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1 Introduction

Forecasting is the primary field of application of univariate time series models in

economics. Although different kinds of nonlinear models have been introduced in

the past few decades, it is the linear causal Gaussian autoregressive (AR) model

that remains the prominent model in forecasting in financial and macroeconomic

contexts. In this paper, we compare the forecasting performance of this model to

corresponding noncausal models that allow for explicit dependence on the future,

in contrast to the causal AR model with dependence only on the past. Recently,

Lanne and Saikkonen (2011a) have found that many macroeconomic and financial

time series exhibit noncausality suggesting that better forecasts can possibly be

obtained by allowing for noncausality in the predictive model. In addition, we

deviate from the ubiquitous assumption of normality. While this is necessary for

identification, as discussed below, the proposed t-distribution for the errors also

seems to bring benefits in the form of better fit for a large number of the monthly

and quarterly time series we consider.

Noncausal AR models were suggested by Breidt et al. (1991), and their prop-

erties are studied in the monograph by Rosenblatt (2000). Lanne and Saikkonen

(2011b) suggest a new formulation of the noncausal AR model where the depen-

dence on the future is explicitly formulated. Their model can be estimated by the

method of maximum likelihood, but forecast computation is not straightforward.

This is due to the fact that in the noncausal models, the optimal forecast (in the

mean-square sense) is generally nonlinear. However, recently Lanne, Luoto and

Saikkonen (2010) have proposed a simulation-based forecasting method for the

noncausal autoregressive (AR) model (see Lanne, Luoma and Luoto (2011) for

Bayesian approach). It should be pointed out that although forecasts are based

on simulations, Lanne et al. (2010) show that their method, also employed in this

paper, is not computationally burdensome.

In this study, we examine empirically the marginal benefit of allowing for non-

causality for forecasting performance. We concentrate on the comprehensive data

set of Marcellino, Stock and Watson (2006) consisting of 170 monthly U.S. macroe-

conomic and financial time series. As many important macroeconomic time series,
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such as the real GDP and its components, are measured only on a quarterly basis

also comparisons of quarterly forecasts are of interest. Thus, in addition to the

monthly data, we consider 18 central quarterly U.S. macroeconomic time series

mainly related to U.S. output growth, employment and measures of inflation. This

latter exercise can also be seen as a robustness check for the findings obtained with

the monthly data.

Forecasts are compared based on the usual statistical goodness-of-fit measures

and predictive models are selected by using different model selection criteria. In

this respect, we closely follow the paper by Marcellino et al. (2006). However, they

consider only causal AR models and focus on comparing the direct and iterative

multiperiod forecasting methods. In the former, a forecast horizon-specific model

is employed, whereas in the latter a one-period model is used recursively to obtain

the multiperiod forecast. In this paper, we concentrate on iterative forecasts.

Overall, the results suggest the presence of noncausality in many macroeco-

nomic time series in that allowing for noncausality leads to improvements in fore-

cast accuracy. The noncausal model outperforms the causal model in most cases

although the differences are not very large in terms of the mean square and mean

absolute forecast errors. In particular, at the three and six-month forecast horizons

noncausal models yield smaller forecast errors for over 60% of the variables. This

improvement is especially strong for variables related to employment, construction,

price indices and wages, whereas for interest rates and asset prices, the noncausal

model does not seem to bring extra benefit. Causal models also seem to be superior

at the one-month forecast horizon.

As far as the quarterly time series are concerned, great improvement in forecast

accuracy due to allowing for noncausality is found. For almost all variables and

forecast horizons the noncausal model yields superior forecasts, and the differences

in forecast accuracy are typically larger than for the monthly series. In many cases,

the mean square forecast error is diminished by several percentages, even more than

10%.

The rest of the paper is organized as follows. In Section 2, we introduce the

noncausal autoregressive model of Lanne and Saikkonen (2011b) and describe the
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simulation-based forecasting method of Lanne et al. (2010). The monthly and

quarterly U.S. data set is presented in Section 3, and the forecasting results are

reported in Section 4. Finally, Section 5 concludes.

2 Causal and Noncausal AR Models

2.1 Models

In the previous literature, the causal AR model has commonly been used for fore-

casting macroeconomic time series. The causal AR(r) model for yt can be com-

pactly written as

φ(B) yt = εt, (1)

where φ(B) = 1 − φ1B − . . . − φrB
r and εt is an independently and identically

distributed (i.i.d.) error term with mean zero and variance σ2. In this expression,

B is the usual backshift operator (i.e., Bkyt = yt−k) and the polynomial φ(z) is

assumed to have its zeros outside the unit circle.

The noncausal AR model allows for explicit dependence on the future. In the

formulation proposed by Lanne and Saikkonen (2011b), this is achieved by premul-

tiplying the left side of (1) by the polynomial ϕ(B−1) = 1− ϕ1B
−1 − . . .− ϕsB

−s

to obtain

ϕ(B−1)φ(B) yt = εt. (2)

For stationarity, we assume that ϕ(z) 6= 0 for |z| ≤ 1. We call model (2) the

AR(r,s) model, and the conventional causal AR(r) model is obtained when s = 0,

so that ϕ(B−1) = 1, indicating that yt depends only on its past values. On the

other hand, if r = 0, we have a purely noncausal AR(0,s) model with dependence

only on future values of yt.

When the roots of both polynomials φ(z) and ϕ(z) lie outside the unit circle,

yt in (2) has the following two-sided moving-average presentation,

yt =

∞
∑

j=−∞

ψj εt−j,

where ψj is the coefficient of zj in the Laurent series expansion of φ(z)−1ϕ(z−1)−1 =

ψ(z). For forecasting purposes, it is useful to write model (2) in the following
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equivalent form

yt = φ1yt−1 + . . .+ φryt−r + vt, (3)

where

vt = ϕ(B−1)−1εt =
∞

∑

j=0

βj εt+j. (4)

This shows that the noncausality of the AR(r,s) model can also be interpreted as

dependence on the future error terms εt+j , j ≥ 0.

An important feature of the noncausal AR model is that to distinguish between

noncausality and causality the error term εt must be non-Gaussian (see, e.g., Lanne

and Saikkonen, 2011b). Therefore, throughout the error term in (2) is assumed to

be non-Gaussian, and following Lanne and Saikkonen (2011b) and Lanne et al.

