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Abstract

We study a coordination problem where agents act sequentially. Agents are embedded in an obser-

vation network that allows them to observe the actions of their neighbors. We �nd that coordination

failures do not occur if there exists a su¢ciently large clique. Its existence is necessary and su¢cient when

agents are homogenous and su¢cient when agents di¤er and their types are private. Other structures

guarantee coordination when agents decide in some particular sequences or for particular payo¤s. The

coordination problem embodied in our game is applied to the problems of revolts and bank runs.

Keywords : social networks, coordination failures, multiple equilibria, revolts, bank runs

JEL Classi�cation : C72, D82, D85, G21, Z13

1 Introduction

Coordination failures occur when agents fail to coordinate on an equilibrium in which they are better-o¤

than in an alternative equilibrium in which they end up. There are many socioeconomic situations in which

it may occur (as in many Keynesian models (Cooper and John, 1988), bank runs (Diamond and Dybvig,
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1983) or revolts (Chwe, 2000), among others). The idea was presented by Jean-Jacques Rousseau as an

illustration of a problem which has become known as the stag-hunt game. In this game, hunting the stag is

risky. This is the case because the payo¤ it yields depends on whether the hunters manage to coordinate. If

they do so, then their payo¤ is higher than the one related to the safe choice of going for the hare. However,

if they fail, the payo¤ is lower.

We study coordination problems that are characterized by a risky action, which is the optimal choice only

if it is taken by the su¢cient amount of agents. They decide in sequence, according to an order of decision

exogenously given. We show how the coordination problems disappear if certain information structures exist

that allow the observability of actions among the agents. We study the case with heterogenous agents: there

may exist agents who di¤er with respect to their di¤erent preferred risky action and/or threshold. The main

objective in our paper is to characterize the structures that guarantee that coordination emerges. In this

sense, our aim is very closed to Chwe (1999, 2000), as explained later.

The agents that we study are embedded in a social network that allows to observe actions.1 If two agents

are linked, then the one who acts later in the order of play observes the other agent�s decision who is aware

that her action will be observed. The e¤ect of a link, in this case, is to change the interaction among agents,

from simultaneous to sequential. The link allows to observe the action, but neither the type, nor the threshold

nor the position in the order of decision are observed. We say that a network allowing the observation of

actions is an observation network. We look for observation networks that imply that the coordination game

played has a unique equilibrium in which all agents take their preferred risky action, independently of the

order of decision. If this occurs for any possible payo¤s that allow for the type of coordination failures that

we study, we say that these observation networks are coordination structures.

We �nd that, when agents are homogenous, the existence of a clique of given size is necessary and

su¢cient in guaranteeing coordination: coordination failures can be sustained in equilibrium if such a clique

does not exist, while in any observation network where the clique exists the unique equilibrium is the e¢cient

one. This is the case for any payo¤s of the type that we study and for any sequence of decision. We extend

our model to di¤erent agents with private types, and we �nd a su¢cient condition on the size of a clique

that guarantees that, for any payo¤s and sequence of decision, only the e¢cient outcome can be sustained

in equilibrium. For this case, however, it is not a necessary condition, and we �nd other structures that

also guarantee the coordination. However, these structures are formed by a higher number of nodes forming

several cliques.

1Typically, social networks are used to model the interactions among agents. As far as we know, Choi et al (2011) and Kiss

et al (2009) are the �rst papers that use networks to modelize the actions that agents are able to observe.

2



When agents are heterogenous and type is private information, we discuss also the case of observation

networks that can be su¢cient for guaranteeing coordination for certain sequences of decision or certain

payo¤s, and we name these networks quasi-coordination structures. In this context, we show with an example

that more connections may generate coordination failures, a fact that is absent of coordination structures2 .

As an illustration of the type of situations we study, imagine a group of people (e.g. professors in a

department) who decide which operating system are going to use3 . They prefer one system or another

depending on how many partners choose it (for instance, because of the possibility of sharing software or

knowledge about the operating system). For simplicity, consider that if su¢cient agents are choosing Linux,

then everyone prefers to use it; if there are not su¢cient agents who use Linux, people would prefer Windows.

Such a situation is characterized by a threshold, which makes pro�table the risky action of using Linux. As

a concrete case, suppose that there are four individuals and that they prefer to use Linux over Windows if

at least 3 of them use it. Suppose that the network structure is common knowledge and consider the social

structures represented in Figure 1.

Figure 1

In network 1 individuals are not connected. It means that they are not able to observe each other. If they

are su¢ciently optimistic and believe that the other individuals will adopt Linux, then all of them adopt

it. But in case of pessimism the opposite happens. Therefore, picture 1 represents an observation network

that does not lead with certainty to the socially e¢cient outcome, so this network is not a coordination

structure. Individuals are more connected in network 2, but still this structure does not enable coordination

always. If any of the individuals observes two others who use Linux, then she adopts it as well. But if only

one other Linux�s user is observed, then it is not clear what is the optimal choice: B may �nd optimal not

to adopt Linux even if she observes that A has adopted it. It is the case, because even if she adopts Linux

and this is observed by D, B does not know with certainty if C will adopt and upon observing only one

2Any observation network that contains a coordination structure is also a coordination structure.
3The literature on adoption studies how the market ends coordinating in one or another product. See Farrell and Klemperer,

2007.
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other agent adopting, D may choose not to adopt. In other words, there is no pro�table deviation from the

strategy that has "do not adopt Linux when observing zero or one other agent adopting it, and adopt it

otherwise". Thus, nobody starts to adopt and everyone may end up using Windows. The network 3 - even

though it has less links than the network 2 - enables coordination, because A,B and C will adopt Linux in

any equilibrium. Beliefs for them do not play any role, independently of the order in which they act. This

is the case because upon observing that two other individuals have adopted Linux, the optimal response for

the third is to adopt it as well. By backward induction, the best response when observing that somebody

has already adopted Linux is to adopt as well. As a consequence, if any of the three individuals does not

observe any action (so she knows to be the �rst to act), then her best choice is to adopt and induces the

other two individuals to follow suit. Since the network structure is common knowledge, individual D knows

that the other three individuals will coordinate, so she adopts as well, even although she does not observe

anyone and her action is not observed by the others. In Proposition 1, we show in general that in case of one

type and a homogeneous threshold t a group of completely connected agents (a clique) of size t is necessary

and su¢cient to achieve uniquely the Pareto-superior equilibrium.

We also study a more general setup in which there are di¤erent types (di¤erent preferred operating

systems in our example) as well as situations in which the threshold changes from individual to individual

(personalized thresholds)4 . For instance, some people may want to use Linux if they are sure that a few

other people use it, while others adopt Linux only if many others use it. Theorem 1 indicates that for every

agent there exists a minimal size of the clique that ensures that she takes her risky action. As a consequence,

every individual takes her risky action in any order of play, in any sequential equilibrium, if there exists in

the society a clique of size as the largest of these minimally required cliques.

Our setup extends naturally to various examples. We study three of them. Revolts succeed if enough

individuals join them and they can be modelled as coordination problems. Several papers (e.g. Granovetter,

1978 and Chwe, 1999 and 2000, among others) study what are the necessary condition for a revolt to succeed.

Bank runs also may be viewed as coordination failures (Diamond and Dybvig, 1983). When a liquidity shock

occurs, some depositors have urgent liquidity need (impatient depositors) and they want to withdraw their

money immediately. Other depositors without immediate liquidity needs (patient depositors) prefer to wait

if other patient depositors wait as well. If many patient depositors try to withdraw, the bank su¤ers a bank

run and it becomes optimal for the patient depositors to withdraw. In this situation, patient depositors play

among them a multiagent stag-hunt game. This example has two types, both of them with a homogeneous

threshold. We show that even though types are unobservable a su¢ciently large clique allowing extensive

4We assume in this case that this information is private.
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mutual observation of actions entails that no bank run should occur in equilibrium. The di¢culty of the

formation of a large clique may explain why bank runs happen.

Our paper is related mainly with Chwe (1999, 2000) and Granovetter (1978), who studied the emergence

of revolts, and Choi et al (2011), which study how di¤erent observation networks facilitate coordination

among agents. Chwe (1999, 2000) analyzes how must be the structure of a communication network in order

to enable the revolts. In the model, he analyzed the minimal requirement on the structure in order to ensure

that the revolution may occur, for the case in which agents know only the willingness to participate of their

neighbors. The condition for coordination requires that agents know through the network that su¢cient

other agents are also willing to revolt. Chwe shows the key relevance of cliques in the formation of the local

common knowledge that enables the revolts. Our aim is similar in the sense that we characterize also a family

of networks under which coordination emerges. Moreover, the type of coordination problem that we study

is similar to the one studied by Chwe. However, our models di¤er in several basic aspects. Chwe studies a

case in which agents have information only about her neighbors, and this information is precisely what the

network transmits. The information of our agents is completely di¤erent, since it allows them to know the

actions of their predecessors who are also neighbors, although they may ignore the type of her neighbors.

However, we assume certain knowledge over these types, since we analyze the case where agents know that

there exist enough people for coordination. Therefore in the model by Chwe there exists local knowledge

of types but complete uncertainty about the global distribution, while in our model we assume knowledge

about the global distribution of types but uncertainty about its local con�guration. Chwe characterizes how

must be the structure for generating a su¢cient information to the agents (there are su¢cient people for the

coordination) that in our model we assume that exists. So the structures in Chwe guarantees the existence

of enough information such that the equilibrium of coordination exists. We show that the coordination

in the risky action is in fact the unique equilibrium under certain structures when the network allows the

observation of previous actions of the neighbors.

With respect to Granovetter (1978), the environment that we study is very similar, although our objective

di¤ers signi�cantly from his. He assumes that each previous action can be observed and analyzes how the

distribution of thresholds must be so that a revolution occurs. Agents may have personalized thresholds and

they revolt after observing that su¢cient other agents do so. The agents studied by Granovetter are rational

in the sense that they participate only if they consider it is bene�cial for them, and respond to the actions

they observe. He characterizes how must be the individual distribution of thresholds in order to generate

the collective action, and how it determines the amount of people that take part on it. In our model, we

also allow for agents with di¤erent utilities, such that each agent requires a di¤erent amount of other agents
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participating for willing to take part on it. However, our agents are called to participate just once, and they

decide strategically: they take into account what they observe and also the strategies of the other players.

Moreover, in the model of Granovetter the agents observe all past actions, while our aim is precisely to

characterize the minimal requirements on observation of actions in order to ensure the coordination in the

risky action.

The potential multiple interactions generate that multiplicity of equilibria emerge in many contexts

related with networks. For instance, it was the case in one of the �rst approaches to the formation of

networks (Aumann and Myerson, 1988). This leaded to the use of several equilibrium re�nements to study

the process of formation (Jackson and Wolinsky, 1996; Bala and Goyal, 2000). Problems of coordination

emerge also in the study of games that are played by agents embedded in given networks (Ellison, 1993;

Bramoullé and Kranton, 2005; Galeotti et al, 2010), or when agents decide at the same time about the

formation of the network (Jackson and Watts, 2002; Goyal and Vega-Redondo, 2005). Our approach di¤ers

since we study the problem of coordination among all the agents with a �xed network that allows them to

mutually observe their actions.

Choi et al. (2011) show the impact of di¤erent observation networks in the coordination of agents in an

experiment. Agents had to decide simultaneously during three rounds wether to contribute or not to a public

good. They were embedded in a network that allowed them to observe the actions of their neighbors only if

they were linked. They �nd that di¤erent structures have di¤erent impact in the possibilities of coordination.

In their environment, they show that the agents, depending on their network position, decide to delay or

commit. By contrast, we study a di¤erent game where agents are called once to decide and therefore these

e¤ects are absent. In Kiss et al. (2009), the e¤ect of having links in an observation network is analyzed in a

bank run experiment. It is shown that links may promote coordination but also failures, depending on the

particular action observed.

