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Conditional Value-at-Risk and AverageValue-at-Risk: Estimation and Asymptoti
sSo Yeon Chun*S
hool of Industrial and Systems Engineering, Georgia Institute of Te
hnology, s
hun�isye.gate
h.eduAlexander ShapiroyS
hool of Industrial and Systems Engineering, Georgia Institute of Te
hnology, ashapiro�isye.gate
h.eduStan UryasevDepartment of Industrial and Systems Engineering, University of Florida, uryasev�u
.eduWe dis
uss linear regression approa
hes to 
onditional Value-at-Risk and Average Value-at-Risk (Condi-tional Value-at-Risk, Expe
ted Shortfall) risk measures. Two estimation pro
edures are 
onsidered for ea
h
onditional risk measure, one is dire
t and the other is based on residual analysis of the standard leastsquares method. Large sample statisti
al inferen
e of the estimators obtained is derived. Furthermore, �nitesample properties of the proposed estimators are investigated and 
ompared with theoreti
al derivations inan extensive Monte Carlo study. Empiri
al results on the real-data (di�erent �nan
ial asset 
lasses) are alsoprovided to illustrate the performan
e of the estimators.Key words : Value-at-Risk, Average Value-at-Risk, Conditional Value-at-Risk, Expe
ted Shortfall, linearregression, least squares residual, quantile regression, 
onditional risk measures, statisti
al inferen
e
1. Introdu
tionIn �nan
ial industry, sell-side analysts periodi
ally publish the re
ommendation of underlying se
u-rities with target pri
es. (i.e., Goldman Sa
h's Convi
tion Buy List). Those re
ommendations re
e
tspe
i�
 e
onomi
 
onditions and in
uen
e investors' de
isions and thus pri
e movements. However,this type of analysis does not provide risk measures asso
iated with underlying 
ompanies. Wesee the similar phenomena in the buy-side analysis as well. Ea
h analyst or team 
overs di�erentse
tors (e.g., Airlines VS Semi-
ondu
tors) and they typi
ally make separate re
ommendations forthe portfolio managers without asso
iated risk measures. However, risk measures of 
overing 
om-panies are one of the most important fa
tors to make investment de
isions. Our methods in this�Resear
h of this author was partly supported by the NSF award DMS-0914785.yResear
h of this author was partly supported by the NSF award DMS-0914785 and ONR award N000140811104.1



2paper provide eÆ
ient ways to estimate risk measures for a single asset at given market 
onditions.These information 
ould be useful for investors and portfolio managers to 
ompare prospe
tivese
urities and pi
k the best. For example, when portfolio managers expe
t the 
rude oil pri
e hike(due to in
ation or geo-politi
al 
on
i
ts), they 
ould sele
t se
urities less sensitive to oil pri
emovement in the airline industry.Let (
;F) be a measurable spa
e equipped with probability measure P . A measurable fun
tionY : 
! R is 
alled a random variable. With a random variable Y , we asso
iate a number �(Y )to whi
h we refer as risk measure. We assume that \smaller is better", i.e., between two possiblerealizations of random data we prefer the one with smaller value of �(�). The term \risk measure"is somewhat unfortunate sin
e it 
an be 
onfused with the probability measure. Moreover, in appli-
ations one often tries to rea
h a 
ompromise between minimizing the expe
tation (i.e., minimizingon average) and 
ontrolling the asso
iated risk. Thus, some authors use the term \mean-risk mea-sure", or \a

eptability fun
tional" (e.g. P
ug and R�omis
h 2007). For histori
al reasons, we usehere the \risk measure" terminology. Formally risk measure is a fun
tion � : Y ! R de�ned on anappropriate spa
e Y of random variables. For example, in some appli
ations it is natural to usethe spa
e Y =Lp(
;F ; P ), with p2 [1;1), of random variables having �nite p-th order moments.It was suggested in Artzner et al. (1999) that a \good" risk measure should have the followingproperties (axioms), and su
h risk measures were 
alled 
oherent.(A1) M onotoni
ity: If Y;Y 0 2Y and Y � Y 0, then �(Y )� �(Y 0).(A2) Convexity: �(tY +(1� t)Y 0)� t�(Y )+ (1� t)�(Y 0)for all Y;Y 0 2Y and all t2 [0;1℄.(A3) T ranslation Equivarian
e: If a2 R and Y 2Y, then �(Y + a) = �(Y )+ a.(A4) Positive Homogeneity: If t� 0 and Y 2Y, then �(tY ) = t�(Y ).The notation Y � Y 0 means that Y (!)� Y 0(!) for a.e. ! 2
.An important example of risk measures is the Value-at-Risk measureV�R�(Y ) = infft : FY (t)� �g; (1)



3where � 2 (0;1) and FY (t) = Pr(Y � t) is the 
umulative distribution fun
tion (
df) of Y , i.e.,V�R�(Y ) = F�1Y (�) is the left side �-quantile of the distribution of Y . This risk measure satis�esaxioms (A1),(A3) and (A4), but not (A2), and hen
e is not 
oherent. Another important exampleis the so-
alled Average Value-at-Risk measure, whi
h 
an be de�ned asAV�R�(Y ) = inft2R�t+(1��)�1E [Y � t℄+	 (2)(
f., Ro
kafellar and Uryasev 2002), or equivalentlyAV�R�(Y ) = 11�� Z 1� V�R� (Y )d�: (3)Note that AV�R�(Y ) is �nite i� E [Y ℄+ <1. Therefore, for the AV�R� risk measure it is natural touse the spa
e Y = L1(
;F ; P ) of random variables having �nite �rst order moment. The AverageValue-at-Risk measure is also 
alled the Conditional Value-at-Risk or Expe
ted Shortfall measure.(Sin
e we dis
uss here \
onditional" variants of risk measures, we use the Average Value-at-Riskrather than Conditional Value-at-Risk terminology.)The Value-at-Risk and Average Value-at-Risk measures are widely used to measure and man-age risk in the �nan
ial industry (e.g., see Jorion 2003, DuÆe and Singleton 2003, for the �nan-
ial ba
kground and various appli
ations). Note that in the above two examples, risk mea-sures are fun
tions of the distribution of Y . Su
h risk measures are 
alled law invariant. Lawinvariant risk measures have been studied extensively in the �nan
ial risk management litera-ture (e.g., A
erbi and Tas
he 2002, Frey and M
Neil 2002, S
aillet 2004a, Chen and Tang 2005,Zhu and Fukushima 2009, Ja
kson and Perraudin 2000, Berkowitz et al. 2002, Bluhm et al. 2002,and referen
e therein).Now let us 
onsider a situation where there exists information 
omposed of e
onomi
 and marketvariables X1; :::;Xk whi
h 
an be 
onsidered as a set of predi
tors for a variable of interest Y . Inthat 
ase one 
an be interested in estimation of a risk measure of Y 
onditional on observed valuesof predi
tors X1; :::;Xk. For example, suppose we want to measure (predi
t) the risk of a singleasset given spe
i�
 e
onomi
 