(2010), t-distributed. These authors provide evidence in favor the good fit of the

t-distribution in capturing the fat tails in modeling inflation. Although a number

of other error distributions could be entertained, also according to our results, the

t-distribution seems adequate in most cases. It is mostly some financial time series

that are an exception.

Once the error distribution has been specified, the AR(r, s) model can be es-

timated by the method of maximum likelihood (ML) using numerical methods.

Under reasonable regularity conditions, the ML estimator is consistent and asymp-

totically normally distributed (see Lanne and Saikkonen, 2011b).

2.2 Forecasting in Noncausal AR Models

As Rosenblatt (2000, Corollary 5.4.2) and Lanne et al. (2010) have emphasized,

the prediction problem in the noncausal AR models is nonlinear, and simulation-

based methods are, in general, required in forecasting. In contrast, in the case

of causal autoregressions with i.i.d. errors, the prediction problem is linear and

(in mean-square sense) optimal linear forecasts can be constructed with explicit

formulae without having to resort to simulation-based methods.

Recently, Lanne et al. (2010) have proposed a forecasting method for the non-

causal AR(r, s) model (2). Their procedure can be described as follows. Let ET (·)

signify the conditional expectation conditional on the observed values y1, . . . , yT .
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The conditional expectation of representation (3) of the AR(r,s) model yields the

mean-square sense optimal forecast of yT+h, h > 0,

ET (yT+h) = φ1ET (yT+h−1) + . . .+ φrET (yT+h−r) + ET (vT+h). (5)

Thus, provided forecasts of vT+h are available, multiperiod forecasts at any forecast

horizon h can be constructed recursively. Note that in the special case of the causal

AR(r) model, (5) reduces to

ET (yT+h) = φ1ET (yT+h−1) + . . .+ φrET (yT+h−r). (6)

This corresponds to the iterative multiperiod forecasting approach (see Marcellino

et al., 2006) used extensively in the previous studies of causal AR models.

To obtain forecasts for vT+h, Lanne et al. (2010) use the approximation

vT+h ≈

M−h
∑

j=0

βj εT+h+j, (7)

where the integer M is supposed to be large enough to make the approximation

error negligible. Therefore, a close approximation to (5) is

ET (yT+h) ≈ φ1ET (yT+h−1) + . . .+ φrET (yT+h−r) + ET

(

M−h
∑

j=0

βj εT+h+j

)

. (8)

Lanne et al. (2010) suggest a method for evaluating the last term. Details on the

procedure can be found in their paper, but the main idea is to approximate the

above-mentioned conditional expectation by simulating N mutually independent

realizations from the conditional distribution of
(

εT+1, . . . , εT+M

)

. They also pro-

vide simulation evidence that even with relatively small values of the truncation

parameter M and the number of simulation replications N , approximation (7) is

quite accurate. Based on their simulation results, we set M=50 and N=10000,

respectively.

2.3 Model Selection and Forecast Evaluation

In this paper, the forecasts are computed recursively, and the model is respecified at

each date. The model selection procedure employed is similar to that proposed by
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Lanne and Saikkonen (2011b) and Lanne et al. (2010). At first, an adequate causal

AR(p) model with a normally distributed error term is specified. To determine the

lag order p, three different methods are employed. In addition to the fixed lag

p, the Akaike (1974) and Schwarz (1978) information criteria are employed.1 In

model selection, the maximum number of lags is restricted to 12 (i.e., 0 ≤ p ≤ 12)

and eight (i.e., 0 ≤ p ≤ 8) in the case of monthly and quarterly observations,

respectively. In forecasting, the AIC and BIC criteria are recomputed at each date.

Thus, the selected forecasting model can change at each time when the parameters

are re-estimated.

Once the adequate causal model has been specified, we estimate all noncausal

AR(r, s) models with the sum of r and s equal to p. Finally, following Breidt et

al. (1991) and Lanne and Saikkonen (2011b), we select the AR(r,s) model that

maximizes the log-likelihood function.

Forecasts ŷT+h = ET (yT+h) from (8) are evaluated by commonly used statistical

goodness-of-fit measures, the mean square forecast error and the mean absolute

forecast error. If we denote the forecast error by eT+h = yT+h − ŷT+h and the

length of the out-of-sample forecasting period by m, the mean squared forecast

error (MSFE) can be written as

MSFE =
1

m

m
∑

i=1

e2T+h+i−1, (9)

and the mean absolute forecast error (MAFE) as

MAFE =
1

m

m
∑

i=1

|eT+h+i−1|, (10)

where i = 1, . . . , m. The MSFE and MAFE are computed for each series, forecast

model and forecast horizon h from one to 24 months in the case of monthly data.

For the quarterly time series, the longest horizon is eight quarters. As in the

previous literature, forecasts will be assessed by comparing the MSFE and MAFE

of the AR(r,s) model to those of the causal Gaussian AR(p) model.

1 In both monthly and quarterly time series the fixed lag length is four (i.e., p = 4).
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3 Data, Estimation and Forecast Samples

Our monthly data set was previously considered by Marcellino et al. (2006).2 It

consists of 170 monthly U.S. macroeconomic and financial time series. Most series

range from 1959 M1 to 2002 M12, but there are also some variables with shorter

sample periods. Following Marcellino et al. (2006), we divide the variables into five

categories:

A) Income, output, sales and capacity utilization,

B) Employment and unemployment,

C) Construction, inventories and orders,

D) Interest rates and asset prices, and

E) Nominal prices, wages, and money.

Details on the time series are presented in the appendix of Marcellino et al. (2006).

Almost all series are subject to transformations, most commonly log-differencing,

necessary to guarantee stationarity. We take the transformations and the handling

of the large outliers of Marcellino et al. (2006) as given. An observation is deemed

an outlier if its absolute value exceeds the median of the time series by more than

six times. As Marcellino et al. (2006) point out, there is disagreement on the order

of integration of some variables, especially those belonging to category E. While

they regard some of them I(2) processes, we assume all to be I(1).

The quarterly data set comprises 18 central quarterly U.S. macroeconomic time

series including the GDP and its components. A detailed description of the data

set is given in Table 1. Most series range from the beginning of 1947 to the first or

second quarter of 2010, but some variables have shorter sample periods. Thus, our

quarterly data set covers a somewhat longer time period than the monthly dataset

of Marcellino et al. (2006).