The observation of other agents� actions has an e¤ect on coordination that has been studied in several

strands of the economic literature. In herding models (e.g. Banerjee ,1992, or Bikhchandani, Hirshleifer and

Welch, 1992) agents face a binary decision and receive a private signal about the quality of the alternatives

before deciding. They also observe the actions of their predecessors. They use the information conveyed by

these sources in order to choose the alternative that is expected to give the higher utility. In our setup, there

is no uncertainty about the utility the alternatives yield, but the issue is to �nd the information structure

that ensures that su¢cient agents take their risky action and enjoy the highest possible utility. However, a

similarity with herding arises when an agent takes into account that many other agents with low threshold

may coordinate in their risky action. In this case, since the number of other agents choosing the risky action
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is su¢cient, she will also choose the risky action, so a herd of risky action forms. However, notice that the

reasons and mechanisms in herding papers are very di¤erent from ours. Costain (2007) shows in a model

that nests global games and herding models that if most agents may observe a few previous actions instead

of playing a simultaneous-move game, then in the face of fundamental uncertainty multiplicity of outcomes is

prevailing. Our paper - without considering fundamental uncertainty - asks how the social structure enabling

observability of previous actions should be so that agents choose optimally.

The rest of the paper is organized as follows. In the following section we de�ne formally our model.

Section 3 states our main results and in section 4 we discuss some particular cases. Section 5 applies the

model to riots, revolts and bank runs and section 6 concludes. Most of the proofs are relegated to the

Appendix.

2 The model

Let be N = f1; 2; :::; ng the set of agents. These agents are embedded in an observation network � that

connects them. An observation network � is a collection of pairs ij such that if ij belongs to �, then agents

i and j are linked and are able to observe each other�s actions (one of them plays after observing the action

of the other), with i; j 2 N . For convenience, we assume that an agent is always neighbor of itself, i.e.

ii 2 �,8i 2 N . We assume that the network is undirected, ij 2 � () ji 2 � and common knowledge5 .

Agents that are linked are called neighbors. We de�ne the set of neighbors of i as Ni � N : 8j 2 Ni ! ij 2 �.

A key network concept throughout the paper is the concept of clique. Given a network � a clique is a subset

of agents q � N such that they are completely connected, i.e. ij 2 �;8i; j 2 q.

2.1 The game

Payo¤s of agents depend on their actions and actions of others and are given by a utility function u. We

study generalizations of the stag-hunt game, where there is a coordination equilibrium that dominates the

rest of payo¤s. Each of our players is characterized by a threshold t, such that if at least t agents choose the

action preferred by the player, she obtains a payo¤ higher than with any other option. We label this action

as the risky action, since it generates the highest payo¤ but only if the agents are able to coordinate among

themselves.

5The requirement of common knowledge about the network structure is strong. Results similar to those in the paper can be

obtained with a less demanding condition, the existence of knowledge about the possible relations among the neighbors. We

use a common knowledge structure because of its simplicity (a similar approach is used in Chwe, 2000).
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2.1.1 Homogeneous case

We name homogeneous case to the one where all the agents share the same risky action and threshold t.

Importantly in this case, every agent knows that the rest of players share her threshold. The threshold t

represents the amount of agents that are required taking the risky action in order to make it the optimal

decision. In this version of the problem, agents face a binary decision. Let A = f�; �g be the pure action set.

We name � the risky and � the safe action, meaning that agents highest payo¤ is obtained when choosing

� if su¢cient other agents choose it also. The preferences that we study are represented as follows:

ui

0

@ai = �;
X

j2N

Iaj=� � t

1

A > ui (ai = �) > ui

0

@ai = �;
X

j2N

Iaj=� < t

1

A ; (1)

where Iaj=� is the indicator function and ai is the action taken by agent i. Action � is the safe action,

yielding a �xed utility independently of the other agents� choices. Note that the utility does not depend on

the position in the network or the order of decision, it is only a function of the actions taken by the agents.

One can imagine this setup as the generalized version of the example in the Introduction. In a large

Department, everybody may prefer Linux (the risky action), but only if enough other agents adopt it as

well. Otherwise, they prefer the safe option and use Windows.

2.1.2 General set up

In general, agents di¤er in their preferred action and in their threshold. Returning to our example about the

operating systems, some individuals may prefer Linux, while others prefer Mac OS. There may be individuals

that would adopt Linux whatever the others do while other people would need to observe that some have

adopted an operating system before choosing it as well. And others would adopt upon observing a high

number of earlier adopters. The type of an agent consists of the preferred operating system and the number

of individuals adopting it that prompts her to adopt as well.

In this general environment, the set of actions if formed by a set of possible risky actions �A = f�0; �00; :::g

and the safe action �. We name A =
�
�A; �

	
= f�; �0; �00; :::; �g the set of pure actions. For simplicity, we

are assuming that the safe action is the same for everybody6 . Let de�ne ai 2 A as the action chosen by

agent i and a = fai : 8i 2 Ng as an action pro�le, which contains an action for every agent.

At the beginning of the game, nature reveals privately to each agent her preferred action and threshold,

which we name the type of the agent, � i = f�i; tig 2 A� N. We assume that the amount of agents of each

6 If agents would have di¤erent safe actions, they could be perfectly identi�ed if they are observed choosing it. In this way,

it is more di¢cult to infer the type of each agent from her action.
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type is �xed, commonly known and given by k

k : (A� N)! N

k (�; t) = # fi : � i = (�; t)g :

and therefore type is randomly assigned to each agent as in a sampling without replacement.

This is a strong assumption, since it means that the agents know exactly the amount of agents of each

type that exist, although they ignore the exact type of each agent (except the own type). A more standard

assumption would be one where types are randomly drawn from a given distribution. However, we use our

assumption because it allows us to focus in pure coordination problems, as explained later. We assume

that nature assigns types unconditionally, so that ex-ante all agents can be of a given type with the same

probability, given by k.

Consistency requires
X

(�;t)2A�N

k (�; t) = n: (2)

Let denote by

K (�; t) =
X

t0�t

k (�; t0)

the number of agents whose risky action is � 2 A and who have a threshold that is t at most.

We say that � 2 A is the risky action of agent i if that agent�s highest payo¤ is obtained when she chooses

� and su¢cient other agents do the same. If not enough agents choose it, then the safe action is preferred:

ui (�a
0) > ui (�a

00) > ui (�a
000) (3)

with

8
<

:
�a0 :

0

@�a0i = �;
X

j2N

I�a0
j
=� � ti

1

A

9
=

;
; f�a00 : �a00i = �g ; �a000 =2 f�a0; �a00g (4)

Note that in this de�nition of the problem, the threshold t may vary across agents. Action � is the safe

action, yielding a �xed utility independently of the other agents� choices. If there is only one preferred action

and all the agents share the same threshold, this utility is the one of the homogenous case.

We restrict our attention to situations in which coordination is possible, i.e.

maxK (�; t) � max ft0 : k (�; t0) > 0g ;8� 2 A

This condition implies that coordination is a rational outcome: the highest threshold of each risky action is

smaller than the amount of agents who prefer that action. This implies speci�cally that if all agents who

prefer the action are choosing it, they are in fact behaving optimally. Our assumption of a �xed amount
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of agents of each type allow us to study pure coordination problems. Since the amount of agents of each

type is known, we are restricting our attention to environments where coordination is always an equilibrium

outcome: every agent would best respond choosing her own risky action if everyone else were choosing also

it, and it is known that it is possible. Therefore any equilibria di¤erent from the e¢cient one is always the

result of a pure coordination failure. Our aim is to characterize the conditions over the observation network

such that the e¢cient equilibrium is the only one possible.

2.1.3 The coordination game

Agents act in a consecutive manner according to the order of decision �(N), which assigns a position to each

agent. Let �(N) = f�i : 8i 2 Ng such that �i 2 f1; 2; ::ng and �i 6= �j ,8i; j 2 N: Then, �i = 5 indicates

that agent i is the �fth to take the decision. Let �(N) denote the set of all possible orders of decision,

which is equivalent to the set of possible permutations on f1; 2; ::ng. This order is randomly assigned by

the nature according to some probability P (� (N)), which is assumed to be common knowledge: agents

ignore the precise order of decision7 , but they know actions of neighbors who have already decided8 . The

order of decision and the observation network de�ne the information set of each individual. For instance,

an empty network corresponds to a simultaneous game, since nobody observes no other action: in this case,

information sets only contain the private type of each individual. Links allow observation, transforming the

game into a sequential one. In the other extreme case, the complete network, all the previous actions belong

to the information set of the agent and she is able to infer perfectly her exact position in the sequence of

decisions Notice that the connections in the network and the position in the order of decision make agents

heterogeneous.

A coordination game starts with the nature selecting the order of decision with the probability P (� (N)).

We assume that this distribution is common knowledge (but not the precise order). The network and the

order of decision determine the information set of each agent,  i. It includes the type of the agent and the

actions played by those neighbors who have decided before the agent:

 i = f� i; faj : ij 2 �; �j < �i; �j ; �i 2 � (N)gg : (5)

Thus, agent i observes the actions of her preceding neighbors in the order of decision selected by the

Nature. The knowledge of the network enters the information set by allowing the observation of neighbor�s

actions. The set of all possible information sets in which agent i could be is denoted by 	i.

7Except if P (� (N)) is degenerated.
8Note that given this information, agents have partial information about their position.
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A strategy is a mapping from all possible information sets into actions. We allow for mixed strategies, so

si : 	i !4fAg :

The history of the game up to agent i contains the order of decision, the actions up to agent �i and the

type of each agent, and is de�ned as follows:

Hi =
n
� (N) ; faj ;8j : �j < �i; �j ; �i 2 � (N)gj2N ; f� j0 ;8j

0 2 Ng
o

(6)

The belief of agent i is the probability that she assigns to each history that may occurred before she takes

her decision, given her information set. Hence, the belief is de�ned as

�i = Pr (Hi j  i) � 0 :
X

Hi

Pr (Hi j  i) = 1: (7)

Now we are ready to de�ne the coordination game.

De�nition 1 A coordination game is de�ned by N;�; A; k; P (� (N)) and u (:) that satis�es condition (3).

A coordination game is de�ned by the observation network �, that connects the agents, the probability

distribution over the di¤erent orders of play as well as the utility function that depends on the actions, which

satis�es condition (3).

The following example clari�es each of the elements in a coordination game.

Example 1 There are three agents, N = fB;G; Y g. All of them prefer Linux if at least two of them

adopt it. Otherwise they would rather use Windows than being the only person using Linux. They are set

in an observation network that links agents B and G, so � = fBGg. The action set for all of them is

A = 4fL;Wg, L denoting the choice of Linux (W denoting Windows). The utilities are given by:

ui(L;
X

j2N

Iaj=L � 2) = 4;

ui(W ) = 3;

ui(L;
X

j2N

Iaj=L < 2) = 1:
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The extensive form of the coordination game is as follows:

G

Y

B

L

4,4,4

4,4,3

4,3,4

1,3,3

3,4,4

3,1,3

3,3,1

3,3,3

0

Nature

L

L
L

L

L

L

W

W

W

W

W

W

W

B

B

B

Y

G

B

Y

Coordination GameObservation Network

…

…

…

…

…

Figure 2

The coordination game associated with the network starts with the Nature selecting one order of decision

with probability P (� (N)), we illustrate the order GYB. This is the case in which � (N) = f3; 1; 2g (remember

that we have de�ned N = fB;G; Y g). Figure 2 shows that B is the third one who decides, and observes the

action taken by G but not the action taken by Y, who is the second to decide. This is a homogenous case,

with

k =

8
<

:
3 for (a; t) = (L; 2)

0 otherwise

We use sequential equilibrium as the solution concept. A sequential equilibrium is de�ned by a pro�le

of behavioral strategies in each information set and beliefs such that the strategies are best responses to the

strategies of the other agents conditional on beliefs, and the beliefs are consistent with Bayes rule for some

sequence of completely mixed strategies that converges to the equilibrium ones.