onditions represented by market index and interest rate. Then, for a



4random ve
tor X = (X1; :::;Xk)T of relevant predi
tors, the 
onditional version of a law invariantrisk measure �, denoted �(Y jX) or �jX(Y ), is obtained by applying � to the 
onditional distributionof Y given X. In parti
ular, V�R�(Y jX) is the �-quantile of the 
onditional distribution of Ygiven X, and AV�R�(Y jX) = 11�� Z 1� V�R� (Y jX)d�: (4)Re
ently several resear
hers have paid attention to estimation of the 
onditional risk measures.For the 
onditional Value-at-Risk, Chernozhukov and Umantsev (2001) used a polynomial typeregression quantile model and Engle and Manganelli (2004) proposed the model whi
h spe
ify theevolution of the quantile over time using a spe
ial type of autoregressive pro
ess. In both models,unknown parameters were estimated by minimizing the regression quantiles loss fun
tion. For
onditional Average Value-at-Risk, S
aillet (2004b) and Cai and Wang (2008) utilized Nadaraya-Watson (NW) type nonparametri
 double kernel estimation while Pera

hi and Tanase (2008) andLeorato et al. (2010) used the semiparametri
 method. To the best of our knowledge, no resear
haddresses the statisti
al inferen
e of parametri
 approa
h (e.g. quantile regression based pro
edure)for the 
onditional Average Value-at-Risk.In this paper, we dis
uss estimation pro
edures for 
onditional risk measures, spe
i�
ally for
onditional Value-at-Risk and Average Value-at-Risk measures. We assume the following linearmodel (linear regression) Y = �0+�TX + "; (5)where �0 and �= (�1; :::; �k)T are unknown parameters of the model and the error (noise) randomvariable " is assumed to be independent of random ve
tor X. Meaning of the model (5) is thatthere is a true (population) value ��0 ;�� of the parameters for whi
h (5) holds. Sometimes we willwrite this expli
itly, and sometimes suppress this in the notation.Let �(�) be a law invariant risk measure satisfying axioms (A1),(A3) and (A4), and �jX(�) be its
onditional analogue. Note that be
ause of the independen
e of " and X, it follows that �jX(")=�("). Together with axiom (A4), this implies�jX(Y ) = �jX(�0+�TX + ") = �0+�TX + �jX(") = �0+�TX + �("): (6)



5Sin
e �0+�(") = �("+�0), we 
an assume that �(")= 0 by adding a 
onstant to the error term. Inthat 
ase, for the true values of the parameters, we have �jX(Y ) = ��0 +��TX. Hen
e, the questionis how to estimate these true values.This paper is organized as follows. In Se
tion 2 we review the quantile regression approa
h for theestimation of 
onditional Value-at-Risk and 
ompare it to another approa
h based on residuals ofthe least squares estimation pro
edure. Se
tion 3 des
ribes two di�erent estimation pro
edures forthe 
onditional Average Value-at-Risk { one is based on the mixed quantiles and the other is basedon residuals of the least squares estimation pro
edure whi
h is similar to the respe
tive approa
hfor the estimation of 
onditional Value-at-Risk des
ribed in Se
tion 2. Asymptoti
 properties ofboth estimators are provided as well. In Se
tion 4 we investigate the �nite sample and asymptoti
properties of the 
onsidered estimators. We present Monte Carlo simulation results under di�erenterror distribution assumptions. Later, we illustrate the performan
e of di�erent methods on thereal data (di�erent �nan
ial asset 
lasses) in Se
tion 5. Finally, Se
tion 6 gives some remarks andsuggestions for future dire
tions of resear
h.2. Estimation of Conditional Value-at-RiskSuppose that we have N observations (data points) (Yi;X i), i= 1; :::;N , whi
h satisfy the linearregression model (5), i.e., Yi = �0+�TXi+ "i; i= 1; :::;N: (7)We assume that: (i) Xi, i= 1; :::;N , are iid (independent identi
ally distributed) random ve
tors,and write X for random ve
tor having the same distribution as X i, (ii) the errors "1; ::; "N are iidwith �nite se
ond order moments and independent of X i. We denote by �2 =Var["i℄ the 
ommonvarian
e of the error terms.Note that (7) 
an be written as Y =X[�0;�℄ + �; (8)where Y = (Y1; :::; YN )T is N � 1 ve
tor of responses, X is N � (k + 1) data matrix of predi
torvariables with rows (1;XTi ), i=1; :::;N , (i.e., �rst 
olumn of X is 
olumn of ones), �= (�1; :::; �k)T



6ve
tor of parameters and �= ("1; ::; "N )T is N � 1 ve
tor of errors. By [�0;�℄ we denote (k+1)� 1ve
tor (�0;�T)T. It is also possible to view data pointsX i as deterministi
. In that 
ase, we assumethat X has full 
olumn rank k+1.Next we review the quantile regression approa
h to estimation of V�R�(Y jX) and then 
onsideran alternative method whi
h is based on least squares residuals.2.1. Review of Quantile Regression Approa
h to Estimation of V�R�(Y jX)Let  : R ! R+ be a nonnegative valued 
onvex fun
tion. The robust regression pro
edureapproa
hes the estimation problem by solving the following optimization problem (Huber 1981)Min�0;� NXi=1  �Yi��0��TX i� ; (9)i.e., a solution (�̂0; �̂) of (9) is viewed as an estimator of (��0 ;��). The fun
tion  (�) is referred toas an error fun
tion. By the Law of Large Numbers (LLN) we have that N�1 times the obje
tivefun
tion in (9) 
onverges (pointwise) w.p.1 to the fun
tion 	(�0;�) := E � (Y ��0��TX)�. Wealso have 	(�0;�) = E � ���0 +��TX + "��0��TX��= E [ ("� (�0���0)� (����)TX)℄ : (10)Under mild regularity 
onditions derivatives of 	(�0;�) 
an be taken inside the integral (expe
-tation) and hen
e r�0	(�0;�) = E [r�0 ("� (�0���0)� (����)TX)℄= �E [ 0 ("� (�0���0)� (����)TX)℄ ; (11)r�	(�0;�) = E [r� ("� (�0���0)� (����)TX)℄= �E [ 0 ("� (�0���0)� (����)TX)X℄ : (12)Sin
e " and X are independent, we obtain that derivatives of 	(�0;�) are zeros at (��0 ;��) if thefollowing 
ondition holds E [ 0(")℄ = 0: (13)Sin
e fun
tion 	(�; �) is 
onvex, it follows that if 
ondition (13) holds, then 	(�; �) attains itsminimum at (��0 ;��). If the minimizer (��0 ;��) is unique, then the estimator (�̂0; �̂) 
onverges w.p.1