We follow Marcellino et al. (2006) in selecting the first estimation and out-

of-sample forecasting sample periods. In particular, this means that the initial

forecast date in the monthly data is 1979 M1. Thus, for most series, out-of-sample

forecasts are computed for the period of 1979 M1 to 2002 M12. In other words,

2 The data is available at Mark Watson’s homepage http://www.princeton.edu/∼mwatson/

publi.html.
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if the forecast horizon is, say, 12 months (h = 12), the last forecast is made in

December 2001 for December 2002. Similarly in the quarterly data, the first out-

of-sample forecasts are made for the first quarter of the year 1979. Furthermore,

in estimation, we apply an expansive window approach and the parameters are

re-estimated at each date.

4 Forecasting Results

4.1 Monthly Time Series

Tables 2 and 3 summarize the empirical distributions of the relative MSFE (9) and

MAFE (10) of the noncausal model in relation to the causal model, respectively.

We report the results at the forecast horizons of 1, 3, 6, 9, 12 and 24 months.

The forecast comparisons in Tables 2 and 3 involve all variables included in the

data set, and the results based on the three model selection criteria mentioned in

Section 2.3 are reported.

As an example of the results in Table 2, consider the case where the BIC is

used in model selection and the forecast horizon is three months (h = 3): the mean

relative MSFE is 0.9972 (i.e., 99.72%) indicating that the noncausal AR(r, s) model

yields a slight improvement over the causal model. In 10% of the series, the relative

MSFE is less than 0.96, while in 10% of the series the relative MSFE exceeds 1.02,

and more than 60% of 166 the series have a relative MSFE below unity, indicating

the overall superiority of the noncausal model.

A general inspection of the results in Table 2 suggests that when the BIC is

used in model selection, the noncausal model appears to forecast somewhat more

accurately than the causal model. On the other hand, if the AIC is employed or p

is fixed at 4 (p = 4), the differences are minor, or even slightly advantageous to the

causal model. However, according to Table 3, where the mean absolute forecast

error (10) is used in forecast evaluation instead of the MSFE, the results are more

favourable to the noncausal model irrespective of the model selection criterion

used. The MSFE reacts more strongly to large outliers than the MAFE. Thus, a

few large forecast errors in the AR(r, s) model can render the MSFE larger in the
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noncausal model than in the causal model although in a greater fraction of the

series the noncausal AR model outperforms the causal model. The latter is seen by

inspecting the fractions of forecasts with the relative MSFE and MAFE less than

unity also reported in Tables 2 and 3. This forecast evaluation measure is related to

the above-mentioned percentiles of the empirical distribution of the relative MSFE

and MAFE in that it gives the percentages of the variables where the noncausal

model yields smaller forecast errors than the causal model. For example, in our

example case, we can see that the 0.60 percentile is just under unity (i.e. in 60%

of the series the relative MSFE is less than unity) but the 0.75 percentile exceeds

unity. The exact fraction of the series with the MSFE of the causal model exceeding

that of the noncausal model is 0.6145.

The fractions of variables with relative MSFE and MAFE under unity, highlight

the substantial differences between the models. Except for the one-month horizon

(h = 1), the noncausal AR(r,s) model always produces superior forecasts. At

forecast horizons longer than one period, the fractions are often higher than 60%

and the highest values are obtained for forecast horizons from three to six months.

These findings demonstrate how the AR(r,s) model outperforms the causal AR(p)

model. A good example of the usefulness of the percentiles and fractions in forecast

evaluation can be seen in Table 2 when the forecast horizon is six months and

the AIC is used in model selection. In this case, the mean of the relative MSFE

statistics is 1.0987, but the median (0.50 percentile) is 0.9982, and for over 60% of

the series (Frac=0.6024) the noncausal model forecasts more accurately.

In Table 4, we break down the results of Table 2 to the five categories of time

series introduced in Section 3. We report the mean and median (0.50 percentile) of

the distribution of the relative MSFEs as well as the fractions introduced above.

The results reveal the substantial differences in forecast performance between the

different categories of variables.3 The noncausal model typically outperforms the

causal model at all forecast horizons and all categories except for the one-period

forecasts and the category including interest rates and asset prices (category D).

3 The results based on the MAFE leads to similar findings. Details on those results are

available upon request.
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However, it should be pointed out that also in category D, there are various vari-

ables for which allowing for noncausality improves forecasts. As an example, the

relative MSFE of the one-period forecasts of the Federal funds rate is 0.85. On

the other hand, especially for the exchange rate series, the causal model provides

forecasts superior to those of the noncausal model.

The results in Table 5 exclude the series in category D. Not surprisingly, with

the exception of the one-month forecasts, the noncausal model is clearly superior.

The mean and median values of the MSFE criterion at all multiperiod forecast

horizons are less than unity, and the fractions exceed 60%, coming close to 70% in

the case of the six-month forecasts.

One reason for why the noncausal model with a t-distributed error term seems

to work rather poorly for financial variables might be that the t-distribution does

not sufficiently capture their excessive kurtosis. Our estimation results support

this view in that for nearly two thirds of the series in category D, the estimate

of the degree-of-freedom parameter hits the lower bound of 2.1 set to guarantee

finite variance. This suggests that alternative distributions might be preferred for

these series. It can also be seen that in almost all financial variables, there is

evidence of remaining conditional heteroskedasticity in the residuals of the AR(r, s)

model. Thus, even better forecasts could possibly be obtained by taking conditional

heteroskedasticity into account in specifying the predictive model. We leave these

issues for future research.

As a final check, we restrict ourselves to the series exhibiting noncausality

(s ≥ 1) in the entire sample period, i.e. the cases where the benefit in forecasting

due to allowing for noncausality is expected to be greatest. It should be pointed

out that in genuine out-of-sample forecasting this of course is not feasible. The

main goal of this exercise is just to demonstrate the importance of identifying the

variables for which allowing for noncausality is likely to bring gains in forecast

accuracy. The results are presented in Table 6 which shows that, except for the

interest rates and asset prices (category D), the superiority of the noncausal model

over the causal model tends to improve when causal time series are excluded.