De�nition 2 Let (�0;�0) be an assessment, a pro�le of behavioral strategies and beliefs for each player in

each of her information sets. The assessment (��;��) is a sequential equilibrium (Kreps and Wilson, 1983)

if

1. (��;��) is consistent:

(��;��) = lim
n!1

(�n;�n) ; f(�n;�n)g � �
0;

�0 =

8
<

:
(�;�) : � is completely mixed and

�(x) = P�(x)
P�( (x))

9
=

;
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where x is a decision node included in the information set  (x), and P� (x)and P� ( (x)) are the

probability assigned to x and to  (x) respectively,by the system of beliefs �.

2. (��;��) is sequentially rational:

E
�
uij�

�
�i; �

�
i

�
� i
�
;��; � i

�
� E

�
uij�

�
�i; �i

�
� i
�
;��; � i

�
;8i 2 N;8� i 2  i

Our aim is to �nd the observation networks that lead to the Pareto-superior equilibrium in the coordi-

nation game de�ned by N;�; A and k, for any �(N) ; P (� (N)) and u (:).

De�nition 3 An observation network � is a coordination structure for N , A and k, if for all sequence of

decision and utilities, 8P (� (N)) and 8u (:), all agents take the risky action over the equilibrium path in any

sequential equilibrium of the associated coordination game.

For a set of agents in which it is known how many of them prefer each option, if � is a coordination

structure, the unique equilibrium implies the e¢cient coordination. The observation network allows that

some individuals in the game play sequentially instead of simultaneously, which generates that some Nash

equilibria of the simultaneous version can not be sustained as sequential equilibria. We can understand

the concept of coordination structure as the social network such that, if it is known to exist, an agent not

belonging to it would choose the risky action, since she can infer that the unique option is that the structure

promote the coordination in the e¢cient outcome.

3 Coordination structures

3.1 Homogenous case

First we present the result for the homogenous case:

Proposition 1 In the homogenous case with threshold t, an observation network � is a coordination struc-

ture if and only if there exists a subset of agents fq 2 N : #q = tg that forms a clique.

Proof. See Appendix.

A clique is su¢cient by an argument of backward induction. If there exists a clique of size t, in any order

the last agent in the clique chooses the risky action if in her information set observes t � 1 risky actions.

Agent in position t � 1 in the clique best responds to a strategy of this type by choosing the risky action

if she observes t � 2 risky actions, and so on. Therefore, any agent in the clique in position r among those
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that also belong to the clique, chooses the risky action when observing r� 1 risky actions. So the �rst agent

in the clique chooses it, and any agent out of the clique best responds to these strategies by choosing the

risky action, since there are t agents who choose it. Everyone chooses the risky action over the equilibrium

path. We prove that the clique is necessary by constructing an equilibrium assessment in which, over the

equilibrium path, everyone chooses the safe action when the clique does not exist. If everyone believes

that everyone else is going to choose the safe action, everyone choosing the safe action can be sustained

in equilibrium, if the clique does not exist. This is the case because an initial agent cannot know if her

action will be observed by su¢cient people who are also mutually observing their actions in order to be sure

that the �rst best is obtained. Note also that any structure that contains the clique is also a coordination

structure. In this sense, a clique of size t can be said to be minimal and su¢cient.

Figure 3 illustrates the importance of the clique. In this example, there are two di¤erent network

structures of n = 8, and it is required that at least 3 agents take the risky action so that it becomes

pro�table.

This network has 16 links but no clique of

size 3. It is not a coordination structure.

We can find a sequential equilibrium with a
coordination failure

n=8, t=3

This network has 3 links forming a clique of size 3. It is a

coordination structure. All agents choose the risky action
in any sequential equilibrium. Coordination failures may

not occur.

Figure 3

The network structure on the left has 16 connections but no clique of size 3. Given our result, in

any sequential equilibrium in the structure on the right, the Pareto-dominant equilibrium emerges. In the

structure on the left, coordination failures are a likely outcome.

3.1.1 Relevance of cliques: consistency

This result supports the importance of cliques in the emergence of coordination from a new point of view.

Cliques, usually understood as the representation of groups, enable coordination because the agents are able
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to signal their decision in those structures. Importantly for our result, it holds for any utility function: it

does not depend on u: it is possible to �nd a coordination failure equilibrium if the clique does not exist, and

it is not possible if the clique exist, for all possible functions that satisfy 1. This has relevant implications.

Imagine the case of a society deciding wether to revolt against a dictatorship. Our homogenous case would

describe a society where everyone wants to revolt, it is known, but it is required a certain amount of people

revolting in order to support these revolts. In this situation, in a simultaneous set up (i.e., an empty network

in our model), both situations are equilibria, everyone or nobody revolting. In principle, which equilibrium

emerges would depend on the relative payo¤s9 . For instance, if the penalty if the revolt do not success is

very strong, we would expect that people do not revolt.

However, once the clique exists, relative payo¤s do not matter, and everyone would choose the risky

action even if the penalty for failure is very strong. This intuition make clear that a dictatorship has an

interest in destroying such type of cliques, since penalties for failure would not matter. This also suggests

that we should observe this kind of e¢cient coordination when there exist these large cliques that allow the

observation of actions. This point of view gives an additional explanation for the cities as the usual starting

points of revolts, since in the cities there are large amounts of individuals able to observe each other actions,

i.e. embedded in large observational cliques.

How important are the assumptions that we use for this result? Is it consistent? We argue that it is the

case and that the existence of a clique really plays a crucial role because of several reasons. With respect to

the previous literature, in a closed but di¤erent environment, Chwe (2000) obtained a result that is connected

with ours (we detail this connection in a later section). Importantly he showed that the existence of cliques

has a key role in generating the common knowledge that allows coordination (among other results). We

assume the existence of that common knowledge and show that cliques play also a crucial role for obtaining

coordination as the unique expected outcome.

One of the main points is the independence of the result with respect to utilities: if the clique exists and

the bene�t of coordination is arbitrarily small, the unique equilibrium implies that coordination emerges;

if the clique does not exists, even if many agents are able to observe among themselves and to others, and

even if the bene�t of coordination is arbitrarily large with respect to the failure, it is possible to construct

the coordination failure equilibrium.

The clique is su¢cient for coordination for any possible sequence of decision, but it is also necessary. In

this homogenous case, no matter how the structure or the payo¤s are, no matter who starts to play, the

9This kind of simultaneous situations have been succesfully analyzed with global games (Carlsson and Van Damme, 1993).

These models show the importance of the relative riskness of each equilibrium in determining which one is selected.
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existence of the clique guarantees the e¢cient coordination, and the non existence of the clique guarantees

the existence of a coordination failure. In fact, the existence of the clique is necessary and su¢cient for any

sequence of decision: there exists no structure in which the coordination failure may not be sustained, even

if the �rst agent who decides is observed by many other people (but not forming a clique of size t).

Another aspect that reinforces the consistency of the result is the type of equilibrium that we use. Along

the paper, for consistency, we use the concept of sequential equilibrium, which is a relatively strong concept

that requires the existence of very rational beliefs out of equilibrium. Even using this concept, we �nd

that the coordination failure can be sustained when the clique does not exist. When proving uniqueness

of the equilibrium when the clique exist, we in fact prove that it is the case for arbitrary beliefs out of

equilibrium. That is, we prove that coordination is the unique equilibrium outcome for any weak perfect

Bayesian equilibrium. Under our point of view, the fact of obtaining uniqueness of equilibrium with a

very few demanding equilibrium concept as WPBE, and of obtaining multiplicity even under sequential

equilibrium, reinforces the consistency of the result, supporting the real relevance of cliques in the emergence

of coordination.

3.2 General case

The general version of the model allows to study the case when the agents ignore if they are observing people

who share their preferences or not. In this general case, we assume that preferences (i.e., the utility function

of each individual) are private information but that the amount of agents of each type is �xed and common

knowledge10 . We start our analysis with some illustrating examples of the simplest case. Imagine a society

formed by n agents, where n � 1 are willing to take the action � and the other agent has a degenerated

decision, choosing always �. We name her the "unwilling" agent. If types are private information, how must

10Note that common knowledge about the type distribution implies knowledge about private type in the homogenous case,

which is therefore nested in the general model.
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be the coordination structures if agents that prefer � have threshold t = 2? Figure 4 shows some examples.

Figure 4

If there is in the society an observation network as 1 or 2, in any sequential equilibrium, for any payo¤s, and

for any order selected by the nature, agents willing to take � choose it on the equilibrium path. Let explain

why. Since the agents have threshold t = 2;any of them would best respond by choosing � if observes that a

predecessor has chosen also �. In the network 1, the �rst agent in the clique who has to choose, knows that

her action is observed by at least one agent willing to take the action (she is observed by 2 agents, and only

1 in the society does not want to choose �). Therefore, she best responds by choosing �, since then the �rst

best is obtained. The second agent in the clique, when choosing, if she observes that the �rst one has not

chosen � must believe with probability 1 that she was the unwilling agent, and assigns probability 1 to be

observed by a willing agent. Therefore, in any equilibrium path, the willing agents in the clique choose �,

and agents who does not belong to the clique best respond to these strategies by also choosing �. A similar

argument can be applied in the network 2. However, in 3 a di¤erent equilibrium can be sustained. Imagine

that everyone is playing � after observing � and that penalization of choosing � if nobody else chooses it is

extremely high. If the �rst agent who decides is not in the extremes, she will choose � since she knows that

is observed by, at least, one willing agent. But if the �rst agent is in one of the extremes, if she plays �, with

positive probability she is observed by the unwilling agent, who would choose also �. Given the prescribed

strategy, if the order of play is according to the sequence, nobody else would choose �, and the initial agent

prefers �. Therefore it is possible to sustain an equilibrium failure. The existence of the structure 3 does

not guarantee the non existence of coordination failures.

Figure 5 shows other coordination structures when threshold is t = 3 and there exists only one unwilling

agent.
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Figure 5

In this situation of threshold t = 3, a clique of size 4 as the one in the right corner, formed by 4 nodes

and 6 links, is a coordination structure. The argument is related with the one used for the clique of size 3

when threshold was t = 2. The �gure in the left, with 64 agents and 320 connections is "minimal" since,

if just one link is deleted, a coordination failure may occur in equilibrium (for certain payo¤s and order of

play). It is a coordination structure with cliques of size 3. The �gure is formed by squares where all agents

are connected to a "center" of the square, who is at the corner of another square. In a square connected to a

center, it can be proved that, if the �rst agent who decides is the center and she is of the willing type, then

every willing agent chooses the action �. In the structure in the left, every agent is the center of a square,

and her neighbors in the square are at the same time the center of a di¤erent square. Therefore, the �rst

agent who decides chooses the action � if she is of the willing type. If she is not of the willing type, the

following agent who decides is in the center of some square and is of the willing type, and so on. In any

order of decision, for any payo¤s, every willing agent chooses � in that structure. Therefore, if the structure

exists and it is known, any willing agent who does not belong to it would also take the risky action over the
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equilibrium path.

3.2.1 General results

The previous examples show some coordination structures for a very particular case: one where all the

society shares the same risky action and threshold except for one individual. We have found some simple

structures, as cliques, and some other complex structures. Here we explore if we can obtain more general

results. We �nd that the existence of one clique su¢ciently large guarantees the coordination.

Let focus in the case of agents who share the same risky action � but with di¤erent thresholds t. Given our

environment, an agent knows that there are su¢cient people if the clique is of a size at least n�K (�; t)+ t.

This is the case since K (�; t) are the amount of people in the society who wants � with a threshold smaller

or equal than t, n�K (�; t) are all individuals in the society who would not take � optimally although there

were t agents choosing it. The following lemma comprises this insight:

Lemma 1 An agent of type f�; t0g ; t0 � t takes the risky action on any equilibrium path if there exists a

clique of size n�K (�; t) + t

Proof. See Appendix

If there exists a clique of size n � K (�; t) + t, it is sure the existence of t agents willing to choose

�. Note that the clique of size 3 in Figure 4 and the clique of size 4 in Figure 5 can be shown to be

coordination structures according to this Lemma. There are signi�cant di¤erences with the homogenous

case. In particular, in the equilibrium of coordination, it is likely that an agent observes actions di¤erent

from her risky action. What Lemma 1 adds to our knowledge is that, in any sequential equilibrium and

given the existence of the clique, any equilibrium beliefs of the agent must incorporate probability 0 to the

event of those non-risky action being taken by agents like the individual (other agents who share her own

risky action). In the Appendix we prove that this is the case.