7to the population value (��0 ;��) as N !1, i.e., (�̂0; �̂) is a 
onsistent estimator of (��0 ;��) (
f.Huber 1981). That is, (13) is the basi
 
ondition for 
onsisten
y of (�̂0; �̂).For example if  (t) := t2, i.e., (9) is the least squares method, then 
ondition (13) means thatE ["℄ = 0. As another example for some � 2 (0;1) let (Re
all that [t℄+ =maxf0; tg.) (t) := �[t℄+ +(1��)[�t℄+; (14)i.e., (9) is the quantile regression method. In that 
ase 0(t)=��� 1 if t < 0;� if t > 0: (15)(Note that here the error fun
tion  (t) is not di�erentiable at t = 0 and its derivative  0(t) isdis
ontinuous at t= 0. Nevertheless all arguments 
an go through provided that the error term hasa 
ontinuous distribution.) ConsequentlyE [ 0(")℄ = (�� 1)F"(0)+�(1�F"(0))= ��F"(0); (16)and hen
e 
ondition (13) holds i� F"(0) = �, or equivalently F�1" (�) = 0 provided this quantile isunique. In that 
ase the estimator (�̂0; �̂) is 
onsistent if the population value ��0 is normalizedsu
h that V�R�(") = 0. That is, for this error fun
tion, �̂0 + �̂Tx is a 
onsistent estimator of the
onditional Value-at-Risk V�R�(Y jx) of Y given X =x.It is also possible to derive asymptoti
s of the estimator (�̂0; �̂). We assume in the remainder ofthis se
tion that 
ondition (13) holds. Then under mild regularity 
onditions N 1=2 h�̂0���0 ; �̂���i
onverges in distribution to normal with zero mean ve
tor and 
ovarian
e matrix ��2�2
�1, where
 := � 1 �T� � � ; � := E [X ℄; � := E �XXT�, �2 := E [ 0(")2℄; �2 := E [ 0 (")2℄ and � := �2E[ ("+t)℄�t2 ��t=0,provided this derivative exists (
f., Shapiro 1989).For example in 
ase of least squares, where  (t) := t2, we have that ��2�2 = �2, where �2 :=Var["i℄. In 
ase of quantile regression, where  (�) is given in (14), we have (
f. Koenker 2005) that��2�2 = !2, where !2 := �(1��)[f" (F�1" (�))℄2 ; (17)



8provided the 
df F"(�) has nonzero density f"(�) = F 0"(�) at F�1" (�) (re
all that it is assumed herethat F�1" (�) = 0). Thus, the asymptoti
 varian
e of the 
orresponding quantile regression estimatoris (
f., Koenker 2005) N�1!2[1;xT℄
�1[1;xT℄T: (18)Remark 1. Note that by LLN we have that N�1PNi=1X i and N�1PNi=1XiXTi 
onverge w.p.1as N !1 to the ve
tor � and matrix �, respe
tively, and that ����T is the 
ovarian
e matrixof X. In 
ase of deterministi
 X i, we simply de�ne ve
tor � and matrix � as the respe
tivelimits of N�1PNi=1X i and N�1PNi=1X iXTi , assuming that su
h limits exist. It follows then thatN�1XTX!
.2.2. Least Squares Residual Based Estimator of V�R�(YjX)Let ~�0 and ~� be the least squares estimators of the respe
tive parameters of the linear model(7). Re
all that these estimators are given by [ ~�0; ~�℄ = (XTX)�1XTY , and ve
tor of residuals e :=Y �X[ ~�0; ~�℄ is given by e= (IN �H)Y = (IN �H)�;where IN is the N �N identity matrix and H = X(XTX)�1XT is the so-
alled hat matrix. Notethat tra
e(H) = k+1 and we have that"i� ei = [1;XTi ℄(XTX)�1XT�; i=1; :::;N: (19)If we knew errors "1; ::; "N , we 
ould estimate �(") by the 
orresponding sample estimate. How-ever, the true values of the errors are unknown; therefore, we repla
e them by the residuals 
om-puted by the least squares method. In 
ase of � :=V�R�, this gives the estimate[V�R�(e) := F̂�1e (�) = e(dN�e) (20)of V�R�("), where e(1) � ::: � e(N) are order statisti
s (i.e., numbers e1; :::; eN arranged in thein
reasing order), F̂e(�) =N�1PNi=1 I[ei;1)(�) is the empiri
al 
df asso
iated with e1; :::; eN , IA(�) is



9the indi
ator fun
tion of set A and dae denotes the smallest integer � a. The estimate (7) 
an be
ompared with the sample quantile[V�R�(") := F̂�1" (�) = "(dN�e) (21)of the errors "1; ::; "N .Residual based estimator for V�R�(YjX)We refer to ~�0+xT~�+[V�R�(e) as the residual based estimator of V�R�(Y jx). Suppose thatthe set of population �-quantiles is a singleton. Then the residual based estimator ~�0+xT~�+[V�R�(e) is a 
onsistent estimator of V�R�(Y jx). Also, under the 
ondition (13) and mildregularity 
onditions, asymptoti
 varian
e of the residual based estimator 
an be approximatedby N�1 �!2 +�2[1;xT℄
�1[1;xT℄T� ; (22)where !2 is given in (17).For the derivation of above asymptoti
s, see Appendix A.3. Estimation of Conditional Average Value-at-RiskThe following simple arguments (due to Gneiting 2009) explain why an analogue of quantile regres-sion for estimation of AV�R� does not exist. In order to 
onstru
t su
h an estimator we would needto �nd a fun
tion h(y; �) of y 2 R and � 2 R, 
onvex in �, su
h that the minimizer of EF [h(Y; �)℄will be equal to AV�R�(F ), i.e., AV�R�(F )= argmin� EF [h(Y; �)℄. Here F denotes the probabilitydistribution of Y and we sometimes write AV�R�(F ) instead of AV�R�(Y ). Re
all that AV�R�has the property that AV�R�(Y + a) = AV�R�(Y )+ a for any a 2 R. It follows that the fun
tionh(y; �) should be of the form h(y; �) =  (y � �) for some 
onvex fun
tion  : R ! R. Considerfun
tion 	(t) =  0(t). The fun
tion 	(�) is monotoni
ally nonde
reasing, probably dis
ontinuous,and AV�R�(F ) should be a solution of the equationEF [	(Y � �)℄ = 0: (23)



10Now let us 
onsider the following probability distributions F1 := �Æa + 12(1� �)(Æb + Æd), F2 :=�Æ
+(1��)Æ(b+d)=2 and12(F1+F2) = 12�Æa+ 14(1��)Æb+ 12�Æ
+ 14(1��)Æd+ 12(1��)Æ(b+d)=2;where Æx denotes measure of mass one at x, �2 ( 12 ;1) and a < b< 
< d are su
h that 
 < 12(b+ d).It is straightforward to 
al
ulate that AV�R�(F1) = AV�R�(F2) = 12(b+ d). This implies that ifAV�R�(F ) is indeed a solution of (23), then AV�R�� 12(F1+F2)� should be also 12(b+d). However,sin
e �2 ( 12 ;1),AV�R�� 12(F1+F2)�= 14�b+2
�(1��)�1+2d�> 14(b+2
+2d)> 14(2b+ 
+2d)> 12(b+ d):There are some alternatives for the Average Value-at-Risk, whi
h we will dis
uss below. Onealternative is based on mixed quantile and the other one is based on least squares residuals.3.1. Mixed Quantile Approa
h to Estimation of AV�R�(YjX)Let �j 2 (0;1) and �j > 0, j = 1; :::; r, be su
h that Prj=1 �j = 1, and �j (t) := �j [t℄++(1��j)[�t℄+; j = 1; :::; r:Result of the following theorem is due to Ro
kafellar et al. (2008). Sin
e its proof is short andinformative we give it for the sake of 
ompleteness.Theorem 1. Let S(X) := argmin
2R E(X�
), where X is a random variable (having �nite �rst ordermoment) and E(X) = inf�2Rr E nPrj=1  �j (X� �j) :Prj=1 �j�j = 0o : (24)Suppose that the minimizer S(X) is unique. ThenS(X) = rXj=1 �jV�R�j (X): (25)Proof Let us 
onsider the problemMin
;� E hPrj=1  �j (X� 
� �j)i s:t: Prj=1 �j�j = 0: (26)