This shows up as greater fractions than in Table 2. Interestingly, the AIC seems
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to work a bit better than the BIC in many categories whereas in Tables 2, 4

and 5 the BIC typically produces a predictive model with superior forecasts. One

potential explanation might be the tendency of the AIC to yield higher-order

models with greater potential to find the correct orders r and s. In other words, as

the AIC suggests larger models than the BIC, it is plausible that also noncausality

is correctly identified more often when the AIC is used. Therefore, it is likely that

a greater fraction of the variables included in Table 6 selected by the AIC are truly

noncausal compared with the variables selected by the BIC.

4.2 Quarterly Time Series

In the previous section, we found evidence of the noncausal AR model outper-

forming the causal AR model in forecasting monthly time series. However, because

many interesting macroeconomic variables are measured only on quarterly basis,

it is of interest to examine the predictive performance of noncausal and causal AR

models also for quarterly time series (see the description of variables in Table 1).

Table 7 presents the values of the relative MSFE statistics. In addition, in the

bottom panel, the fractions of the variables with the noncausal model yielding a

smaller MSFE than the causal model are also reported. The overall superiority of

the noncausal model can be confirmed also in this data set. In fact, the differences

in the forecast performance between the noncausal and causal models appear to

be even larger than in the case of monthly observations. For example, for the GDP

price deflator and employment series, the noncausal AR model yields substantially

better forecasts and the improvement is over 10% compared with the causal AR

model at almost all forecast horizons and with any model selection criterion.

As in the monthly data, the reported fractions of the variables confirm the

finding that, on average, the noncausal AR model forecasts better than the causal

AR model. Compared with the results for the monthly data, now also the one-

period (one-quarter) forecasts of the noncausal model outperform those of the

causal model. On the other hand, at the longest forecast horizon of eight quarters,

the causal model seems to work reasonably well.
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5 Conclusions

In this paper, we have compared the forecast performance of the noncausal AR

model of Lanne and Saikkonen (2011b) to that of the conventional causal AR

model. We have examined a comprehensive monthly data set of U.S. macroeco-

nomic and financial time series as well as a more limited collection of quarterly

U.S. time series. The main result of the forecast comparison is that the noncausal

model tends to yield superior multiperiod forecasts compared to the causal model.

The improvement in forecast accuracy is in accordance with the estimation results,

suggesting the presence of noncausality. For the quarterly time series, the improve-

ment in forecast accuracy due to allowing for noncausality is greater than for the

monthly series. For the former, it also seems to be universal, while for the latter

it is confined to multiperiod forecast horizons.

The results suggest that there are some differences between the different cate-

gories of time series examined. The noncausal model clearly outperforms the causal

model for variables related to output growth, employment, construction, price in-

dices and wages irrespective of the data frequency. On the other hand, the causal

AR model, in general, seems to work better among interest rates and asset prices.

The neglected conditional heteroskedasticity or inadequacy of the t-distribution

specified for the error term are possible reasons for this finding.

References

Akaike, H. (1974). A new look at statistical model identification. IEEE Transac-

tions on Automatic Control, 19, 716–723.

Breidt, J., Davis, R.A., Lii, K. S., and M. Rosenblatt (1991). Maximum likelihood

estimation for noncausal autoregressive processes. Journal of Multivariate Analy-

sis 36, 175–198.

Lanne, M., and P. Saikkonen (2011a). GMM estimation with noncausal instru-

ments. Oxford Bulletin of Economics and Statistics, forthcoming.

12



Lanne, M., and P. Saikkonen (2011b). Noncausal autoregressions for economic time

series. Journal of Time Series Econometrics, forthcoming.

Lanne, M., Luoma, A., and J. Luoto (2011). Bayesian model selection and forecast-

ing in noncausal autoregressive models. Journal of Applied Econometrics, forth-

coming.

Lanne, M., Luoto, J., and P. Saikkonen (2010). Optimal forecasting of noncausal

autoregressive time series. HECER Discussion Paper No. 286.

Marcellino, M., Stock, J.H., and M.W. Watson (2006). A comparison of direct

and iterated AR methods for forecasting macroeconomic time series. Journal of

Econometrics, 135, 499–526.

Rosenblatt, M. (2000). Gaussian and Non-Gaussian Linear Time Series and Ran-

dom Fields. Springer-Verlag, New York.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6,

461–464.

13



Table 1: Quarterly U.S. time series.
Series Trans. Sample period Description
gdpdef ∆LN 1947:Q1–2010:Q1 Gross Domestic Product: Implicit Price Deflator
gdp ∆LN 1947:Q1–2010:Q1 Gross Domestic Product
gpdi ∆LN 1947:Q1–2010:Q2 Gross Private Domestic Investment
cpiall ∆LN 1947:Q1–2010:Q2 Consumer Price Index For All Urban Consumers: All Items
gpsave ∆LN 1947:Q1–2010:Q1 Gross Private Saving
dpi ∆LN 1947:Q1–2010:Q1 Disposable Personal Income
pcec ∆LN 1947:Q1–2010:Q1 Personal Consumption Expenditures
rinvbf ∆LN 1947:Q1–2010:Q2 Real Gross Private Domestic Investment
cum ∆LN 1948:Q1–2010:Q2 Capacity Utilization Rate: Manufacturing
ipm ∆LN 1947:Q1–2010:Q2 Industrial Production Index: Manufacturing
ipt ∆LN 1947:Q1–2010:Q2 Industrial Production Index: Total
employ ∆LN 1947:Q1–2010:Q2 Nonfarm Payroll Employment
ruc ∆ 1948:Q1–2010:Q2 Unemployment Rate
hstarts ∆LN 1959:Q1–2010:Q2 Housing Starts
cut ∆LN 1967:Q1–2010:Q2 Capacity Utilization Rate: Total
h ∆LN 1964:Q1–2010:Q2 Indexes of Aggregate Weekly Hours: Total
bopxgs ∆LN 1960:Q1–2010:Q1 Exports of Goods and Services
rimp ∆LN 1947:Q1–2010:Q1 Real Imports of Goods and Services

Notes: In the table, quarterly measured U.S time series, their employed abbreviations, transformations and data
spans are presented. In the second column showing the employed transformations, ∆ denotes the first-order
differencing and LN logarithmic transformation. The data are extracted from the Federal Reserve Economic
Data (FRED) (Federal Reserve Bank of St. Louis).
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Table 2: Distributions of relative MSFEs between the noncausal AR(r,s) model and the causal
AR(p) model based on different model selection criteria.