When having di¤erent thresholds, however, a second e¤ect must be incorporated, related with a "cascade

e¤ect". Because of Lemma 1, an agent of type (�; t) takes the risky action if there exists a clique of size at

least n �K (�; t) + t. But note that an agent of type (�; t) takes the risky action also if there are t agents

with a threshold smaller than t (say �t < t). In such a case, the clique required by agents with threshold �t is

also su¢cient for the agents with threshold t. All these insights are summarized in the following theorem:

Theorem 1 An agent of type f�; tg takes the risky action on any equilibrium path if there exists a clique
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q � N of size #q = q(t) where

q (t) = q� (r� (t)) ; (8)

where r� (x) = min fN �K (�; t) + t : 8t � xg

q� (x) =

8
<

:
r� (x) if r� (y) < x

r� (y) if r� (y) � x
; y = max ft : y < xg

where q� (x) is constructed iteratively from the lowest threshold x for the action �.

Proof. See Appendix.

Theorem 1 shows that if a clique of certain size exists, then the agent takes the risky action in any

sequential equilibrium. This is the case for an agent of given type, independently of how many di¤erent

preferences exist (in risky actions or threshold). So this result can be applied for environments where people

di¤er in their objectives of coordination. The result of Lemma 1 is incorporated in r� (x), which includes

that an agent takes the risky action when the condition of the Lemma 1 is met by the agents with some

threshold equal or larger than her threshold. The possibility of existing more than t agents choosing the

risky action with a threshold smaller than t is incorporated in q� (x), which is constructed recursively and

says that, if there are more than t agents with a threshold smaller than t0 < t, the size of the clique required

by agents with threshold t is the same than the one required by the agents with threshold t0. The following

example of a society of 25 agents who share the same risky action � but di¤er in their thresholds, and 1

agent who prefers �0, illustrates the result.

Example 2 Let suppose a set of agents N = f1; 2; :::; 26g which play a game of coordination. The type of

agents is given by

k (:; :) =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

5 for (�; 2)

5 for (�; 6)

8 for (�; 10)

2 for (�; 14)

5 for (�; 21)

1 for (�0; 1)

0 otherwise

We can compute here the size of the clique required by each agent in order to be sure that she chooses the
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risky action in any equilibrium:

t k (�; t) N �K (�; t) N �K (�; t) + t r� (t) q� (r� (t))

2 5 21 23 18 18

6 5 16 22 18 18

10 8 8 18 18 18

14 2 6 20 20 18

21 5 1 22 22 22

Table 1

If there is a clique of size 23, agents with threshold t = 2 know that there are at least 2 people with threshold

2 in the clique, and therefore, they are going to take the risky action. Agents with threshold at most ten

(t � 10) know that if there is a clique of size 18, it includes with certainty at least 10 agents with a threshold

equal or smaller than 10. Therefore, those agents with threshold at most 10 in the clique coordinate on their

e¢cient action in any equilibrium, and - since the network is common knowledge - also any other agent with

the same threshold in the society will do so. This is the direct e¤ect of a clique of size 18.

Finally, the "amplifying" e¤ect generates that agents with threshold 14 take the risky action also when

there is a clique of size 18. This occurs because this clique generates that all agents with a threshold smaller

or equal than 10 take the risky action in any equilibrium path; and since they are 18 agents, the e¤ect of the

clique a¤ects also to those agents with threshold at most 18 (in this case, the 2 agents with threshold 14).

However, the agents with threshold 21 will not necessarily follow suit. They require the existence of a clique

su¢ciently large to know that 21 agents will coordinate: in this case, a clique of size 22.

Note that, in the example, if there exists a clique of size 22, any agent chooses the risky action. This

means that an observation network � including a clique of size 22 is, in fact, a coordination structure.

Nevertheless, if the highest threshold was 18 instead of 21, then a clique of size 18 would be a coordination

structure. Therefore we can obtain a su¢cient condition for the existence of a coordination structure, that

follows directly from the Theorem 1:

Corollary 1 A network � is a coordination structure in the incomplete information case if there exists a

subset of agents
n
s � N : #s = max fq� (r� (t))g8�2A;8t

o
that forms a clique.

Proof. If there exists a clique of size
n
s � N : #s = max fq� (r� (t))g8�2A;8t

o
, given Theorem 8, for any

agent in N there exists a clique su¢ciently high such that she takes the risky action over any equilibrium

path. Therefore, everyone takes the risky action and � is a Coordination structure.
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Agents of each type require a clique of a given size for choosing the risky action for sure. Corollary 1

says that if the largest of the required cliques exists, everyone chooses her risky action. And therefore �

is a coordination structure. This can be applied when in the society there are groups of agents who di¤er

in their risky action �. In these conditions, Corollary 1 shows that if a su¢ciently large clique exists, the

unique equilibrium outcome is the Pareto-e¢cient one.11

This result provides us with a su¢cient condition to obtain coordination in the case of heterogenous

agents with private types. It is required the existence of a clique larger than in the homogenous case. The

reason is that now, initial agents who would potentially coordinate require that their action is observed by

much more people than before in order to be sure that they are coordinating with su¢cient people of the

same type. At the same time, people who plays lately in the sequence of decision requires also to have enough

observations over the past in order to identify correctly those agents who are not choosing the risky action

as agents of a type di¤erent from their own type. When an agent has information of the types of the agents

she is observing to act (the homogenous case), we have shown that still a clique of size t is necessary. So

that, this represents a lower bound on the requirements for coordination. We can imagine that in the case

of private information, the existence of a clique of size t is necessary. Figures 5 and 6 show some of these

structures, formed by small cliques of the size that would be required in the case of known types. In the

Discussion in the following section, we argue how can be constructed this family of coordination structures

and show them for the simplest cases.

It is interesting to note that the �rst individuals to decide are not always those whose threshold is the

lowest. However, this does not impede coordination, because agents� choices are strategic and consequently

even an agent with a high threshold takes the risky action if the observation network enables coordination.

The ability to observe other actions works as mechanisms of coordination. When people know that there

is a su¢cient amount of other agents, and that they are mutually observing their respective actions, they

are able to signal their type to the rest of members of the group by choosing their preferred action. This

happens only if the group is su¢ciently large to ensure that enough people with the same type will observe

the action: coordination failures are less likely when there are larger groups of people able to observe each

11The result relies on the fact that coordination in the risky action generates the highest possible payo¤. It is worthy to note

that this does not include related situations, as the one that follows. Imagine the revolt case with two di¤erent groups that

prefer di¤erent regimes. Each group prefers to revolt in favour of their candidate. This means that if clique are su¢ciently

high, both groups could revolt, and then it may be the beginnig of a �ght in which both groups would be worse o¤ than in the

non revolting case. This situation is not nested in our model, since then the coordination in the risky action do not generate

the hisghest possible payo¤, since depending on the rest of agents it can generate a lower payo¤ than the safe action. In fact,

under these payo¤s, may appear di¤erent equilibria if the clique is su¢ciently high, depending on the order in which di¤erent

agents take their decissions.

22



other (even if they do not communicate).

Figure 6 illustrates the case of a coordination structure when there are di¤erent risky actions (although

for simplicity, we assume that all thresholds are the same). Let suppose a society of 24 individuals who have

to dress for a party. We assume that each one has a preferred color to dress, preferring 7 of them to dress in

green, 6 in red, 6 in pink and 5 in blue. However, they prefer it only if at least 2 people more are dressing

their preferred color. If not, they prefer to dress in black. Formally, this is a case where N = f1; 2; :::; 24g,

A = fgreen; red; pink; blue; blackg and

k (�; t) =

8
>>>>>>>>><

>>>>>>>>>:

7 if (�; t) = (green; 7)

6 if (�; t) = (red; 6)

6 if (�; t) = (pink; 6)

5 if (�; t) = (blue; 5)

0 otherwise

In this situation, what observation networks are coordination structures?

IfIf agentsagents areare isolatedisolated,, eacheach typetype couldcould coordinatecoordinate oror notnot inin theirtheir

preferredpreferred actionaction, as a, as a resultresult inin somesome SequentialSequential EquilibriumEquilibrium

CirclesCircles representrepresent cliquescliques. In. In thethe firstfirst case,case, therethere existsexists aa cliqueclique ofof sizesize 20. In20. In anyany

SequentialSequential EquilibriumEquilibrium,, agentsagents whowho preferprefer greengreen dressdress itit,, independentlyindependently ofof ifif theythey

belongbelong oror notnot toto thethe cliqueclique;; ifif thethe cliqueclique isis ofof sizesize 22, in22, in anyany SequentialSequential EquilibriumEquilibrium

firstfirst bestbest isis obtainedobtained..

Figure 6

Theorem 1 shows that, if there exists a clique of size 20, every agent whose preferred action is green

chooses it in any sequential equilibrium. It is not necessary true for the other agents. A clique of size 22 is

23



a coordination structure, since the agents who prefer blue are those who require the highest clique, and it is

of size 22. If such an observation structure exists, in any order of play, for any payo¤s, every agent chooses

her risky action over the equilibrium path and the �rst best is obtained: all agents will dress in their favorite

colors. It is important to remember that we are analyzing a situation where agents do not communicate.

Our conditions are su¢cient only if the individuals in the clique are able to observe how each other �nally

dresses.

The clique required by Theorem 1 and Corollary 1 may be very large, which is typically not likely.

However, the kind of social interaction that we are studying is mild: a link between two subjects only

implies that they are able to observe their actions. This can be simply the case of living in the same

neighborhood. Imagine once more the case of revolts against dictatorships. People may prefer go to the

streets if enough other people are going to revolt. We require that these actions are observable. One can

imagine that a city would be in fact a clique that connects all its citizens, since in a city, each agent would

observe if other agents go to the streets. Our result implies that if there exist a clique su¢ciently large,

coordination emerges. In the revolt environment, we would say that if there exists a city su¢ciently large,

where people are able to mutually observe their actions, we expect that revolt occurs. We argue that this

mechanisms can give some insights on the cities being places where revolts generate. In fact, we are saying

that if people know that there exist a city su¢ciently large, where there are for sure su¢cient people willing

to revolt, everyone would decide to revolt, even people who is not in the city, and even people who require

high thresholds for participating. The di¤erence with respect to the homogenous case is that now when the

agents take the decision they do not know who of their neighbors are willing to take it, but we show that

also in this situation the unique outcome is the e¢cient one when a su¢ciently large clique exists. The key

point is to know that there exist su¢cient people willing to revolt.

4 Discussion

The existence of a su¢ciently high clique guarantees the coordination of agents for any payo¤s and for any

sequence of decision. Now we discuss some other possibilities, the case of coordination structures formed

by more complex structures with many smaller cliques, as the one depicted in Figure 5, or structures that

guarantee the coordination for particular payo¤s or sequence of decisions, a case that we name Quasi-

coordination structures.
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4.1 Coordination structures with smaller cliques

An agent that has to coordinate with a part of the society in order to obtain her �rst best takes her risky

action if she knows that there exists a su¢ciently large clique, as determined by Theorem 1. However, in

contrast with the homogenous case, it is not a necessary condition: it is possible to �nd structures with

cliques of smaller sizes that also guarantee the coordination in the risky action for any payo¤s and sequence

of decision. Figures 4 and 5 illustrate the case when there is 1 agent in the society who will play always the

safe action and the required threshold is t = 2 or t = 3 respectively. Here we discuss how can be constructed

these structures. We focus in the simplest case, when there is a group of agents with the same risky action �,

the same threshold t and the rest of the society chooses always the safe action �. We name n� the cardinal of

agents who prefer � if at least t agents choose it and n� the cardinal of agents who always choose �. Abusing

the notation we say that an agent is of type � or of type � respectively. In this kind of situations, following

Corollary 1, a clique of size n�+ t is a coordination structure. In fact, any larger structure including a clique

of size n� + t is a coordination structure. But what about structures formed by smaller cliques?