11By making 
hange of variables �j = 
+ �j , j = 1; :::; r, we 
an write this problem in the formMin
;� E hPrj=1  �j (X� �j)i s:t: Prj=1 �j�j = 
: (27)We have that V�R�j (X) is a minimizer of E � �j (X� �j)�, and hen
e (25) follows provided it isunique. �We 
an view the right hand side of (25) as a dis
retization of the integral 11�� R 1� V�R� (Y )d� ifwe set �= (1��)=r and take�j = (1��)�1�; �j = �+(j� 0:5)�; j =1; :::; r: (28)For this 
hoi
e of �j , �j , and by formula (3), we have thatAV�R�(X)� S(X): (29)Consider now the problem Min�0;� E(Y ��0��TX): (30)By the de�nition (24) of E(�), we 
an write this problem in the following equivalent formMin� ;�0;� E hPrj=1  �j (Y ��0��TX � �j)i s:t: Prj=1 �j�j = 0: (31)The so-
alled Sample Average Approximation (SAA) of this problem isMin� ;�0;� 1N NXi=1 rXj=1  �j (Yi��0��TX i� �j) s:t: rXj=1 �j�j = 0: (32)The above problem (32) 
an be formulated as a linear programming problem.Mixed quantile estimator for AV�R�(YjX)We refer to ��0 + ��Tx as the mixed quantile estimator of AV�R�(Y jx) where (�� ; ��0; ��) is anoptimal solution of problem (32).Asymptoti
s of the mixed quantile estimators are dis
ussed in Appendix B.The estimator ��0+ ��Tx 
an be justi�ed by the following arguments. We have that an optimalsolution (�� ; ��0; ��) of problem (32) 
onverges w.p.1 as N !1 to the optimal solution (� ?; �?0 ;�?)



12of problem (31), provided (31) has unique optimal solution. Be
ause of the linear model (5), we
an write problem (31) asMin� ;�0;� E hPrj=1 �j ("+��0 ��0+(����)TX � �j)i s:t: Prj=1 �j�j =0; (33)where ��0 and �� are population values of the parameters. Similar to (26)-(27), by making 
hangeof variables �j = �0+ �j , j = 1; :::; r, we 
an write problem (33) in the following equivalent formMin�;�0;� E hPrj=1  �j ("+��0 � �j +(����)TX)i s:t: Prj=1 �j�j = �0: (34)It follows that if rXj=1 �jV�R�j (")= 0; (35)then (�?0 ;�?) = (��0 ;��). That is, ��0+ ��Tx is a 
onsistent estimator of Prj=1 �jV�R�j (Y jx). Con-sequently for �j and �j given in (28), we 
an use ��0+ ��Tx as an approximation of AV�R�(Y jx).3.2. Least Squares Residual Based Estimator of AV�R�(Y jX)Consider � :=AV�R� risk measure. Its residual based estimator 
an be developed in a straightfor-ward way. That is, 
onsider\AV�R�(e) = inft2Rnt+ 1(1��)N PNi=1[ei� t℄+o=[V�R�(e)+ 1(1��)N PNi=1 hei�[V�R�(e)i+= e(dN�e)+ 1(1��)N PNi=dN�e+1 �e(i)� e(dN�e)� : (36)Residual based estimator for AV�R�(Y jx)We refer to ~�0+xT~�+\AV�R�(e) as the residual based estimator of AV�R�(Y jx). This estimatoris 
onsistent and its asymptoti
 varian
e is given byN�1 �
2+�2[1;xT℄
�1[1;xT℄T� ; (37)where 
2 = (1��)�2Var�["�V�R�(")℄+�, 
 := � 1 �T� � � ; � := E [X ℄ and � := E �XXT�.The above asymptoti
s are dis
ussed in Appendix C.



13Figure 1 Normal Q-Q plot for di�erent error distributions

−4 −2 0 2 4
−25

−20

−15

−10

−5

0

5

10

15

20

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le
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(b) N(0,1) vs. CN(1,9) −4 −2 0 2 4
−10

0

10

20

30

40

50

60

70

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

(
) N(0,1) vs. LN(0,1)Remark 2. It should be remembered that the above approximate varian
es are asymptoti
 results.Suppose for the moment thatN < (1��)�1. Then dN�e=N and hen
e[V�R�(") =maxf"1; :::; "Ng.Consequently �"i�[V�R�(")�+= 0 for all i= 1; :::;N , and hen
e\AV�R�(")=[V�R�(")=maxf"1; :::; "Ng:In that 
ase the above asymptoti
s are inappropriate. In order for these asymptoti
s to be reason-able, N should be signi�
antly bigger than (1��)�1.4. Simulation StudyTo illustrate the performan
e of the 
onsidered estimators, we perform the Monte Carlo simulationswhere errors (innovations) in linear model (7) are generated from following di�erent distributions;(1) Standard Normal (denoted as N(0;1)), (2) Student's t distribution with 3 degrees of freedom(denoted as t(3)), (3) Skewed Contaminated Normal where standard normal is 
ontaminated with20% N(1;9) errors (denoted as CN(1;9)), (4) Log-Normal with parameter 0 and 1 (denoted asLN(0;1)). Note that error distributions (2)-(4) are heavy-tailed in 
ontrast to the normal errors asshown in Figure 1. In fa
t, �nan
ial innovations often follow heavy-tailed distributions.We 
onsider�= 0:9;0:95;0:99, sample size N = 500;1000;2000 and R= 500 repli
ations for ea
h sample size.