Model Selection Mean/percentile/fraction Forecast horizon
1 3 6 9 12 24

BIC Mean 1.0289 0.9972 0.9953 0.9957 0.9959 0.9963
0.10 0.9563 0.9602 0.9683 0.9690 0.9660 0.9686
0.25 0.9869 0.9789 0.9872 0.9917 0.9911 0.9939
0.40 0.9998 0.9939 0.9970 0.9982 0.9991 0.9995
0.45 1.0010 0.9967 0.9981 0.9992 0.9995 0.9997
0.50 1.0032 0.9979 0.9991 0.9996 0.9997 0.9998
0.55 1.0065 0.9988 0.9997 0.9999 1.0000 1.0000
0.60 1.0090 0.9999 0.9999 1.0001 1.0003 1.0001
0.75 1.0245 1.0024 1.0014 1.0026 1.0018 1.0010
0.90 1.0717 1.0195 1.0172 1.0134 1.0142 1.0074

Frac 0.4096 0.6145 0.6506 0.5783 0.5361 0.5361

AIC Mean 1.0882 1.0378 1.0987 1.0067 1.0052 0.9829
0.10 0.9626 0.9428 0.9525 0.9462 0.9355 0.9246
0.25 0.9877 0.9800 0.9856 0.9853 0.9875 0.9862
0.40 1.0044 0.9930 0.9944 0.9960 0.9985 0.9974
0.45 1.0074 0.9956 0.9960 0.9981 0.9993 0.9983
0.50 1.0119 0.9977 0.9982 0.9991 0.9998 0.9993
0.55 1.0176 1.0003 0.9990 0.9999 1.0004 0.9997
0.60 1.0249 1.0031 0.9999 1.0010 1.0017 1.0004
0.75 1.0537 1.0199 1.0103 1.0093 1.0095 1.0024
0.90 1.1420 1.1212 1.1126 1.0524 1.0391 1.0215

Frac 0.3735 0.5482 0.6024 0.5602 0.5181 0.5663

p = 4 Mean 1.0528 1.0247 1.0317 1.0217 1.0145 1.0059
0.10 0.9502 0.9502 0.9568 0.9658 0.9715 0.9776
0.25 0.9866 0.9758 0.9824 0.9921 0.9946 0.9968
0.40 0.9980 0.9933 0.9960 0.9979 0.9986 0.9991
0.45 1.0026 0.9962 0.9983 0.9992 0.9994 0.9995
0.50 1.0072 0.9981 0.9993 0.9998 0.9999 0.9999
0.55 1.0134 1.0003 1.0000 1.0003 1.0003 1.0002
0.60 1.0172 1.0023 1.0009 1.0008 1.0007 1.0006
0.75 1.0510 1.0110 1.0061 1.0048 1.0035 1.0022
0.90 1.1569 1.0585 1.0342 1.0300 1.0162 1.0063

Frac 0.4277 0.5301 0.5542 0.5301 0.5120 0.5241

Notes: Each entry is the indicated summary measure of the distribution of the ratio between the MSFE for the
noncausal AR(r, s) model to the MSFE of the causal AR(p) model for the lag selection listed in the first column
and the forecast horizon indicated in the column heading. For each cell, the distribution and the summary
measure are computed over the 166 series being forecasted. Frac is the percentage of variables with the relative
MSFE below unity (i.e., the number of cases for which the AR(r, s) model yields a smaller MSFE than the
AR(p) model). Four variables for which the estimation of the AR(r, s) model failed to converge are left out
leaving 166 time series in total.
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Table 3: Distributions of relative MAFEs of noncausal AR(r,s) and causal AR(p) models based
on different model selection criteria.

Model Selection Mean/percentile/fraction Forecast horizon
1 3 6 9 12 24

BIC Mean 0.9995 0.9938 0.9940 0.9944 0.9956 0.9970
0.10 0.9700 0.9751 0.9784 0.9798 0.9774 0.9829
0.25 0.9909 0.9885 0.9899 0.9924 0.9934 0.9966
0.40 0.9972 0.9953 0.9968 0.9983 0.9991 0.9993
0.45 0.9989 0.9972 0.9979 0.9992 0.9996 0.9996
0.50 1.0000 0.9982 0.9988 0.9996 0.9998 0.9998
0.55 1.0012 0.9992 0.9997 0.9998 1.0000 0.9999
0.60 1.0024 0.9996 0.9999 1.0000 1.0001 1.0000
0.75 1.0075 1.0010 1.0010 1.0009 1.0008 1.0008
0.90 1.0206 1.0071 1.0063 1.0047 1.0081 1.0040

Frac 0.5000 0.6446 0.6205 0.5482 0.5843 0.5843

AIC Mean 1.0070 1.0019 1.0026 0.9984 0.9958 0.9930
0.10 0.9767 0.9684 0.9779 0.9716 0.9634 0.9586
0.25 0.9875 0.9860 0.9881 0.9897 0.9888 0.9917
0.40 0.9988 0.9938 0.9950 0.9968 0.9973 0.9989
0.45 1.0006 0.9963 0.9958 0.9981 0.9982 0.9994
0.50 1.0027 0.9981 0.9970 0.9994 0.9991 0.9997
0.55 1.0050 0.9990 0.9980 0.9998 0.9998 1.0001
0.60 1.0072 1.0007 0.9992 1.0005 1.0001 1.0004
0.75 1.0147 1.0096 1.0032 1.0031 1.0028 1.0022
0.90 1.0397 1.0357 1.0341 1.0220 1.0133 1.0104

Frac 0.4337 0.5723 0.6386 0.5783 0.5361 0.5361

p = 4 Mean 1.0074 0.9973 0.9976 0.9972 0.9987 1.0009
0.10 0.9740 0.9665 0.9722 0.9744 0.9802 0.9859
0.25 0.9893 0.9850 0.9900 0.9911 0.9947 0.9977
0.40 0.9996 0.9955 0.9972 0.9976 0.9990 0.9996
0.45 1.0011 0.9978 0.9984 0.9986 0.9994 0.9997
0.50 1.0026 0.9988 0.9992 0.9995 0.9998 0.9999
0.55 1.0036 0.9998 0.9998 0.9997 1.0000 1.0002
0.60 1.0064 1.0010 1.0005 1.0002 1.0003 1.0005
0.75 1.0150 1.0069 1.0028 1.0016 1.0015 1.0012
0.90 1.0455 1.0191 1.0133 1.0091 1.0066 1.0071

Frac 0.4217 0.5542 0.5723 0.5482 0.5181 0.5181

Notes: In this table, the MAFE (10) is used instead of the MSFE (9) employed in Table 2. See the notes to
Table 2.
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Table 4: Forecasting results based on the relative MSFEs, by the category of the series.