What can be known about any sequential equilibrium, for any order and payo¤s? Any equilibrium

strategy pro�le must include that an agent of type � chooses the action � in all those information sets where

she observes t � 1 actions �. For the simplest case, when t = 2, an agent of type � chooses it if she knows

that is followed by another agent of her type. If in the society there is only one agent of type �, n� = 1, an

agent of type � who has two neighbors who have not played yet will choose action � in equilibrium. The

simple structure where we can know that there will be a initial player with two neighbors is a triangle, the

clique of size 3. For this case, one clique of size 3 is su¢cient, in fact, because of Lemma 1.

Can we found other coordination structures for this case? Yes, as depicted in Figure 7, an square is also

a coordination structure: an agent of type � has two neighbors and will choose �; consistent beliefs imply

that, if she does not play �, must be the type � agent with probability 1. The square is an example of

coordination structure formed by cliques of size 2 for the case t = 2, n� = 1.

For the case of t = 2, n� = 2 each agent requires to have 3 successors in order to play the risky action

if is of type �. In a clique of size #q = t + n� = 4, every agent has 3 followers, and therefore if the �rst

one plays � consistent beliefs imply that she is a type � agent. In order to obtain a coordination structure,

we require agents who have 3 successors. In this way, an agent of type � will choose � in any sequential

equilibrium, because having 3 successors she knows that at least 1 is of type �. It can be got with a clique

of size 4 or with other structures with more nodes and connections but cliques of smaller size. In Figure 7

we have drawn di¤erent coordination structures when t = 2 and the amount of agents of type � is between

1 and 4. Basically, for the case of t = 2, we obtain coordination structures if there are su¢cient agents with
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n� + 1 neighbors.

Figure 7

When coordination is more di¢cult, that is, when it is required more agents for obtaining coordination,

coordination structures become more complex. In Figure 8 we have drawn the required coordination struc-

tures formed by cliques of size 3 for the case when t = 3 and n� = 1 and n� = 2. In this cases, cliques of

size 4 and 5 would be su¢cient, following Corollary 1. But structures become much more complex when

using smaller cliques. In the simplest case, when t = 3 and n� = 1, a square with all corners linked with

a "center"12 generates that, if the center is the �rst who plays, she will choose � if is of such type. For

obtaining a coordination structure, we must ensure that each of the agents is the center of a square. Figure

8 shows how looks a network where it occurs. When n� = 2, the center of an hexagon whose opposite

corners are connected would also choose � if she is of such type and is the �rst who play. Therefore, we can

12Note that a in asquare with all corners connected to a center the highest clique is of size 3.
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construct a coordination structure if we guarantee that each node is the center of an hexagon of that type.

Note that in such an hexagon, the highest clique is of size 2, and therefore, if agents connect to some center,

the highest clique remains of size 3.

Figure 8

Figure 8 illustrates the complexity that can require an observation network in order to be a coordination

structure when size of the cliques is limited. Corollary 1 guarantees the existence of a coordination structure

with a relatively low requirements in terms of amount of nodes and connections. Moreover, it guarantees the

existence of some coordination structure when there are su¢cient agents for the coordination: if t � Fa (t),

that is, if there are enough agents for coordination, a complete network always contains a clique of size

n� Fa (t) + t, and we can guarantee that, at least the complete network, is a coordination structure.
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4.2 Quasi-coordination structures

Up to now, we have analyzed how are the structures in which coordination problems do not occur for any

payo¤s and for any sequence of decision. However, in particular situations, it is possible also that the unique

equilibrium is the one where everybody plays her risky action with other structures, for particular payo¤s

and/or sequences of decisions. In this subsection, we study this situation. We focus, as previously, in the

simplest coordination problem in a heterogenous society: a society formed by n� agents that are playing the

coordination game among them. These agents prefer � over the safe action � if at least t agents are choosing

�. There are also n� agents who always choose action �.

The agents who face the coordination problem are homogenous with respect to their threshold, so that

the utility of agents of type � can be reduced to the payo¤s u�;�t > u� > u�;<t, that represent the utility

they get if choose � or �, depending on wether �nally there are less than t people choosing � or not. Since

we deal now with speci�c payo¤s, we assume that agents are expected utility maximizers.

4.2.1 Quasi-coordination structures for certain payo¤s

We say that a network � is a Quasi-coordination structure for certain payo¤s if, for any possible sequence

of decision, any agent chooses always her risky action over the equilibrium path, under certain restrictions

over the payo¤s. The following proposition shows that an isolated clique of size #q = t can be su¢cient. An

isolated clique q � N is a set of individuals such that 8i 2 q; ij 2 �() j 2 q. It occurs when the bene�t of

the risky action is su¢ciently high.

Proposition 2 In any sequential equilibrium, any agent of type � chooses � over the equilibrium path, for

any sequence of decision, if there exists an isolated clique q � N of size #q = t when

u�;�t � u�;<t
u� � u�;<t

>
(n� + n� � 1)! (n� � t� 1)!

(n� + n� � t� 1)! (n� � 1)!
=
1

~p
and n� > t

Proof. See Appendix.

This proposition reveals that, even when types are uncertain, a clique of size t may be su¢cient for

coordination. This is true if u�;�t and u�;<t are su¢ciently large with respect to u� . In this circumstances,

an agent who is not connected to the clique assigns a probability su¢ciently high to the event of existing

t agents of type � in the clique such that they are going to coordinate among them (in the Appendix we

prove that it is the case). In fact, ~p is the probability of having t agents of size � in the clique conditional

on having one agent of type � out of the clique:Therefore, any agent who is not connected to the clique best

responds by choosing �, and everyone choose the risky action over the equilibrium path. In general, when
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there are higher cliques, the probability of having su¢cient agents of type �0 in the clique increases, and

there are a higher set of utilities under which coordination would emerge for any sequence of decision. This

reasoning connects with Lemma 1: when there exists a clique of size n �K (�; t) + t, it includes for sure a

set of t agents with threshold t. Since it occurs with probability 1, every agent chooses the risky action for

general coordination payo¤s u�;�t > u� > u�;<t.

Non-isolated: more connections may destroy coordination Interestingly, in this case we have that

more connections could potentially generate the existence of coordination failures. Our general results of

coordination structures show some kind of networks such that, if the structure exists, coordination emerges

always, independently on wether there are more connections or not. It is not the case with quasi-coordination

structures for certain payo¤s. Note that Proposition 2 requires the existence of an isolated clique. When

it exists, nobody knows what is occurring in the clique and agents believe that coordination occurs with

su¢cient probability, and they take the risky action. But if agents are observing what occurs in the clique,

with positive probability we have in it agents who are not of type �, and agents observing actions in the

clique would play simultaneously with the rest of agents of type �. In this case, under some sequences of

decision, agents of type � would choose the safe action over some equilibrium path (speci�cally, when they

play after agents in the clique, and agents in the clique are not of type �). In the Figure 8 we present two

di¤erent networks. For the case in which n� = 4, n� = 3, we have that a clique of size 3 includes 3 agents

of type � with probability p = 4
35 . An agent of type � who does not belong to the clique believes that it is

formed by agents of type � with probability13 ~p = 1
20 . If utilities are given by u�;�t = 21; u� = 1; u�;<t = 0,

the agents of type � who are not connected to the clique in the network in the left choose the risky action

in any equilibrium, and agents in the clique best respond to it by also choosing �, even if they observe that

some agent in the clique does not choose �.

13 It is the probability of the 3 agents in the clique being of type � conditional on one agent out of the clique being of type

�. Note that in such circumstances, there are 3 agents of type � and 3 agents of type � that can be in the clique, and the

probability of everyone being of type � is given by ~p = 3

6
� 2
5
� 1
4
= 1

20
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Figure 9

However, in the �gure in the right all the agents are connected to the clique. If the sequence is such that

the agents in the clique are the �rst to decide and they are of type �, all agents out of the clique know that

they are playing simultaneously with the rest of agents of type � and the failure of coordination may occur

in equilibrium, just by assuming that in such information set anyone of them chooses �. In this sense, more

connections, more information, may be detrimental for coordination14 .

4.2.2 Quasi-coordination structures for certain sequences of decision

We have shown that smaller networks may be quasi-coordination structures for certain payo¤s. Another

interesting issue is if we can �nd quasi-coordination structures that guarantee the e¢cient equilibrium for

certain sequences of decision but general payo¤s. The answer is positive and we show now some examples,

using the same framework that in the rest of this subsection. Suppose that there are n� and n� = 1

individuals, and that threshold is t = 2. The central agent in a segment of three nodes chooses the risky

action in this context. Therefore, if in the order of decision the central individuals play the �rst and there are

two segments of three individuals, the risky action is played by everyone. Figure 9 illustrates some examples

for the cases in which t = 2 or t = 3 and n� = 1 or n� = 2. We have written a part of the sequence of

decision with the ordinal position of the di¤erent nodes. This networks are quasi-coordination structures for

any possible payo¤s if the nodes with a assigned position play in that position, and for any order of decision

of the nodes for those we have not written a position. If the sequence of decision is known, since at least t

agents will choose �, any agent of type � in the society who is not included in those structures chooses it as

well.

14 It is not the case for coordination structures, but it may occur with the quasi-coordination structures for certain payo¤s.
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Figure 10

Quasi -coordination structures for certain sequences of decision can be specially relevant if we think

in an extended version of the coordination game where we would endogeneize the sequence of decisions.

Speci�cally, the conditions in which the extended model would have a unique e¢cient equilibrium can be

explored. If it is the case, we could obtain the e¢cient coordination with less demanding requirements over

the social structure.

5 Applications

In this section we relate our model to the minimal su¢cient networks in Chwe (1999, 2000), the threshold

models by Granovetter (1978) and apply it in a bank run model à la Diamond and Dybvig (1983).

5.1 Networks that allow the revolts are su¢cient for them

The aim of this paper is very close to the one by Chwe (1999, 2000), as explained in the introduction. Our

work characterizes the type of structures where coordination emerges among agents when the network enables

observability of actions and type distribution is known, although type may be private information. Chwe

characterized how must be the structure of a communication network in order to allow for the coordination.

Both approaches stress the importance of cliques in the generation of this coordination.

In the model of Chwe there is a set of agents who have to decide whether to revolt (r, the risky action) or

not (s, the safe action). Agents are of type willing (w) or unwilling (x). An agent of the willing type prefers

the risky action to the safe one if all the other agents are choosing the risky action; an agent of the unwilling

type, always prefers the safe action. Utilities of agents of willing type are assumed to be supermodular in
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the action of the others, i.e., the di¤erence in utility for an agent of type w between r and s is increasing

in the amount of other agents who choose r: for an agent of type w, the action of revolting is increasingly

interesting when there are more people participating in the revolt.

The agents are embedded in a communication network. When two agents are connected through a

directed link i ! j (that we represent as ij), it means that i "talks" to j. This communication process

allows in practice that the private type of i is revealed to j. The network structure is common knowledge,

so that if two mutually connected agents talk to another one, say i and j are mutually connected and talk

to k, this means that k knows the types of i and j, as well as that they talk between themselves and know

their respective types. In this sense, the network generates "local common knowledge".

In this environment, Chwe studies the structure of the minimal su¢cient networks for coordination. The

main concern in his work is how is a communication network that enables coordination with independence

of the believes of the agents. In order to study this, Chwe analyzes in which situation all the agents would

take part in the revolt for the case in which every agent is of the willing type. He analyzes in which case each

agent has incentives to revolt if she only has information about her neighbors. Chwe shows that the minimal

networks that enable coordination can be described by a set of cliques in "sequence", such that there exists

some leading cliques who decide to revolt by themselves and who are followed by other cliques. This type of

structure allows that people recognize that there exist su¢cient people willing to revolt, who at the same

time know that there are su¢cient people willing to revolt.