14Figure 2 Conditional VaR and AVaR: True vs. Estimated (Errors�CN(1;9), �=0:95, N = 1000)
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(b) Conditional AVaRConditional Value-at-Risk (VaR) and Average Value-at-Risk (AVaR) are estimated and 
omparedwith true (theoreti
al) values at given 500 test points xk (k= 1;2; : : : ;500), whi
h are equally spa
edbetween -2 and 2 for ea
h repli
ation. Estimators obtained from di�erent methods are 
omputed;quantile based estimator (referred to as \QVaR") and residual based estimator (referred to as\RVaR") for the 
onditional VaR (as des
ribed in Se
tion 2), mixed quantile estimator (referredto as \QAVaR") vs. residual based estimator (referred to as \RAVaR") for the 
onditional AVaR(as des
ribed in Se
tion 3).Figure 2 displays an example of estimation results where solid line is true (theoreti
al)VaR (AVaR), dash-
ir
le line is QVaR (QAVaR), and dash-
ross line is RVaR (RAVaR) giventest points xk. In this example, errors follow CN(1;9), � = 0:95 and N = 1000. In Fig-ure 2-(a), RVaR estimates are 
loser to true VaR values as Mean Absolute Error (MAE)
on�rms (MAE(QVaR)=0.4771 vs. MAE(RVaR)=0.2145). Performan
e of both estimators areworse for AVaR, yet RAVaR estimates are still 
loser to true AVaR values than QAVaR(MAE(QAVaR)=0.6336 vs. MAE(RAVaR)=0.2466) as shown in Figure 2-(b).To 
ompare estimators under di�erent error distributions, MAE (averaged over all test points)and varian
e of MAE (in parenthesis) a
ross 500 repli
ations are obtained shown in Table 1.



15Table 1 MAE for di�erent error distributions �=0:95;N = 1000 (averaged over all test points)Error QVaR RVaR QAVaR RAVaRN(0;1) 0.0762 0.0575 0.0990 0.0674(0.0037) (0.0020) (0.0058) (0.0026)t(3) 0.1758 0.1290 0.4255 0.3232(0.0188) (0.0095) (0.0808) (0.0623)CN(1;9) 0.3006 0.1955 0.3844 0.2311(0.0563) (0.0225) (0.0882) (0.0316)LN(0;1) 0.3905 0.2670 0.8957 0.6432(0.0959) (0.0430) (0.3896) (0.2481)Regardless of the error distributions, RVaR (RAVaR) works better than QVaR (QAVaR); MAEand the varian
e of MAE are smaller. As we 
an expe
t, both estimators perform better for the
onditional VaR than AVaR.Figure 3 presents box-plots for both estimators (QAVaR and RAVaR) given x = 1:006 a
ross500 repli
ations. Findings are similar to the one from Table 1; there are some eviden
e to suggestthat RAVaR has smaller MAE than QAVaR. Also, RAVaR is more stable than QAVaR (MAE ofQAVaR is more spread). Note that both estimators work better for normal distributions than otherheavy-tailed distributions. We 
ould observe the similar pattern for 
onditional VaR.Table 2 illustrates sample size e�e
t on MAE of estimators. As expe
ted, both estimators performbetter as sample size in
reases. MAE of RVaR (RAVaR) is still smaller than that of QVaR (QAVaR)a
ross all sample sizes.Next, we obtain asymptoti
 varian
es (derived in Se
tion 2 and Se
tion 3) and 
ompare thatwith empiri
al (�nite sample) varian
es of both estimators. Figure 4 reports asymptoti
 and �nitesample eÆ
ien
ies of both estimators for the 
onditional VaR where R = 500, and error followsN(0;1) (results are similar for other error distributions). In Figure 4-(a), we see that asymptoti
varian
e of RVaR (dash-dot line) is smaller than that of QVaR (solid line) ex
ept at xk near0. In fa
t, asymptoti
 varian
e is a�e
ted by how far xk is away from 0 (whi
h is the mean ofexplanatory variable in the simulation); when xk is further from the mean, the di�eren
e betweenasymptoti
 varian
es of both estimators is bigger. Figure 4-(b) provides empiri
al varian
e of bothestimators a
ross 500 repli
ations. Empiri
al varian
e of RVaR is (equal or) smaller than that of



16Figure 3 MAE for 
onditional AVaR given x= 1:006 under di�erent error distributions (�= 0:95, N = 1000)

QAVaR−N(0,1) RAVaR−N(0,1) QAVaR−t(3) RAVaR−t(3) QAVaR−CN(1,9) RAVaR−CN(1,9) QAVaR−LN(0,1) RAVaR−LN(0,1)

0

0.5

1

1.5

2

2.5

3

M
A

E
 (

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r)

Estimator − Error DistributionTable 2 MAE for di�erent sample size N with �= 0:95 (averaged over all test points)Error Estimator N =500 N =1000 N = 2000N(0;1) QVaR 0.1129 0.0762 0.0569RVaR 0.0849 0.0575 0.0418QAVaR 0.1390 0.0990 0.0737RAVaR 0.0992 0.0674 0.0498t(3) QVaR 0.2420 0.1758 0.1277RVaR 0.1785 0.1290 0.0942QAVaR 0.5385 0.4255 0.3207RAVaR 0.4517 0.3232 0.2085CN(1;9) QVaR 0.4322 0.3006 0.2180RVaR 0.2928 0.1955 0.1447QAVaR 0.5471 0.3844 0.2658RAVaR 0.3373 0.2311 0.1636LN(0;1) QVaR 0.5814 0.3905 0.2959RVaR 0.4095 0.2670 0.1975QAVaR 1.1986 0.8957 0.7275RAVaR 0.9503 0.6432 0.4754QVaR at all xk. Figure 4-(
) and Figure 4-(d) 
ompare asymptoti
 varian
es to empiri
al varian
esof both estimators. It is 
lear that asymptoti
 varian
es are to provide a good approximation to



17Figure 4 Conditional VaR: asymptoti
 and empiri
al varian
e (Error�N(0;1), �= 0:95, N = 1000, R= 500)
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al varian
e
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) QVaR: Asymptoti
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(d) RVaR: Asymptoti
 vs. Empiri
althe empiri
al ones for both estimators.Figure 5 illustrates asymptoti
 and empiri
al varian
es of both estimators for AVaR. Insightsobtained from the results are similar to the VaR 
ase. However, Figure 5-(
) indi
ates that empiri
alvarian
es of QAVaR are larger than asymptoti
 varian
es, espe
ially when xk is far from the mean.For this 
ase, asymptoti
 eÆ
ien
y of QAVaR may not very informative on its behavior in �nitesample. Results are similar for other error distributions ex
ept t(3). When the error follows t(3),asymptoti
 (empiri
al) varian
es of QAVaR are smaller than that of RAVaR ex
ept when xk is
lose to the boundary (as shown in Figure 6).



