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Abstract 
In this paper, we develop a vector autoregressive (VAR) model of the Turkish 
financial markets for the period of June 15 2006 – June 15 2010 and forecasts 
ISE100 index, TRY/USD exchange rate, and short-term interest rates. The out-of-
sample forecast performance of the VAR model is compared with the results from 
the univariate models. Moreover, the dynamics of the financial markets are 
analyzed through Granger causality and impulse response analysis. 
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1. Introduction 
 

Modeling the dynamics of financial markets is gaining popularity among 
researchers because of theoretical and technical reasons. Economic agents, both 
private and public, have close interest with the movements of the stock market 
index, interest rates, and exchange rates in order to make investment and 
economic policy decisions. Therefore, building efficient forecasting models for 
these variables play important roles in the decision making processes. Although, 
univariate models, ARMA(p,q) and GARCH(p,q), are widely used in the literature 
by the researchers for modeling and forecasting purposes, it is also important to 
analyse the interaction between variables in a multivariate framework. 

 

In this paper, we move forward into this area by applying a vector autoregressive 
(VAR) model in modeling the financial variables of Turkish market. For this 
purpose, daily observations of IMKB100 index, TCMB benchmark bond rates, 
and USD/TRY exchange rates between the four years period of 15.06.2006 and 
15.07.2010 are used. The rest of the paper is; part two deals with the literature 
review and related work, part 2 and 3 give detailed description of methodology 
and data analysis, empirical results are discussed in part 5 and part 6 concludes. 

 

2. Literature Review 
 

The vector autoregression (VAR) model is one of the most successful, 
flexible,and easy to use models for the analysis of multivariate time series. VAR 
models in economics were made popular by Sims [8]. It is a natural extension of 
the univariate autoregressive model. The VAR model is useful for describing the 
dynamic behavior of financial time series and for forecasting. The superior 
forecasts to those from univariate time series models and elaborate theory-based 
simultaneous equations models can be provided by using VAR models.. 
Forecasting is quite flexible since they can be made conditional on the potential 
future paths of specified variables in the model.  

 

There are many studies about modeling financial time series with VAR 
models.The most important one is the book of Culbertson[3] that is about stocks, 



bonds and foreign exchange.But there are a few study about Turkish Financial 
Market especially in the period which includes 2008 financial crisis. 

 

In addition to data description and forecasting, the VAR model is also used for 
structural inference and policy analysis. In structural analysis, certain assumptions 
about the causal structure of the data under investigation are imposed, and the 
resulting causal impacts of unexpected shocks or innovations to specified 
variables on the variables in the model are summarized.These causal impacts are 
usually summarized with impulse response functions and forecast error variance 
decompositions. The definitive technical reference for VAR models is Lutkepohl 
[5], and updated surveys of VAR techniques are given in Watson [11] and 
Lutkepohl [6] and Waggoner and Zha [10]. Applications of VAR models to 
financial data are given in Hamilton [4], Campbell, Lo and MacKinlay 
[2],Culbertson [3], Mills [7] and Tsay [9]. 

 

3. Methodology 

When building a VAR model, the following steps can be used. First we can use 
the test statistic M(i ) or the Akaike information criterion to identify the order, 
then estimate the specified model by using the least squares method (if there are 
statistically insignificant parameters, by removing these parameters the model 
shoul be reestimate), and finally use the Qk (m) statistic of the residuals to check 
the adequacy of a fitted model. Other characteristics of the residual series, such as 
conditional heteroscedasticity and outliers, can also be checked.  

 

3.1 Vector AR(p) Models 

 

The time series tY   follows a VAR(p) model if it satisfies 

tptptt aYYY   ...110    , p > 0, (1) 

where 0 is a k-dimensional vector, and ta is a sequence of serially uncorrelated 
random vectors with mean zero and covariance matrix Σ. In application, the 



covariance matrix Σ must be positive definite; otherwise,the dimension of tY  can 

be reduced. The error term ta  is multivariate normal and j  are k×k matrixes. 
Using the back-shift operator B, the VAR(p) model can be written as 

(I − 1 B −…− p
p B ) tY  = 0  + ta  , 

where I is the k × k identity matrix. In a compact form as follows 

Φ(B) tY  = 0  + ta  , 

where Φ(B) = I- 1 B-…- p
p B  is a matrix polynomial. If tY  is weakly 

stationary, then we have 

μ = E( tY ) = (I- 1  -. . . - p ) 1
0  = [Φ(1)] 1

0  

provided that the inverse exists since determinant of Φ(1)] is different from zero. 

Let tY~ = tY - μ . Then the VAR(p) model  becomes 

tY~  = 1 1
~
tY +. . .+ p  ptY 

~
+ ta  . (2) 

Using the equation(2) below results can be obtained 

• Cov( tY  , ta  ) = Σ, the covariance matrix of ta  ; 

• Cov( ltY  , ta ) = 0 for l > 0; 

• l  = 1 1l +. . . + p pl for l > 0. (3) 

The equation (3) is multivariate version of Yule–Walker equation and it is called 
the moment equations of a VAR(p) model 

 

3.2 Building a VAR(p) Model 

 

The concept of partial autocorrelation function of a univariate series can be 
generalized to specify the order p of a vector series. Consider the following 
consecutive VAR models: 



ttt aYY  110  

ttt aYYY   22110  

... = ... 

tititt aYYY   ...110        (4) 

...=... 