The concept of su¢cient network of Chwe requires that revolting is a possibility for any distribution

of the unknown types. In particular, in a minimal su¢cient network, an agent knows the types of those

neighbors that talk to him and this allows him to know that there exist enough people for coordination

(given her preferences): a minimal su¢cient network in the sense of Chwe guarantees the existence of one

equilibrium where agents decide to revolt, i.e., take their risky action. Given their information, agents know

that every agent has information on the existence of enough people willing to participate, and they best

respond by choosing the risky action if anyone else chooses the risky action.

The aim in our paper is to characterize the set of structures in which, when we assume that the existence

of that equilibrium is known, only the e¢cient outcome can be sustained in a (sequential) equilibrium. In

our set up the revolting equilibrium (the Pareto e¢cient one) always exists: our assumption is that agents

know that there are enough people for coordination, because every of them is homogenous or because they

know the �xed amount of agents of each type, which allows the coordination. In this sense, the cases that

we study are speci�cally the situations that allow coordination in the sense of Chwe. We add conditions over

the observation network that generate that coordination becomes the unique equilibrium outcome.
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How related are then the su¢cient networks by Chwe and the coordination structures of the present

work? Applying our concepts of sequential decision, we show know that if the communication network which

is su¢cient in the sense of Chwe exists and everyone is of the willing type, given that information of types

is restricted to those transmitted by the network, all agents choose the risky action over any sequential

equilibrium, with independence of the order in which they are called to decide. This result holds when

observation of actions occurs in the same direction that communication transmission:

Proposition 3 Suppose a set of agents N embedded in a su¢cient network � such that everyone is willing

to revolt in the sense of Chwe (2000). Suppose that the nature selects an order of play according to P (� (N))

and that if ij 2 �, ai is in the information set of j if i < j. Then every agent chooses to revolt in the path

of any weak perfect Bayesian equilibrium.

Proof. See Appendix.

In a su¢cient network, there exists "leading cliques" where in some equilibrium any agent in the clique

best responds to the action of revolting by also revolting. There are other cliques whose members "are

talked" by the participants in the leading clique. Those "followers" best respond to the action of members

in their clique and in the leading clique also revolting.

The result by Chwe states that an equilibrium exists where everyone revolts (if everybody is willing to).

The communication structure reveals private types to agents in the leading clique. Therefore, any of the

members of the clique knows that there are su¢cient people for coordination in such a clique. For any order,

we know that the last one who decides in the clique would best respond to anyone else choosing to revolt by

also revolting. And we can do the backward induction argument used for the su¢ciency part of the result of

coordination structures. For any order, in equilibrium, agents in cliques which follow the leading clique have

to best respond to strategies of agents in the leading clique which imply that they revolt. And therefore, it

can be shown that every agent will revolts in a su¢cient network.

Our results reinforce those by Chwe, showing that coordination must emerge when cliques exist, with

independence of the relative payo¤s. Revolts are not only a possibility, they become the unique possibility.

5.2 Riots are not necessarily initiated by the most "radical" people

Granovetter (1978) modeled the conditions required for the emergence of collective behavior starting from

an individual distribution of preferences. In his model, agents decide to join a riot depending on how many

agents are taking part on it. Given a distribution of those thresholds, Granovetter studied how many agents
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actually take part in the revolt. Interestingly, two very similar societies could generate completely di¤erent

outcomes.

Agents decide in a dynamic context. Initially, the agents who have threshold 0 go to the streets. The

threshold represents the amount of people that an agent requires in order to join the riot. People with

threshold 0 (or very low) are the initial "instigators". They want to participate in the revolts independently

of others, and when they are in the streets, other people whose willingness is not so high, also decide to

participate. This generates a cascade e¤ect that determines how many people is �nally in the streets. Let

h (t) be the amount of people with threshold t and H (t) =
Pt
k=0 h (k). In the model by Granovetter, the

amount of people that joins the riots is given by n� = max fH (t) : k � H (k) ;8k � tg. The reason is that

people with a certain threshold enters to the riots when they observe that at least as many people as their

threshold is taking part on it.

This process of collective behavior also shows that two very similar societies in their microstructure

(preference distribution, as stated by h (t)) can generate very di¤erent aggregated behavior. Granovetter

illustrates this fact showing two similar societies formed by 100 citizens15 . In one of them each agent i

has threshold i for i 2 f1; 2; :::; 100g. The other society is exactly the same but agent i has threshold 2.

In the �rst society, everyone takes part in the riots: the agent 1 starts, then the agent 2 (who observes 1

people revolting), then the agent 3 (who observes 2 people already revolting), and so on. In the second

society, nobody revolts, since there exists no "initial demonstrator". Granovetter emphasizes two points:

two societies which are basically identical can generate outcomes hugely di¤erent; and the key role that

initial demonstrators play in generating social movements.

Based on Granovetter�s assumptions, we study the e¤ect of strategic behavior when the agents have

information about the aggregate distribution of types. Connecting the case studied by Granovetter with our

model, we assume that agents are called once to decide by the nature in some exogenously order and that

the distribution of type h (t) is common knowledge. Since in the model of Granovetter agents respond to

the actions of their predecessors, we assume that all actions are known. In our language, we would say that

a complete observation network � is connecting the agents. Under this circumstances, we ask how many

agents take part in the revolts, and if there is some di¤erence depending on wether initial agents called to

decide are those with low or high thresholds. The following Proposition answer these questions:

Proposition 4 For any sequence of decision, each agent i with a threshold ti � max ft : H (t) � tg chooses

the risky action over the path of any sequential equilibrium.

15The original threshold model by Granovetter stablish decisions with respect to the proportion of the citizens that take part.

We use a version were thresholds depend on the amount of agent that participate. Both models are equivalent.
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Proof. This Proposition follows from Lemma 1, for a unique risky action when there exists a complete

observation network.

In the line with our results over coordination structures, the revolt emerges for any order in which agents

are called to decide. When threshold distribution is known, all the agents take the risky action over the

equilibrium path, independently of the order in which they are called to decide: in this sense, collective action

is not necessarily initiated by those agents with the lowest threshold, while it is the case when distribution

is unknown. Therefore, we can infer from the model that unexpected collective actions, that is, those that

occur when people did not know about the existence of su¢cient willing people, must be initiated by a set of

initial "instigators" (as named by Granovetter), who start the process and that generate that people realize

that there exist su¢cient people willing to take part. But when it is known the existence of su¢cient people

willing to take part, i.e. it is known the existence of a certain distribution although people do not know

which threshold each particular individual has, we show that social movements are initiated by any of the

willing people, independently of her threshold.

Another important di¤erence between ignoring or knowing the distribution is the amount of people that

take part on the revolts. When distribution is unknown, people go to the streets only if there exists a certain

amount of previous instigators, and the amount of total people who participate is given by the �rst crossing

point between the type distribution and the 45o line, when we plot the distribution H (t) against thresholds,

as shown by Granovetter. This is the case because before that crossing point, people observes that an amount

of people higher than their threshold is participating in the revolt. But the people with higher thresholds

do not observe that and stay at home. When distribution is known, all the people who knows that in the

society there are su¢cient other people willing to take part in the revolts, would in fact take part (and even

if they are the �rst to decide and do not observe anything). In the graph, the amount of people would be

given by the last point where distribution H (t) where over the 45o line. Figure 10 illustrates this with an

example:
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Figure 11. Example of distribution of thresholds and amount of people who

participate in the revolts when distribution is known or unknown.

5.3 Local banks may be immune to runs

In this section we adapt our general setup to the canonical model of depositor decision by Diamond and

Dybvig (1983). We �nd how must be connected a given society in order to exclude bank runs as the result

of coordination failures. The required clique is decreasing in the pro�tability of the long run investment.

This possibility of observing other depositors actions is not likely in large banks but it is possible in local

banks focused in a given community. In such situation, it is likely that decisions on wether withdraw the

money or not from the bank are observed in the local community. Therefore, since the community may act

as an observation network that guarantees coordination, the result suggests that small local banks may be

immune to bank runs as coordination failures16 .

5.3.1 The environment

Let N = f1; 2; :::; ng denote the set of depositors. There are three time periods denoted by t = 0; 1; 2 and

depositor i�s consumption in period t is denoted by ct;i 2 R+: Depositors may be patient and impatient.

16Obviously, bank runs may occur as the result of problems with the fundamentals of the bank.
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Impatient depositors only care about consumption at t = 1 whereas patient depositors value consumptions

at t = 1; 2. Depositor i�s utility function is given by

ui(c1;i; c2;i; �i) = ui(c1;i + �ic2;i): (9)

If �i = 1 (0); depositor i is (im)patient. The utility is strictly increasing, strictly concave, twice continu-

ously di¤erentiable and to satisfy the Inada conditions. The relative risk-aversion coe¢cient�ciu
00
i (ci)=u

0
i(ci) >

1; for every ci 2 R+; and all i 2 N:

The number of patient depositors is assumed to be constant and given by p 2 [1; n]: The remaining

depositors are impatient. The number of patient and impatient depositors is common knowledge.

At t = 0; each depositor i 2 N has one unit of a homogeneous good which she deposits in the bank. The

bank has access to a constant-return-to-scale productive technology which pays a gross return of one unit

for each endowment liquidated at t = 1; and a �xed return of R > 1 for each endowment liquidated at t = 2:

The bank acts in the interest of the depositors and tries to maximize their expected utility. If the

bank could observe each depositor�s consumption preferences, then she would be able maximize the sum of

depositors� utilities with respect to c1;i and c2;i subject to a resource constraint and p: The optimization

problem is the following:

maxc1;i;c2;i (n� p)ui(c1;i) + pu(c2;i) s. t.

(n� p)c1;i + [pc2;i=R] = n:
(10)

The solution to this problem is

u0i(c
�
1;i) = Ru0i(c

�
2;i); (11)

which - as in Diamond and Dybvig (1983) - implies that R > c�2;i > c�1;i > 1. This is the unconstrained

e¢cient allocation. The bank insures against the privately observed liquidity risk, which is only realized at

the beginning of t = 1; by o¤ering a simple demand-deposit contract that implements the unconstrained

e¢cient allocation. The simple demand-deposit contract o¤ers to pay c�1;i to any depositor i who withdraws

at t = 1 as long as the bank has funds. Any patient depositor i who waits until t = 2 receives a pro rata

share of the funds available then. Let � 2 [0; p] be the number of depositors who wait at t = 1: Given �;

depositor i�s consumption at t = 2; if she waits is

c2;i(�) =

8
<

:
maxf0;

R(N�(N��)c�
1;i)

�
g if � > 0

0 if � = 0
(12)
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If � = p; that is, only impatient depositors withdraw at t = 1; then c2;i(�) = c�2;i and patient depositors

enjoy a higher consumption than impatient ones. However, if � is too low, then to withdraw at t = 1 is

better also for patient depositors since to wait until t = 2 yields them strictly less than c�1;i : if the number

of patient depositors who keep the money in the bank is below ��; a threshold value for �; then their period-2

consumption is strictly below c�1;i:

Lemma 2 There exists 1 � �� � p such that for all i 2 N;

c2;i(�� � 1) < c�1;i; for any � � �� � 1; and

(13)

c�1;i � c2(��); for any � � ��:

Based on the equality of c�1 = c2(��) we obtain that

�� =
Rn(c�1 � 1)

c�1(R� 1)
:

The value of �� is the threshold for patient depositors. Notice that this threshold is the same for all of them.

Hence, in this application there are two types: �(0; 1) and �(1; ��). That is, impatient depositors always

choose to withdraw, independently of what other depositors do, whereas patient depositors prefer to wait if

at least �� other depositors wait.

5.3.2 Information and decisions

At the beginning of period 1 liquidity types (patient or impatient) are realized privately. Let �N = f0; 1gN

and �N = (�1; :::; �N ) denote the type vector of the depositors that satis�es
NX

i=1

�i = p. After the realization

of types, depositors contact the bank sequentially at t = 1 according to the order of decision given by �(N):17

The depositors are embedded in an observation network �. Depositors choose if they want to withdraw

(action 0) or to keep their money deposited (action 1) and they observe the choices of their neighbors who

precede them.18 Depositor i�s information set is de�ned as

 i = f� i; � (N) ; faj : ij 2 �; �j < �i; �j ; �i 2 � (N)gg : (14)

17We de�ne here �(N) only to conform to the original setup. Knowing the exact order of decision is not necessary to obtain

the result.
18We use "to keep the money deposited" and "to wait" as synonyms.
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Note that depositor i observes previous actions enabled by the network, but she does not observe types.