18Figure 5 Conditional AVaR: asymptoti
 and empiri
al varian
e (Error�N(0;1), �= 0:95, N =1000, R= 500)
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(b) Empiri
al varian
e
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(
) QAVaR: Asymptoti
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(d) RAVaR: Asymptoti
 vs. Empiri
alTo further investigate the �nite sample eÆ
ien
ies and robustness of both estimators 
ompared tothe asymptoti
 ones, we provide empiri
al 
overage probabilities (CP) of a two-sided 95% (nominal)
on�den
e interval (CI) in Table 3 (di�eren
e between CP and 0.95 is given in parentheses).For ea
h repli
ation, the empiri
al 
on�den
e interval is 
al
ulated from the sample version ofasymptoti
 varian
e (when applied to the values of an observed sample of a given size). Then, forgiven xk, the proportion of the 500 repli
ations where the obtained 
on�den
e interval 
ontainsthe true (theoreti
al) value is 
al
ulated, and these proportions are averaged a
ross all test points.For N(0;1) and CN(1;9) error distributions, the resulting CP of RVaR (RAVaR) is very 
lose



19Figure 6 Conditional AVaR: asymptoti
 and empiri
al varian
e (Error� t(3), �= 0:95, N = 1000, R= 500)
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(b) Empiri
al varian
e
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) QAVaR: Asymptoti
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(d) RAVaR: Asymptoti
 vs. Empiri
alto 0.95 while empiri
al CI for QVaR (QAVaR) under-
overs (resulting CP is smaller than 0.95).For t(3) and LN(0;1) error distributions, CP of RVaR (RAVaR) drops, yet maintains somewhatadequate CP whi
h is a lot better than CP of QVaR (QAVaR). CI of QAVaR under-
overs seriously(resulting CP is about 0.7) and this indi
ates QAVaR pro
edure may be very unstable and needsrather wider CI than other estimators to over
ome its sensitivity. Note that RVaR (RAVaR) ismore 
onservative than QVaR (QVaR) regardless of the error distributions.We 
ould draw similar 
on
lusions for other sample sizes and � values. That is, RVaR (RAVaR)performs better and provides stable results than QVaR (QAVaR) under di�erent error distributions.



20 Table 3 Coverage probability with �= 0:95;N =1000 (averaged over all test points)Error QVaR RVaR QAVaR RAVaRN(0;1) 0.9167 0.9551 0.8442 0.9552(0.0333) (-0.0051) (0.1058) (-0.0052)t(3) 0.9044 0.9269 0.7088 0.9080(0.0456) (0.0231) (0.2412) (0.0420)CN(1;9) 0.9262 0.9428 0.8824 0.9548(0.0238) (0.0072) (0.0676) (-0.0048)LN(0;1) 0.9185 0.9276 0.6930 0.9185(0.0315) (0.0224) (0.2570) (0.0315)5. Illustrative Empiri
al ExamplesIn this se
tion, we demonstrate 
onsidered methods to estimate 
onditional VaR and AVaR withreal data; di�erent �nan
ial asset 
lasses. Let us �rst present an example of Credit Default Swap(CDS). CDS is the most popular 
redit derivative in the rapidly growing 
redit markets (SeeFit
hRatings 2006, for a detailed survey of the 
redit derivatives market). CDS 
ontra
t providesinsuran
e against a default by a parti
ular 
ompany, a pool of 
ompanies, or sovereign entity. Therate of payments made per year by the buyer is known as the CDS spread (in basis points). Wefo
us on the risk of CDS trading (long or short position) rather than on the use of a CDS to hedge
redit risk. The CDS dataset obtained from Bloomberg 
onsists of 1006 daily observations fromJanuary 2007 to January 2011. Let the dependent variable Y be daily per
ent 
hange, (Y (t+1)�Y (t))=Y (t)�100, of Bank of Ameri
a Corp (NYSE:BAC) 5-year CDS spread, explanatory variablesX1 be daily return of BAC sto
k pri
e, and X2 be daily per
ent 
hange of generi
 5-year investmentgrade CDX spread (CDX.IG). We use the term \per
ent 
hange" rather than return be
ause thereturn of CDS 
ontra
t is not same as the return of CDS spread (e.g., see O'Kane and Turnbull2003, for an overview of CDS valuation models). Residuals obtained from this dataset are heavy-tailed distributed (similar to Figure 1-(b)).Figure 7 shows estimated 
onditional VaR (RVaR) of BAC CDS spread per
ent 
hange (resultof QVaR is similar). Sin
e one 
an take either short or long position, we present both tail risk withall values of � whi
h ranges from 0.01 to 0.99; �< 0:5 
orresponds to the left tail (short position)



21Figure 7 Estimated 
onditional VaR (RVaR) for BAC CDS spread per
ent 
hange for �= 0:01; : : : ;0:99

and right tail (long position), otherwise. It is 
lear that RVaR of 
ertain dates are mu
h higher(lower) than normal level due to the di�erent daily e
onomi
 
onditions re
e
ted by BAC sto
kpri
e and CDX spread. This indi
ates the spe
i�
 (daily) e
onomi
 
onditions should be takena

ount for the a

urate estimation of risk, and therefore emphasize the importan
e of 
onditionalrisk measures. Note that given a spe
i�
 date, estimated RVaR 
urve along the di�erent � valuesis asymmetri
 sin
e the distribution of CDS spread per
ent 
hange is not symmetri
.To 
ompare the predi
tion performan
e of both estimators, we fore
ast 603 one-day-ahead(tomorrow's) VaR (AVaR) given the 
urrent (today's) value of explanatory variables using a rollingwindow of the previous 403 days. Figure 8 presents fore
asting results of QVaR and RVaR with�= 0:05 on 603 out-of-sample. Both estimators show similar behaviors, but RVaR seems little morestable. Following ideas in M
Neil and Frey (2000) and Leorato et al. (2010), \violation event" issaid to o

ur whenever observed CDS spread per
ent 
hange falls below the predi
ted VaR (we
an �nd a few violation events from Figure 8). Also, the fore
ast error of AVaR is de�ned as thedi�eren
e between the observed CDS spread per
ent 
hange and the predi
ted AVaR under the



22Figure 8 Risk predi
tion of BAC CDS: QVaR and RVaR (�=0.05)
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violation event. By de�nition, the violation event probability should be 
lose to � and the fore
asterror should be 
lose to zero. Table 4 presents the predi
tion performan
e (violation event prob-ability for VaR, mean and MAE of fore
ast error for AVaR in parenthesis) of both estimators for�= 0:01 and 0:05. In-sample statisti
s show that both estimators �t the data well; the violationevent probabilities are very 
lose to � and fore
ast errors are very small. Out-of-sample perfor-man
es of both estimators are very similar for �= 0:01, even though the fore
ast errors in
reasea little 
ompared to in-sample 
ases. For � = 0:05, RVaR (RAVaR) seems perform better; eventprobabilities are 
loser to 0.05 and fore
ast errors are smaller.Next, we apply 
onsidered methods to one of the US equities; International Business Ma
hinesCorp (NYSE). The dataset 
ontains 1722 daily observation from De
ember 2005 to De
ember2010. Let the dependent variable Y be the daily log return, 100*log(Y(t+1)/Y(t)), of IBM sto
kpri
e, explanatory variables X1 be the log return of S&P 500 index, and X2 be the lagged logreturn. Similar to CDS example, we fore
ast 638 one-day-ahead (tomorrow's) VaR (AVaR) giventhe 
urrent (today's) value of explanatory variables using a rolling window of the previous 639