Model selection Forecast horizon
1 3 6 9 12 24

(A) Income, output, sales, capacity utilization (38 series)
BIC Mean 1.0031 0.9965 0.9907 0.9909 0.9917 0.9958

Median 1.0011 0.9999 0.9997 0.9994 0.9995 1.0001
Frac 0.4737 0.5263 0.6842 0.5789 0.6316 0.3947

AIC Mean 1.0176 0.9943 0.9902 0.9912 0.9881 0.9851
Median 1.0073 0.9990 0.9987 0.9992 0.9992 0.9991
Frac 0.3947 0.5526 0.6579 0.5263 0.6053 0.6053

p = 4 Mean 1.0204 0.9886 0.9898 0.9917 0.9926 0.9972
Median 1.0167 0.9969 0.9977 0.9994 1.0002 1.0002
Frac 0.2632 0.5789 0.7368 0.6053 0.4737 0.4737

(B) Employment and unemployment (23 series)
BIC Mean 1.0283 0.9876 0.9917 0.9934 0.9959 0.9967

Median 0.9988 0.9848 0.9920 0.9969 0.9990 1.0000
Frac 0.5217 0.6957 0.6522 0.6957 0.6087 0.5217

AIC Mean 1.1288 1.0024 0.9913 0.9946 0.9895 0.9852
Median 1.0033 0.9937 0.9892 0.9971 0.9997 0.9990
Frac 0.4783 0.6087 0.6957 0.6087 0.5652 0.5652

p = 4 Mean 1.0681 0.9771 0.9854 0.9952 0.9999 1.0099
Median 0.9941 0.9726 0.9719 0.9920 0.9985 0.9998
Frac 0.6087 0.7391 0.5652 0.6522 0.6087 0.5217

(C) Construction, inventories and orders (37 series)
BIC Mean 1.0013 0.9953 0.9949 0.9987 0.9962 0.9924

Median 1.0009 0.9988 0.9991 0.9997 0.9999 0.9997
Frac 0.3784 0.5676 0.7297 0.6216 0.5405 0.6216

AIC Mean 1.0507 0.9895 0.9872 0.9915 0.9930 0.9846
Median 1.0049 0.9904 0.9941 0.9991 0.9995 1.0004
Frac 0.4865 0.6757 0.6486 0.6486 0.5135 0.4865

p = 4 Mean 1.0019 0.9944 0.9902 0.9917 0.9927 0.9918
Median 0.9926 0.9970 0.9983 0.9986 0.9991 0.9995
Frac 0.6216 0.5676 0.6486 0.6486 0.5676 0.5676

(D) Interest rates and asset prices (33 series)
BIC Mean 1.1137 1.0222 1.0063 1.0044 1.0066 1.0107

Median 1.0161 0.9988 1.0001 1.0002 1.0005 1.0001
Frac 0.3030 0.6061 0.4848 0.4545 0.3030 0.4545

AIC Mean 1.2465 1.2001 1.5315 1.0660 1.0620 0.9740
Median 1.0486 1.0332 1.1011 1.0183 1.0024 0.9995
Frac 0.2727 0.3939 0.3636 0.3636 0.3636 0.6061

p = 4 Mean 1.1869 1.1663 1.1903 1.1310 1.0899 1.0400
Median 1.0982 1.0146 1.0025 1.0025 1.0008 1.0016
Frac 0.1515 0.2424 0.3939 0.3030 0.4242 0.3333

(E) Nominal prices, wages and money (35 series)
BIC Mean 1.0067 0.9825 0.9928 0.9912 0.9903 0.9870

Median 1.0066 0.9927 0.9949 0.9980 0.9931 0.9987
Frac 0.4000 0.7143 0.6857 0.5714 0.6000 0.6857

AIC Mean 1.0284 1.0065 0.9970 0.9919 0.9933 0.9856
Median 1.0304 0.9996 0.9955 0.9939 0.9971 0.9961
Frac 0.2571 0.5143 0.6571 0.6571 0.5429 0.5714

p = 4 Mean 1.0053 0.9939 1.0019 1.0005 0.9999 0.9955
Median 0.9986 0.9964 1.0062 1.0010 0.9998 0.9976
Frac 0.5429 0.5714 0.4000 0.4571 0.5143 0.7143

Notes: The five categories (see Section 3) are the same as in Marcellino et al. (2006). In the table, Mean and
Median are the mean and median (0.50 percentile) of the distribution of the relative MSFE statistics. See the
notes to Table 2.
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Table 5: Relative MSFEs between the noncausal AR(r,s) and the causal AR(p) model, excluding
interest rates and asset prices.

Model Selection Forecast horizon
1 3 6 9 12 24

BIC Mean 1.0079 0.9909 0.9926 0.9936 0.9933 0.9927
Median 1.0012 0.9977 0.9984 0.9993 0.9995 0.9997
Frac 0.4361 0.6165 0.6917 0.6090 0.5940 0.5564

AIC Mean 1.0489 0.9976 0.9913 0.9921 0.9911 0.9851
Median 1.0084 0.9961 0.9959 0.9979 0.9995 0.9992
Frac 0.3985 0.5865 0.6617 0.6090 0.5564 0.5564

p = 4 Mean 1.0195 0.9896 0.9923 0.9946 0.9958 0.9975
Median 1.0005 0.9961 0.9984 0.9987 0.9998 0.9995
Frac 0.4962 0.6015 0.5940 0.5865 0.5338 0.5714

Notes: The variables included in category D (interest rates and asset prices) are excluded from this table. Thus,
the number of variables is 133. See the notes to Table 2.
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Table 6: Relative MSFEs of the noncausal variables when purely causal variables are excluded.