A strategy is a mapping from all possible information set into actions. We allow for mixed strategies, so

si : 	i !4f0; 1g :

The bank pays immediately to those who choose to withdraw. Consumption in period 2 is determined

by equation 12.

The bank does not know the network and consequently cannot condition the payment to depositors on

it. The bank has to respect the sequential service constraint, so the bank cannot make depositors wait and

condition payment on information which is not available at the time the depositor wants to withdraw.

We �nd that bank runs as coordination failure do not occur in equilibrium if the depositors are su¢ciently

connected.

Proposition 5 In the �nite-depositor version of the Diamond-Dybvig model, if there is a clique of size

(n� p) +
Rn(c�

1
�1)

c�
1
(R�1) , then there is no bank run in any sequential equilibrium.

Proof. The result follows from Theorem 1, given that
Rn(c�

1
�1)

c�
1
(R�1) is the threshold such that a patient agent

prefers the risky action of not to withdraw over the safe one.

The e¢cient payo¤s that generate the multiplicity of equilibria allowing for a bank run, generate the

coordination in the no run equilibrium if the depositors are su¢ciently connected. This result shows that

small, local banks, whose depositors are able to observe mutually, should not present bank runs as the result

of coordination failures. Deposit insurance has been proposed as one of the most e¤ective mechanisms to

avoid this undesirable bank runs. Our result shows that small, local bank, may be immune to them just

because of the social con�guration of their depositors.

6 Conclusion

We introduce in our paper the notion of observation network to model the type of social structure that

allows agents to observe their mutual actions. We characterize the structure of such networks that generate

that agents coordinate in the e¢cient equilibrium in games related with generalization of the stag-hunt

game. We provide necessary and su¢cient conditions on the size of the clique such that, if it exists, the

e¢cient coordination emerges as the unique outcome, and the social network is considered a coordination

structure. We apply our model to revolutions and bank runs, but it also applies to any other situation where

coordination failures may emerge, as problems of product adoption. We �nd that the existence of cliques
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play a crucial role in guaranteeing the coordination of the agents, and so our analysis naturally complements

the one by Chwe (1999, 2000).

We study situations in which it is known that coordination is possible, so the problems that we study

are pure problems of coordination. With this aim, we focus on the case in which the amount of agents of

each type is known. All agents know that e¢cient coordination is a possible outcome, and the networks

that we characterize avoid the problem of coordination failure. A di¤erent approach would occur if we

assume that types are randomly drawn from some distribution. In this situation, agents would not know

with certainty if there are su¢cient agents for getting coordination. The role of an observation structure in

such circumstances is out of the scope of this paper, but is an interesting line of future research.

The unique equilibrium prediction when the observation network meets our conditions is an issue that can

be tested. We have carried out some related experiments for the bank run environment (Kiss, Rodríguez-Lara

and Rosa-García, 2009) that provide mixed evidence on the issue: although some structures generate more

coordination, agents are a¤ected also by the particular observations. However, more evidence is required in

order to be sure on the e¤ects of observation networks in the behavior.

The model invites us to explore many issues that we have not discussed in this article. Although our

agents decide sequentially, they decide just once, so dynamic considerations are not studied and they play

relevant roles in many coordination issues, as those that we study (bank runs and revolts). In this context, it

is also likely that social learning plays a role in the emergence of the e¢cient equilibrium. Other interesting

issue is to study the incentives to formation. Would agents choose a social structure that may lead to a

coordination failure? Under which conditions?

Moreover, some of our assumptions are restricting many real life situations. For instance, some of the

actions may be observed if they are chosen. In the case of bank runs, typically the action of withdrawing is

observed but the action of waiting is not. In the case of revolts, the action that is observed is typically the

one of taking part, but not staying at home. Note that in the �rst case the observed action is the safe one

and in the second is the risky one. Our preliminary approach to these issues shows that our results maybe

robust when the safe action is hidden but not when the risky action is. Other issue is what occurs with

other coordination problems, as for instance for generalizations of the battle of sexes. Or also the relevance

of free-riding: how would change the results if once the su¢cient amount of people chooses the risky actions,

the rest of agents do not have incentives to take it.

These related issues maybe of special interests. We require in our analysis that agents have access to

a large amount of information, and to be able to observe the precise order in which actions are chosen.

New internet social networks, such as Facebook and Twitter are a way of communicating and they allow to
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show own actions to other agents, so that each time more individuals are informed about the actions carried

out by other individuals. This can generate several e¤ects, including those that our results postulate, that

coordination on e¢cient situations may be facilitated. We have done a �rst approach to this kind of topics

(Kiss and Rosa-García, 2011) analyzing the how coordination is facilitated when agents get information

through internet social media in contrast with traditional social media. We �nd that social media are a

better way of coordination and may facilitate revolutions, as it has been argued in the recent Arab revolts.

Up to which point this is really a relevant e¤ect and if its relevance can be extended to the related extensions

of the analysis of coordination structures must be still studied.
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8 Appendix

Proposition 1: In the homogenous case with threshold t, an observation network � is a coordination

structure if and only if there exists a subset of agents fs 2 N : #s = tg that forms a clique.

Proof. Su¢ciency: an observation network � is a coordination structure if there exists a subset of agents

fs 2 N : #s = tg that forms a clique.

We prove this by backward induction. Let f�� (') ;�i (Hij')g be an assessment that de�nes a sequential

equilibrium. Let be fq � N : #q = tg a set of t agents completely connected under �, i.e. a clique of size t.
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From now on, let name as agent i; i = 1; 2; ::; t the agent who is in the i� th position in the clique according

to � (n). In any sequential equilibrium assessment f�� (') ;�i (Hij')g, the agent i = t chooses � in any

information set 't in which she observes t � 1 risky actions by her predecessors in the clique. Agent in

position i = t � 1 best responds by choosing � in any information set 't�1 where she observes t � 2 risky

actions by her predecessors in the clique. Applying this recursively, agent i in the clique best responds to

the equilibrium strategy by choosing � in those information sets 'i where she observes i � 1 risky actions

chosen by her predecessor in the clique. Then the agent i = 1 chooses the risky action although she does

not observe anything and in any sequential equilibrium: the t agents in the clique choose the risky action

over the equilibrium path. Any agent who does not belong to the clique best responds by also choosing �.

Therefore, if there exists a clique of size t, every agent chooses her risky action over the equilibrium path.19

q.e.d.

Necessity: an observation network � is a coordination structure only if there exists a subset of agents

fs 2 N : #s = tg that forms a clique.

For proving this part of the result, we propose a strategy and a consistent belief that de�ne a sequential

equilibrium where the strategy pro�le implies that all the agents choose the safe action over the equilibrium

path.

First let de�ne Q�;k � P (N) where P (N) is the power set of N , as the set of cliques of size k in �:

q 2 Q�;k !

8
>>><

>>>:

q � N

#q = k

8i; j 2 q ! ij 2 �

For the information set 'i of the agent i, we de�ne Q
�
�;k;'i

� Q�;k as the set of cliques of size k in � such

that the agent i does not observe the action of any agent belonging to the clique,

q 2 Q��;k;'i !

8
<

:
q 2 Q�;k

8j 2 q ! j 2 fNnNi [ fj
0 2 Ni : �j � �ij'igg

We de�ne Ni;<�i;'i � Ni as the set of neighbors of i with an order of decision previous to i given the

information set 'i,

j 2 Ni;<�i;'i ! j 2 Ni \ fj : �j < �ij'ig

For the information set 'i and the clique q 2 Q
�
�;k;'i

, we de�ne as #�q;'i the amount of actions of type �

19The strategy in equilibrium implies to choose the risky action over the equilibrium path for arbitrary beliefs. This means

that, in fact, we have proved also that there is a unique equilibrium path in any Weak Perfect Bayesian Equilibrium, which is

a much softer equilibrium concept.
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that belong to 'i observed by all the agents in q plus the cardinal of q:

#�q;'i (q; 'i) = #q +#
�
aj = � : 8k 2 q; j 2 Ni;<�i;'i ! jk 2 �

	

For the agent i, we de�ne as �'ri the set of information sets in which the maximal #�q;'i is r:

'i 2 �'
r
i ! max

�
#�q;'i

	
= r

That is, for 'i 2 �'
r
i we have that r is the maximum of the sum of elements that, forming a clique, observe

a certain amount of risky actions that are observed by i.

We prove now that �� (') ;�� (Hj') where

��i ('i) =

8
<

:
� if 'i 2 �'

r
i : r < t

��i ('i) if 'i 2 �'
k;m
i : r � t; for some optimal ��i

�i (hij'i) = 0 8hi : # faj 2 hi : aj = �; j =2 Nig = 0; 'i 2 �'
r
i : r < t

de�nes a sequential equilibrium for an appropriate ��i ('i) ;�i (hij'i) in which the safe action is played over

the equilibrium path when there does not exist in � a clique of size t.

We show, �rst, that this strategy de�nes a path where everybody takes the safe action. If there does not

exist a clique of size t, any agent who does not observes any risky action is in an information set �'ri < t.

This is the case because in such case we have that #
�
aj = � : 8k 2 q; j 2 Ni;<�i;'i ! jk 2 �

	
= 0 and

#�q;'i = #q, which is smaller than t, for any clique q � �. Therefore any agent who does not observe any

action � plays � according to �� (') ;�� (Hj'), and therefore � is played by everyone along the equilibrium

path.

Second, note that 'i 2 �'ri : r < t are information sets where the agent observes t � 2 or less actions

of type �. This is the case because the agent herself is a clique of size 1 who observes all the actions she

observes, and therefore these information sets occur when a maximum of r� 1 < t� 1 actions of type � are

observed. Choosing � in those information sets is an optimal decision if it is expected that nobody else is

going to play � and nobody else has played it (this last statement occurs with probability 1 according to

��).

Third, we show that the strategy is a best response to ���i (') and �
� (Hj'). If the agent i plays the safe

action her expected payo¤ is

E
�
ui
�
�; ���i (') ;�i

�
j'i 2 �'

r
i : r < t

�
= ui (ai = �)

We focus in the information sets 'i 2 �'
r
i : r < t. In those information sets, the beliefs assign probability 0

to other actions of type � being chosen by non observed predecessors of i. Take now the agent j who plays
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after i. We show that she will play � according to �� (') ;�� (Hj'). Suppose that r � t � 2. Since i is in

an information set 'i 2 �'
r
i : r < t and she believes that there exist no predecessor who has played � and

is not observed by i, any successor j is, at maximum, in an information set 'j 2 �'
r
j ; r = t � 1, and plays

�. Suppose that r = t� 1. Here we can have 2 di¤erent cases, depending on wether i belongs to the clique,

i 2 q, such that any agent in the clique observes the same r �#q actions or i may not belong to it, i =2 q.

Suppose that i =2 q. In such a case, the �rst agent who decides j in that clique will be in an information set

'j 2 �'
r
j : r < t, since not all the agents in the clique observe the action of i (since i =2 q). Finally, suppose

that i 2 q. But then, since 'i 2 �'
r
i : r = t � 1 and i 2 q, if i chooses �, the rest of agents in q will be still

in an information set 'j 2 �'
r
j : r = t� 1. This is the case because they observe one risky action more than

i but the clique has one individual less. Therefore they would play � according to �� (') ;�� (Hj'). This

means that given the beliefs and the strategies, if the agent plays � nobody else is expected to play � and

the expected payo¤ is

E
�
ui
�
�; ���i (') ;�i

�
j'i 2 �'

r
i : r < t

�
= ui

0

@ai = �;
X

j2N

Iaj=� < t

1

A <

< ui (ai = �)

And therefore playing � is a best response to ���i;�i (hij'i) in the information sets 'i 2 �'
r
i : r < t.