23Table 4 Risk predi
tion performan
e of BAC CDSIn-sample � Event(%) Mean MAEQVaR(QAVaR) 0.01 0.9950 (0.1965) (1.3118)RVaR(RAVaR) 0.01 0.9950 (-0.8630) (2.8183)QVaR(QAVaR) 0.05 4.9751 (0.2287) (2.5016)RVaR(RAVaR) 0.05 4.9751 (-0.0269) (2.8090)Out-of-sample � Event(%) Mean MAEQVaR(QAVaR) 0.01 0.8292 (1.4546) (2.4421)RVaR(RAVaR) 0.01 0.8292 (1.1052) (4.0615)QVaR(QAVaR) 0.05 3.6484 (1.3740) (3.1099)RVaR(RAVaR) 0.05 4.4776 (-0.3722) (3.3681)Table 5 Risk predi
tion performan
e of IBM sto
kIn-sample � Event(%) Mean MAEQVaR(QAVaR) 0.01 1.0180 (-0.1305) (0.5727)RVaR(RAVaR) 0.01 0.9397 (-0.3481) (0.8926)QVaR(QAVaR) 0.05 5.0117 (0.0468) (1.0204)RVaR(RAVaR) 0.05 4.9334 (-0.0225) (1.1579)Out-of-sample � Event(%) Mean MAEQVaR(QAVaR) 0.01 2.3511 (0.6171) (1.1028)RVaR(RAVaR) 0.01 1.8809 (0.5023) (0.6827)QVaR(QAVaR) 0.05 6.7398 (0.4787) (1.3086)RVaR(RAVaR) 0.05 6.1129 (0.4778) (1.2387)days. Residuals obtained from this dataset are heavy-tailed distributed. Table 4 
ompares the riskpredi
tion performan
e of IBM sto
k return. Both estimators perform well for in-sample predi
-tion. For out-of-sample predi
tion, both estimators behave similarly for � = 0:05, but violationevent probability is larger than 0.05. For �= 0:01, RVaR (RAVaR) seems a bit better, but eventprobability ex
eeds 0.01.Finally, we illustrate how 
rude oil pri
e had impa
ted the US airlines' risk as we mentionedin Se
tion 1. Crude oil pri
es had 
ontinued to rise sin
e May 2007 and peaked all time high inJuly 2008, right before the brink of the US �nan
ial system 
ollapse. We 
ompare the movement ofestimatedVaR for three airline sto
ks given 
rude oil pri
e 
hange; Delta Airlines, In
 (NYSE:DAL),Ameri
an Airlines, In
 (NYSE:AMR), and Southwest Airlines Co (NYSE:LUV). Figure 9 depi
tsRVaR movement with �= 0:05 from May 2007 to July 2008 (QVaR shows similar patterns). Foreasy 
omparison, we standardize all units relative to the starting date. As we 
an see, 
rude oil pri
e



24Figure 9 Airline equities: RVaR 
onditional on 
rude oil pri
e (�=0.05)
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had jumped 150% during this time span. On the other hand, RVaR of LUV in
reased about 15%while that of AMR in
reased 120% and that of DAL in
reased 90% (in magnitude). In fa
t, di�erentairlines have di�erent strategies to hedge the risk on oil pri
e 
u
tuations and this in turn a�e
tsthe risk of airlines' sto
k movement. For example, Southwest Airlines is well known for hedging
rude oil pri
es aggressively. On the other hand, Delta Airlines does little hedge against 
rude oilpri
e, but operates a lot of international 
ights. Ameri
an Airlines does not have strong hedgingagainst 
rude oil pri
e either, and operates less international 
ights than Delta. Our estimationresults 
on�rm the �rm spe
i�
 risk regarding 
rude oil pri
e 
u
tuations.6. Con
lusionsValue-at-Risk and Average Value-at-Risk (Conditional Value-at-Risk, Expe
ted Shortfall) arewidely used measures of �nan
ial risk. To estimate a

urate risk measures taking into a

ount thespe
i�
 e
onomi
 
onditions, we 
onsidered two estimation pro
edures for ea
h 
onditional riskmeasure; one is dire
t (quantile based estimator) and the other is based on residual analysis of thestandard least squares method (residual based estimator). Large sample statisti
al inferen
es of



25both estimators are derived and 
ompared. In addition, �nite sample properties of both estimatorsare investigated and 
ompared as well. Monte Carlo simulation results under di�erent error distri-butions indi
ate that the residual based estimator performs better and provides stable estimation;in general, MAE and asymptoti
/empiri
al varian
e of residual based estimators are smaller thanthat of quantile based estimators. We also observe that asymptoti
 varian
e of estimators approx-imates the �nite sample eÆ
ien
ies well for reasonable sample sizes used in pra
ti
e. However,we may need more samples to guarantee an a

eptable eÆ
ien
y of the quantile based estimatorfor Average Value-at-risk 
ompared to other estimators. Predi
tion performan
es on the real dataexample suggest similar 
on
lusions. In fa
t, residual based estimators 
an be 
al
ulated easily andtherefore residual based pro
edure 
ould be implemently eÆ
iently in pra
ti
e. In this study, weassume a stati
 model with independent error distributions. Extension of 
onsidered estimationpro
edures in
orporating di�erent aspe
ts of (dynami
) time series models 
ould be an interestingtopi
 for the further study.Appendix A: Asymptoti
s of the Residual Based Estimator of V�R�(Y jX)Suppose, for the sake of simpli
ity, that support of the distribution of X i is bounded, i.e., Xi isbounded w.p.1. Sin
e N�1XTX 
onverges w.p.1 to 
 and by (19), we have thatj"i� eij �Op(N�1) NXj=1 "j:We 
an assume here that E ["i ℄ = 0, and hen
ePNj=1 "j =Op(N 1=2). It follows that��"(dN�e)� e(dN�e)��=Op(N�1=2): (38)Suppose now that the set of population �-quantiles is a singleton. Then F̂�1" (�) 
onverges w.p.1to the population quantile F�1" (�) = V�R�("), and hen
e by (38), we have that e(dN�e) 
onvergesin probability to F�1" (�). That is, [V�R�(e) is a 
onsistent estimator of V�R�("), and hen
e theestimator ~�0+xT~�+[V�R�(e) is a 
onsistent estimator of V�R�(Y jx).Let us 
onsider the asymptoti
 eÆ
ien
y of the residual based V�R� estimator. It is



26known that ~�0 + xT~� is an unbiased estimator of the true expe
ted value �0 + xT� andN 1=2 h~�0���0 +xT(~����)i 
onverges in distribution to normal with zero mean and varian
e�2[1;xT℄
�1[1;xT℄T: (39)Also, N 1=2 �"(dN�e)�V�R�(")� 
onverges in distribution to normal with zero mean and varian
e!2 := �(1��)[f" (F�1" (�))℄2 ; (40)provided that distribution of " has nonzero density f"(�) at the quantile F�1" (�).Let us also estimate the asymptoti
 varian
e of the right hand side of (19). We have that Ntimes varian
e of the se
ond term in the right hand side of (19) 
an be approximated by�2E �[1;XTi ℄
�1[1;XTi ℄T	= �2(k+1):We also have that random ve
tors ( ~�0; ~�) and e are un
orrelated. Therefore, if errors "i have normaldistribution, then ve
tors ( ~�0; ~�) and e have jointly a multivariate normal distribution and theseve
tors are independent. Consequently, ~�0+xT~� and[V�R�(e) are independent. For not ne
essarilynormal distribution, this independen
e holds asymptoti
ally and thus asymptoti
ally ~�0+xT~� and[V�R�(e) are un
orrelated.Now, we 
an 
al
ulate the asymptoti
 
ovarian
e of the 
orresponding terms �"(dN�e)�V�R�(")�and �"(dN�e)� e(dN�e)� as ��2�k+1�2 . Thus, asymptoti
 varian
e of the residual based V�R� estima-tor 
an be approximated as N�1 �!2+�2[1;xT℄
�1[1;xT℄T� : (41)Appendix B: Asymptoti
s of the Mixed Quantile EstimatorIt is possible to derive asymptoti
s of the mixed quantile estimator. For the sake of simpli
ity,let us start with a sample estimate of S(X), with �j and �j , j = 1; :::; r, given in (28). That is,let X1; :::;XN be an iid sample (data) of the random variable X, and X(1) � ::: � X(N) be the
orresponding order statisti
s. Then the 
orresponding sample estimate is obtained by repla
ing