Model selection Forecast horizon
1 3 6 9 12 24

All series
BIC Mean 1.0434 1.0041 0.9946 0.9924 0.9928 0.9961

Median 1.0010 0.9977 0.9981 0.9991 0.9998 0.9998
Frac 0.4557 0.6076 0.6582 0.5949 0.5190 0.5443

AIC Mean 1.0879 1.0679 1.1993 1.0126 1.0101 0.9734
Median 1.0166 0.9967 0.9972 0.9981 0.9995 0.9974

Frac 0.3797 0.6076 0.6076 0.6076 0.5570 0.6962

p = 4 Mean 1.0636 1.0617 1.0678 1.0424 1.0274 1.0109
Median 1.0069 0.9971 0.9949 0.9968 0.9986 0.9998

Frac 0.4430 0.5316 0.6076 0.5823 0.5570 0.5316

Excluding interest rates and asset prices (category D)
BIC Mean 1.0049 0.9885 0.9914 0.9911 0.9891 0.9893

Median 1.0009 0.9967 0.9959 0.9989 0.9989 0.9997
Frac 0.4655 0.6552 0.6897 0.6379 0.5862 0.5517

AIC Mean 1.0099 0.9869 0.9857 0.9864 0.9856 0.9769
Median 1.0149 0.9929 0.9929 0.9947 0.9965 0.9972

Frac 0.3793 0.7414 0.7241 0.6897 0.6552 0.6724

p = 4 Mean 0.9935 0.9889 0.9877 0.9873 0.9889 0.9922
Median 0.9986 0.9932 0.9934 0.9944 0.9986 0.9989

Frac 0.5517 0.6552 0.6897 0.6897 0.6034 0.6034

(A) Income, output, sales, capacity utilization
BIC Mean 1.0010 0.9929 0.9864 0.9862 0.9860 0.9903

Median 0.9998 1.0000 0.9999 0.9996 0.9993 1.0006
Frac 0.5455 0.4545 0.6364 0.5455 0.6364 0.4545

AIC Mean 1.0208 0.9849 0.9821 0.9857 0.9801 0.9745
Median 1.0178 0.9975 0.9951 0.9982 0.9922 0.9974

Frac 0.2727 0.7273 1.0000 0.5455 0.8182 0.8182

p = 4 Mean 1.0151 0.9941 0.9858 0.9855 0.9868 0.9917
Median 1.0115 0.9971 0.9967 0.9979 1.0005 1.0006

Frac 0.1818 0.5455 0.9091 0.6364 0.4545 0.3636

(B) Employment and unemployment
BIC Mean 1.0328 0.9849 0.9968 0.9954 0.9923 0.9913

Median 1.0289 0.9876 0.9945 0.9985 0.9989 1.0001
Frac 0.4000 0.7000 0.6000 0.7000 0.7000 0.5000

AIC Mean 0.9814 0.9695 0.9803 0.9819 0.9748 0.9841
Median 1.0058 0.9750 0.9896 0.9967 0.9895 0.9964

Frac 0.5000 0.9000 0.7000 0.8000 0.9000 0.6000

p = 4 Mean 0.9653 0.9828 0.9752 0.9739 0.9761 0.9836
Median 0.9945 0.9846 0.9649 0.9820 0.9934 0.9989

Frac 0.5000 0.7000 0.7000 0.8000 0.9000 0.6000

(C) Construction, inventories and orders
BIC Mean 0.9938 0.9914 0.9943 1.0014 0.9935 0.9920

Median 0.9914 0.9981 0.9978 0.9998 1.0002 1.0006
Frac 0.5333 0.7333 0.6667 0.6000 0.4667 0.4000

AIC Mean 0.9904 0.9862 0.9857 0.9951 0.9907 0.9710
Median 0.9955 0.9816 0.9892 0.9980 0.9993 0.9987

Frac 0.6000 0.8667 0.6000 0.6667 0.5333 0.6667

p = 4 Mean 0.9880 0.9857 0.9839 0.9893 0.9874 0.9899
Median 0.9892 0.9928 0.9832 0.9891 0.9975 1.0001

Frac 0.8000 0.7333 0.8000 0.8000 0.5333 0.4667

(D) Interest rates and asset prices
BIC Mean 1.1482 1.0427 1.0031 0.9972 1.0029 1.0129
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Table 6 (continued)

Forecast horizon
1 3 6 9 12 24

Median 1.0209 1.0030 0.9991 1.0004 1.0014 0.9997
Frac 0.4286 0.4762 0.5714 0.4762 0.3333 0.5238

AIC Mean 1.2951 1.2721 1.7463 1.0759 1.0703 0.9578
Median 1.0486 1.1907 1.1333 1.0330 1.0124 0.9933

Frac 0.3810 0.2381 0.2857 0.3810 0.2857 0.7619

p = 4 Mean 1.2459 1.2494 1.2798 1.1917 1.1307 1.0591
Median 1.2243 1.0712 1.0035 1.0045 1.0005 1.0023

Frac 0.1429 0.1905 0.3810 0.2857 0.4286 0.3333

(E) Nominal prices, wages and money
BIC Mean 1.0018 0.9861 0.9894 0.9847 0.9862 0.9861

Median 1.0041 0.9937 0.9922 0.9865 0.9916 0.9957
Frac 0.4091 0.6818 0.7727 0.6818 0.5909 0.7273

AIC Mean 1.0306 0.9964 0.9899 0.9830 0.9897 0.9789
Median 1.0283 0.9965 0.9929 0.9873 0.9973 0.9916

Frac 0.2273 0.5909 0.6818 0.7273 0.5455 0.6364

p = 4 Mean 0.9994 0.9913 0.9968 0.9928 0.9967 0.9979
Median 0.9986 0.9919 0.9999 0.9969 0.9996 0.9964

Frac 0.5909 0.6364 0.5000 0.5909 0.5909 0.8182

Notes: The mean and median values are calculated based on the variables which are deemed to have a noncausal
component (s ≥ 1) in the final estimated AR(r, s) model when constructing the last forecasts. See the notes to
Table 2.
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Table 7: Relative MSFEs in quarterly time series.

