade et al. 2007, Shapiro et al. 2009,

section 6.5.1)

N'2[AV@R, (g) — AV@R, ()] B N (0,%), (48)
where 7% = (1 — a) *Var([e — V@R, (¢)];.). Moreover, if distribution of € has nonzero density f.(-)
at V@R, (¢), then

l—«

2N . (V@R,(¢))

E[AV@R, (¢)] — AV@R, (¢) = +o(N ). (49)

From the equation (46) and (47), the asymptotic variance of (ma(e) - ma(e)) can be

bounded by (1 —a) *N~?0? (k + 1) and we can approximate the asymptotic covariance of the cor-

—(1—a)"IN"202 (k+1)
2 .

responding terms, (AV@\RQ((S) —AV@R, (5)) and (AV@\RQ((S) - ma(e)) as

Thus, asymptotic variance of the residual based AV@QR,, estimator can be approximated as
N7 (P +o’ 2" Q7 [L2"]T). (50)
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