27the true distribution F of X by its empiri
al estimate F̂ . Consequently, by (25), (1��)�1S(X) isestimated by (1��)�1 rXj=1 �j F̂�1(�j) = 1r rXj=1X(dN�je): (42)This 
an be 
ompared with the following estimator of AV�R�(X) based on sample version of (2):X(dN�e)+ 1(1��)N PNi=dN�e+1 �X(i)�X(dN�e)�=�1� N�dN�e(1��)N �X(dN�e)+ 1(1��)N PNi=dN�e+1X(i): (43)Assuming that N� is an integer and taking r := (1��)N , we obtain that the right hand sides of(42) and (43) are the same.Asymptoti
 varian
e of the mixed quantile estimator 
an be 
al
ulated as follows. Considerproblem (34). The optimal solution of that problem is �? = ��,�?j = ��0 +V�R�j (")= ��0 +F�1" (�j); j = 1; :::; r;and �?0 =Prj=1 �j�?j = ��0 . Assume that " has 
ontinuous distribution with 
df F"(�) and densityfun
tion f"(�). Then 
onditional on X, the asymptoti
 
ovarian
e matrix of the 
orrespondingsample estimator (��;��) of (�?; �?) is N�1H�1�H�1, where H is the Hessian matrix of se
ondorder partial derivatives of E hPrj=1  �j ("+��0 � �j +(����)TX)i at the point (�?; �?), and � isthe 
ovarian
e matrix of the random ve
torZ := rXj=1r �j �"+��0 � �j +(����)TX� ;where the gradients are taken with respe
t to (�; �) at (�; �) = (�?; �?) (e.g., Shapiro 1989). Wehave rXj=1r� �j �"+��0 � �j +(����)TX�=� rXj=1  0�j �"+��0 � �j +(����)TX�!X;r�j �j �"+��0 � �j +(����)TX�=� 0�j �"+��0 � �j +(����)TX� ;with  0�j (�) is given in (15).Note that E [ 0�j (" � F�1" (�j)℄ = 0; j = 1; :::; r, (see (16)), and hen
e E [Z ℄ = 0. Then � =



28E �ZZT� and we 
an 
ompute � = ��E �XXT� 		T � �, where �= E �hPrj=1 0�j ("�F�1" (�j))i2�,	= [	1; :::;	r℄ with	j = E " rXi=1  0�i �"�F�1" (�i)�! 0�j �"�F�1" (�j)�X# ; j = 1; :::; r;and �ij = E h 0�i ("�F�1" (�i)) 0�j ("�F�1" (�j))i, i; j = 1; :::; r.The Hessian matrix H 
an be 
omputed as H = � 
E �XXT� FF T D �, where 
 =Prj=1 
j with
j = �E h 0�j ("+��0 � �?j + t)i�t ���t=0= � [�j(1�F"(F�1" (�j)� t))+ (�j � 1)F"(F�1" (�j)� t)℄�t ���t=0= �jf"(F�1" (�j))� (1��j)f"(F�1" (�j)) = f"(F�1" (�j)); j =1; :::; r;F = [F 1; :::;F r℄ with F j = 
jE [X℄, j = 1; :::; r, and D=diag(
1; :::; 
r).Sin
e ��0 = �T��, we have that ��0 + ��Tx = [xT;�T℄[��; ��℄, and hen
e the asymptoti
 varian
e of��0+ ��0Tx is given by N�1[xT;�T℄H�1�H�1[x;�℄.Appendix C: Asymptoti
s of the Residual Based Estimator of AV�R�(Y jX)The estimator\AV�R�(e) 
an be 
ompared with the 
orresponding random variable whi
h is basedon the errors instead of residuals\AV�R�(") := inft2Rnt+ 1(1��)N PNi=1["i� t℄+o= [V�R�(")+ 1(1��)N PNi=1 h"i�[V�R�(")i+= "(dN�e)+ 1(1��)N PNi=dN�e+1 �"(i)� "(dN�e)� : (44)Note that\AV�R�(") is not an estimator sin
e errors "i are unobservable.By (38), we have that ���[V�R�(")�[V�R�(e)���=Op(N�1=2) (45)and it is known that \AV�R�(") 
onverges w.p.1 to AV�R�(") as N !1, provided that " has a�nite �rst order moment. It follows that \AV�R�(e) 
onverges in probability to AV�R�("), andhen
e ~�0+xT~�+\AV�R�(e) is a 
onsistent estimator of AV�R�(Y jx).Lets dis
uss asymptoti
 properties of the residual based AV�R� estimator. As it was pointedout in Appendix A, random ve
tors ( ~�0; ~�) and e are un
orrelated, and hen
e asymptoti
ally



29~�0 + xT~� and \AV�R�(e) are independent and hen
e un
orrelated. Assuming that �-quantile ofF"(�) is unique, we have by Delta theorem\AV�R�(e) =V�R�(")+ (1��)�1N�1 NXi=1 [ei�V�R�(")℄++ op(N�1=2) (46)and \AV�R�(")=V�R�(")+ (1��)�1N�1 NXi=1 ["i�V�R�(")℄++ op(N�1=2): (47)Equation (47) leads to the following asymptoti
 result (
f. Trindade et al. 2007, Shapiro et al. 2009,se
tion 6.5.1) N 1=2�\AV�R�(")�AV�R�(")� D!N (0; 
2); (48)where 
2 = (1��)�2Var�["�V�R�(")℄+�. Moreover, if distribution of " has nonzero density f"(�)at V�R�("), then E�\AV�R�(")��AV�R�(")=� 1��2Nf"(V�R�(")) + o(N�1): (49)From the equation (46) and (47), the asymptoti
 varian
e of �\AV�R�(")�\AV�R�(e)� 
an bebounded by (1��)�1N�2�2�k+1� and we 
an approximate the asymptoti
 
ovarian
e of the 
or-responding terms, �\AV�R�(")�AV�R�(")� and �\AV�R�(")�\AV�R�(e)� as �(1��)�1N�2�2�k+1�2 .Thus, asymptoti
 varian
e of the residual based AV�R� estimator 
an be approximated asN�1 �
2+�2[1;xT℄
�1[1;xT℄T� : (50)Referen
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