Variable Forecast horizon (quarters)
1 2 3 4 5 6 7 8

gdpdef BIC 0.9603 0.8076 0.7963 0.7625 0.7992 0.8011 0.8550 0.8733
AIC 0.9792 0.8714 0.8221 0.8222 0.8243 0.8096 0.8404 0.9171
p = 4 1.0108 0.8868 0.8098 0.7866 0.8236 0.8292 0.8593 0.9035

gdp BIC 0.9815 0.9826 0.9868 0.9922 0.9971 0.9958 0.9988 1.0014
AIC 1.0054 1.0259 1.0617 1.0600 1.0500 0.9983 0.9806 0.9897
p = 4 1.0172 0.9719 0.9903 0.9842 0.9841 0.9777 0.9944 1.0029

gpdi BIC 1.0136 1.0296 1.0604 1.0141 0.9914 0.9759 0.9981 0.9977
AIC 1.0033 0.9707 0.9833 0.9611 0.9405 0.9825 1.0230 1.0411
p = 4 1.0093 1.0230 1.0699 1.0371 0.9908 0.9766 1.0010 1.0036

cpiall BIC 1.0574 0.9218 0.9271 0.9339 0.8956 0.9144 0.9748 0.9510
AIC 1.1016 0.9422 0.9609 0.9660 0.8936 0.9246 0.9378 0.9573
p = 4 1.2494 0.9987 0.9517 0.9816 0.9274 0.9050 0.9777 0.9739

gpsave BIC 0.9257 0.9298 0.9702 0.9172 0.9449 0.9966 1.0020 0.9989
AIC 0.9558 0.9542 0.9134 0.9389 0.9370 0.9961 0.9844 0.9909
p = 4 0.9909 0.9957 1.0409 0.9702 0.9723 0.9913 0.9890 0.9846

dpi BIC 1.0772 1.0055 1.0510 1.0328 1.0206 1.0254 1.0353 1.0325
AIC 1.0135 1.0311 1.0665 1.0507 1.0292 1.0182 1.0161 1.0366
p = 4 0.9830 0.9119 0.9365 0.9147 0.9700 0.9605 0.9732 0.9804

pcec BIC 0.9674 1.0014 0.9792 0.9875 0.9788 0.9904 0.9884 0.9952
AIC 1.0654 0.9742 1.0003 1.0005 1.0358 0.9642 0.9956 0.9477
p = 4 0.9095 0.9335 0.9293 0.9476 0.9282 0.9262 0.9582 0.9548

rinvbf BIC 0.9856 0.9667 0.9878 0.9962 1.0024 1.0018 1.0009 1.0003
AIC 0.9587 0.9404 0.9537 0.9643 0.9929 0.9939 0.9907 0.9990
p = 4 0.9825 0.9646 0.9875 0.9856 0.9941 0.9967 0.9993 1.0000

cum BIC 1.0319 0.9934 0.9730 0.9788 0.9776 0.9905 0.9935 0.9923
AIC 0.9908 0.9142 0.9624 0.9393 0.9624 0.9607 1.0050 0.9887
p = 4 1.0284 0.9882 0.9805 0.9803 0.9789 1.0033 1.0021 0.9969

ipm BIC 1.0011 0.9702 0.9588 0.9579 0.9701 1.0074 1.0226 1.0272
AIC 0.9801 0.9300 0.9121 0.9238 0.9826 0.9960 0.9919 0.9998
p = 4 0.9993 0.9795 0.9802 0.9636 0.9622 0.9983 1.0136 1.0139

ipt BIC 0.9989 0.9612 0.9571 0.9665 0.9762 1.0063 1.0072 1.0093
AIC 1.1280 1.0933 1.1385 1.0245 0.9690 1.0055 0.9418 0.9182
p = 4 0.9513 0.9694 0.9948 0.9789 1.0065 1.0228 1.0155 1.0136

employ BIC 0.9182 0.8162 0.8477 0.9034 0.9314 1.0092 1.0337 1.0490
AIC 0.9200 0.8580 0.8396 0.8536 0.9284 0.9748 0.9553 0.9781
p = 4 0.9513 0.8753 0.9152 0.9614 1.0023 1.0312 1.0452 1.0544

ruc BIC 0.9800 0.9925 1.0061 0.9978 0.9995 0.9906 0.9919 0.9948
AIC 0.9706 0.8579 0.8619 0.8729 0.8920 0.8961 0.9260 0.9680
p = 4 1.0845 1.0645 1.0079 0.9831 0.9721 0.9661 0.9901 0.9982

hstarts BIC 0.9930 0.9939 0.9997 1.0014 0.9987 1.0004 1.0004 1.0007
AIC 0.9896 0.9715 0.9901 0.9871 0.9899 1.0100 1.0054 0.9983
p = 4 0.9886 0.9978 0.9956 0.9873 1.0074 0.9988 1.0126 1.0014

cut BIC 1.0044 0.9756 0.9787 0.9868 0.9993 1.0044 1.0058 1.0030
AIC 1.0141 0.9910 1.0110 1.0126 1.0168 1.0193 1.0148 1.0109
p = 4 1.0347 1.0264 1.0454 1.0582 1.0645 1.0484 1.0418 1.0112

h BIC 0.9478 0.9234 0.9661 0.9778 0.9862 0.9988 1.0054 1.0047
AIC 0.9484 0.9375 0.9710 0.9766 0.9871 0.9952 0.9949 0.9981
p = 4 0.9179 0.8941 0.9155 0.9264 0.9514 0.9638 0.9828 0.9973

bopxgs BIC 0.8915 1.0117 1.0067 1.0263 1.0130 1.0050 1.0045 1.0051
AIC 0.9190 1.0345 1.0456 1.0322 1.0217 1.0096 0.9997 0.9961
p = 4 0.8669 0.9797 1.0193 1.0202 1.0164 1.0139 1.0032 1.0009
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Table 7 (continued)

Forecast horizon (quarters)
1 2 3 4 5 6 7 8

rimp BIC 0.9451 0.9832 0.9899 0.9775 0.9971 1.0010 1.0007 1.0034
AIC 0.9341 0.9783 0.9901 0.9685 0.9966 1.0023 1.0039 1.0023
p = 4 0.9384 0.9878 0.9791 0.9648 0.9984 1.0078 1.0010 1.0029

Frac BIC 0.6667 0.7778 0.7778 0.7778 0.8333 0.5000 0.3889 0.3889
AIC 0.6111 0.7778 0.6667 0.6667 0.7222 0.6667 0.6667 0.7778
p = 4 0.6111 0.8333 0.7222 0.8333 0.7222 0.6667 0.5000 0.4444

Notes: The relative MSFEs between the noncausal AR model and the causal AR model in the quarterly U.S. time
series listed in Table 1. See the notes to Table 2.
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