Fourth, the belief is dynamically consistent in the information sets 'i 2 �'
r
i : r < t. Suppose that any

agent j in an information set 'j 2 �'
r
j : r < t plays the completely mixed strategy ("; 1� "), representing

the probability of playing (�; �). Note that this strategy converges to ��j
�
�'rj
�
when " ! 0. Since the �rst

agent who decides is in an information set 'j 2 �'
r
j : r < t, and that all agents play � the subsequent agents

are also in such an information set, the belief that assigns probability 0 to any non observed agent having

chosen � is consistent with those strategies.

Up to now, we have proved that the strategy is optimal over all the information sets in which 'i 2 �'
k;m
i :

k < t�m. In the other information sets, the agents would choose any best response; however, optimality of

the equilibrium strategy over the equilibrium path is independent of what occurs on those information sets.

Note that the existence in those information sets of the equilibrium is guaranteed by standard arguments.

Since we allow for mixed strategies, the equilibrium in those information sets could be the same that in a

reduced version of the game where the nature chooses directly � instead of the agents in the information

sets 'i 2 �'
r
i : r < t.

Thus a coordination failure may be sustained, q:e:d:

One may ask yourself why an strategy of this type would not be sustained if a clique of size t exists.

Imagine, for instance, that it is argued that the action � is played in any information set 'i 2 �'
k;m
i : k � t�m,
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which implies to choose the safe action in a clique of size t, when m = 0 actions of type � are observed.

But note that this strategy is not optimal for m = t � 1. In such a case, it would imply that � is played

if a clique of size k = 1 exists, and it is trivially formed by i. But then i would choose the action � after

observing t� 1 actions of type �. Therefore, it can not be an equilibrium strategy.

Lemma 1: An agent of type f�; t0g ; t0 � t takes the risky action on any equilibrium path if there exists

a clique of size n� F (�; t) + t

Proof. If there exists a clique q of size #q = n�F (�; t)+ t it includes at least t agents of type (�; t0) ; t0 � t.

Let f�� (') ;�i (Hij')g be an assessment that de�nes a sequential equilibrium. We focus on an agent

i 2 q : � i = (�; t
0) ; t0 � t and in the information sets over the equilibrium path We describe the equilibrium

assessment for this agent. In order to abbreviate the notation, we group in 'k;r the information sets of

i when the information set is over the equilibrium path (1), she has observed k actions of neighbors who

belong to the clique (2), and r of those actions are actions � (the action preferred by i) (3)

'i 2 'k;r � 	i !

8
>>><

>>>:

0

BBB
@

P ('ij�
�) > 0 (1)

# fj 2 q : �j < �ig = kj'i (2)

# fj 2 q : �j < �i; aj = �g = rj'i (3)

1

CCC
A

First, if the agent is in an information set 'i 2 'k;t�1; she best responds by choosing �. It is the case since

her threshold is t0 � t. Therefore ��i
�
'i 2 'k;t�1

�
= �.

Note now that ��i
�
'i 2 't�2;t�2

�
= �. In such an information set, agent i has observed t � 2 actions

(and everyone is of type �), and therefore there is with probability 1 at least one other subject in the clique

who has not still decided of type (�; t0) ; t0 � t. This is the case because i is the agent t � 1 and therefore

she has still N �F (�; t) + 1 succesors in the clique. Given ��i
�
'i 2 'k;t�1

�
and any consistent belief, i best

responds by choosing �.

But then, since the beliefs must be consistent with the strategy, in an information set where an agent

observes that someone does not choose � after the t � 2 �rst agents in the clique choosing �, must assign

probability 0 to that agent being of type � i = (�; t
0) ; t0 � t (given that the information set is reached with

positive probability, the action observed in such information set is chosen by an agent of a di¤erent type

with positive probability). For an agent i in an information set 'i 2 't�1;t�2 in which the last agent is the

one who has not chosen �, consistent beliefs imply that there exist still one agent of type � i = (�; t
0) ; t0 � t

in the clique who has not decided. Therefore, in such a case, the agent best responds by choosing � (except

if she is the last one).

By iterating this reasoning, consistent beliefs in an information set of type 'i 2 't�1;t�3 where the two

last agents has not chosen the action � imply to assign probability 1 to having one other agent in the clique
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of type � i = (�; t
0) ; t0 � t who has not decided yet. Therefore, equilibrium strategy implies that an agent

of type � i = (�; t
0) ; t0 � t also chooses the risky action in an information set 'i 2 't�1;t�3. We can repeat

the argument to show that in any information set 'i 2 't�1;r where the t � 1 actions � occurred at the

beginning, agents of type � i = (�; t
0) ; t0 � t choose the risky action. This argument can also be applied for

the information sets 'i 2 't�3;t�3 and so on. Finally, this proves that in any sequential equilibrium, if there

exists a clique of size n�F (�; t)+ t, agents of type (�; t0) ; t0 � t choose the risky action over the equilibrium

path. q.e.d.

Theorem 1: An agent of type f�; tg takes the risky action on any equilibrium path if there exists a

clique of size q(t) where

q (t) = q� (r� (t)) ;

where r� (t) = min fN � F� (x) + x : 8x � tg

q� (x) =

8
<

:
r� (x) if r� (y) < F� (x)

r� (y) if r� (y) � F� (x)
; y = max f�t : �t < xg

, where q� (x) is constructed iteratively.

Proof. Take an agent of type t. Lemma 1 implies that any agent with threshold t chooses also the risky

action r if there exists a clique of size r� (t) = min fN � F� (x) + x : 8x � tg (note that it is the smallest

size of clique required for thresholds higher than t). Note that if the agents with the threshold immediately

lower to t (that we note by t�1) are F (t�1) � t, any agent with threshold t takes the risky action if there

exists a clique su¢ciently as large as required by agents of threshold t�1. This possibility is incorporated by

q� (x).

Proposition 2: In any sequential equilibrium, any agent of type � chooses � over the equilibrium path,

for any sequence of decision, if there exists an isolated clique of size q � N;#q = t if

u�;�t � u�;<t
u� � u�;<t

>
(n� + n� � 1)! (n� � t� 1)!

(n� + n� � t� 1)! (n� � 1)!

Proof. Suppose that
u�;�t � u�;<t
u� � u�;<t

>
(n� + n� � 1)! (n� � t� 1)!

(n� + n� � t� 1)! (n� � 1)!

Let us de�ne

~p =
(n� + n� � t� 1)! (n� � 1)!

(n� + n� � 1)! (n� � t� 1)!

Then we have that

! (u�;�t � u�;<t) � ~p > u� � u�;<t

! ~p � u�;�t + (1� ~p) � u�;<t > u�
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and let f�� (') ;�� (Hj')g be an assessment that de�nes a sequential equilibrium. �i (Hij') are dynamically

consistent and therefore they are obtained from �� (') whenever possible. The probability of existing t agents

of type � in the clique size q;#q = t is given by

P (� j = �; 8j 2 q) =
(n� + n� � t� 1)! (n� � 1)!

(n� + n� � 1)! (n� � t� 1)!
= ~p

For simplicity, we name from now on agents in the clique q with her position in the sequence selected by

nature among the agents in the clique. So agent i = 1, 1 2 q is the �rst agent who decides in the clique and

agent i 2 q is the i � th who decides in the clique. The probability of having a sequence of t � i agents of

type � in the last t � i positions in the clique, conditional on the �rst i � th individuals being of type � is

given by

~pi =
((n� � i) + n� � (t� i)� 1)! ((n� � i)� 1)!

((n� � i) + n� � 1)! (n� � i� (t� i)� 1)!
=

=
(n� + n� � t� 1)! (n� � 1)!

(n� + n� � 1)! (n� � t� 1)!
= ~p

The agent t in the clique, if observes t� 1 predecessors choosing � chooses also � in any equilibrium if she is

of type � t = �. Suppose that the agent t�1 2 q has a belief ~�t�1 such that the probability of being followed

by an agent of type � is pt�1� � ~p. Her best response 't�1 = ~'t�1 to an information set where she observes

t� 2 actions of type � by her predecessors conditional on �t�1 is �, since her expected payo¤ of choosing �

is

Eu
�
�; ~'t�1; ~�t�1

�
� pt�1� � u�;�t +

�
1� pt�1�

�
� u�;<t

� ~p � u�;�t + (1� ~p) � u�;<t � u�

Take an agent j =2 q of type � who does not observe anything, apart from her type 'j = f� j = �g.

The system of equilibrium beliefs �� must be consistent applying Bayes rule to the equilibrium strategies

�� ('). A best response of agent j =2 q who does not observe anything but her type must respond assigning

probability ~p to the event of agent i 2 q in the clique being in an information set such that she is of type �,

she observes i� 1 actions of type � and is followed by t� i agents of type �. This is the case because Bayes

rule requires that beliefs are consistent with the strategies, and therefore the ex-ante probability must be

consistent with the system of beliefs. Therefore agent j =2 q assigns probability ~p to the event of all agents in

the clique being of type � and choosing it according to f�� (') ;�� (Hj')g Best responds for the agents who

does not observe anything is therefore � if they are of that type, since ~p �u�;�t+(1� ~p) �u�;<t � u� . Agents

who observe some actions must assign probability 0 in her consistent beliefs to the event of an action which

is not � being chosen by an initial agent of type �. This means that posterior agents or assign a higher
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probability to the event of being t agents in the clique choosing � (if they do not observe actions of type

�) or require less agents in the clique being of type � (if they observe actions of type �). And therefore, in

equilibrium, any agent who does not observe actions in the clique best responds by choosing �. Since the

clique is isolated, every agent chooses � over the equilibrium path and agents in the clique best respond to

it by also choosing �, in any information set.

Proposition 3: Suppose a set of agents N embedded in a su¢cient network � such that everyone is

willing to revolt in the sense of Chwe (2000). Suppose that the nature selects an order of play according to

P (� (N)) and that if ij 2 �, ai is in the information set of j if i < j. Then every agent chooses to revolt in

the path of any weak perfect Bayesian equilibrium.

Proof. We brie�y state the model by Chwe (2000). There is a �nite set of agents N = f1; 2; :::; ng. There

are two types, w (willing to revolt) and x (unwilling). Each person i chooses an action ai 2 fr; sg that states

for revolting (r, the risky action) and not (s, the safe action). Utility of each person depends on own type

and the full pro�le of actions. If a person is of type x, action s is a dominant strategy. If a person is of

type w, her utility is supermodular, i.e., the di¤erence in utility between r and s is increasing in the amount

of people who chooses to revolt. A person of type w prefers the action r if everyone else is choosing r. A

network � is a collection of pairs such that if ji 2 � it means that person j talks to i, i.e. i knows the utility

function of j. � is common knowledge. � is a su¢cient network if when everyone is willing to revolt then

there exists an equilibrium where everyone revolt, regardless of the belief over the type of unobserved agents.

This means that there exists an equilibrium where everyone revolts even if the agent believes that all those

non-observed agents are of type s. Let ti be such that the agent i gets a higher utility by choosing r than s

if at least ti � 1 other agents choose r. Suppose that the Nature calls to decide to the agents according to

P (� (N)) and that agent i observe the action chosen by j if and only if ji 2 � and �j < �i.

Chwe shows that, if � is su¢cient, there is a sequence of cliques that cover N . This cliques are hierarchi-

cally connected such that there is a leading clique in which their aents talk among them, and everyone talks

to the following cliques, and so on. Agents in the leading clique best responds to the rest of the agents in

the leading by choosing r if they choose r. This means that the clique contains su¢cient people willing to

take r. Since agents in the clique know that because they talk among and know their types, by Proposition

1 they choose r in any sequence of decision. The clique in the following position is formed by agents that

are talked by all agents in the leading clique, and therefore know the types in the leading clique and in the

following clique. They best responds to agents in the leading clique and to the mates in the following clique

by choosing r if they choose r. Since in equilibrium all the agents in the leading clique choose r and there

are su¢cient agents in the following clique for making r optimal, we can apply one more Proposition 1 to
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the agents in this clique, conditioning on the fact that agents in the leading clique choose r. We can apply

recursively this argument for all agents in N to show that every of them chooses r for any P (� (N)). q.e.d.
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