The ordinary least squares (OLS) method is used for estimating parameters of 
these models.This is called the multivariate linear regression estimation in 
multivariate statistical analysis.[9] 

For the i th equation in Eq. (3), let_ )(ˆ i
j  be the OLS estimate of j  and  )(ˆ i

j be 

the estimate of 0 , where the superscript (i ) is used to denote that the estimates 
are for a VAR(i ) model. Then the residual is 

it
i

it
i

t
i

t YYYa   )(
1
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1

)( ˆ....ˆˆ  

For i = 0, the residual is defined as_ YYY tt )0(ˆ , where Y  is the sample mean 

of tY  .The residual covariance matrix is defined as 
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To specify the order p, we can use the i th and (i −1)th equations in Eq. (4) to, 
testing a VAR(i ) model versus a VAR(i − 1) model and test the hypothesis 

0:0  lH  versus the alternative hypothesis 0:  laH sequentially for l = 1, 
2, . . [1] .The test statistic is 

 
1

ˆ3 ln
ˆ2

i

i

M i T k i

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The distribution of M(i ) is a chi-squared distribution with 2k degrees of freedom. 



Alternatively, the Akaike information criterion (AIC) can be used to select the 
order p. Assume that ta  is multivariate normal and consider the i th equation in 
Eq. (4). One can estimate the model by the maximum likelihood (ML) method. 

For AR models, the OLS estimates 0  and j are equivalent to the (conditional) 
ML estimates. However, there are differences between the estimates of Σ.The ML 
estimate of Σ is [9] 

 
/

( ) ( )
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1ˆ ˆ ˆ
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i i
i t t

t i
a a

T  

                   (6) 

The AIC of a VAR(i ) model under the normality assumption is defined as 

T
ikiAIC i

22|)~ln(|)(     (7) 

For a given vector time series, one selects the AR order p such that AIC(p) = 

min1≤ i ≤p AIC(i ), where p is  positive integer. 

 

3.3 Estimation and Model Checking 

 

Both of the ordinary least squares method or the maximum likelihood method can 
be used to estimate yhe parameters of VAR model sine the two methods are 
asymptotically equivalent. The estimates are asymptotically normal under some 
regularity conditions,  After constructing the  model, adequacy of the model 
should then be checked.  

The Qk (m) statistic can be applied to the residual series to check the assumption 
that there are no serial or cross-correlations in the residuals. For a fitted VAR(p) 
model, the Qk (m) statistic of the residuals is asymptotically a chi-squared 
distribution with 2k m − g degrees of freedom, where g is the number of estimated 
parameters in the AR coefficient matrixes.[9] 

 

3.4 Structural Analysis by Impulse Response Functions 



 

The general form of the VAR(p) model is shown in eq.(1).  VAR(p) model also 
has a Wold representation as follows 

.....2211   tttt aaaY       (8) 

Where s  are moving average nXn matrices. To interpret the (i,j)-th element, 
ij

s , element of the matrix s  as the dynamic multiplier or impulse response 
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The condition for the eq.(9) is var( ta ) = Σ is a diogonal matrix. If Σ is diogonal, it 

shows the element of Σ , ta , are uncorrelated. One way to make the errors 
uncorrelated is to estimate the triangular structural VAR(p) model 

tptptt YYcy 1
'
11

'
1111 ...     

tptpttt YYycy 2
'
21

'
2112112 ...     

: 

ntptnptntnnntnnt YYyycy   
'

1
'
1,11,111 ........     (10) 

the estimated covariance matrix of the error vector t  is diagonal. The 

uncorrelated/orthogonal errors t  are referred to as structural errors. The Wold 

representation of tY  based on the orthogonal errors t  is given by 

.....22110   ttttY   

Where 1
0

 B   (B is the lower triangular matrix of ji ,  in eq. (10). The 
diagonal elements of the B is 1.) The The impulse responses to the orthogonal 

shocks jt  are 
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s  is the (i,j) th element of s . The plot of ij
s  

against s is called the orthogonal impulse response function  of iy with respect 

to j . 

 

3.5 Structural Analysis by Granger Causality 

 

In order to investigate the causal relationship between the variables of the system, 
the linear Granger causality tests should be applied by using following strategy. 

Compare the unrestricted models; 

(11) 

(12) 

with the restricted models  

(13) 

(14) 

where tx  and ty  are the first order forward differences of the variables, , ,a    

are the parameters to be estimated and, 1 2,e e  are standard random errors. The lag 
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order m are the optimal lag orders chosen by information criteria.The equations 
described above, are convenient tools for analyzing linear causality relationship 
between the variables. If 1  is statistically significant, and 2  is not, it can be said 
that changes in variable y Granger cause changes in variable x or vice versa. If 
both of them are statistically significant there is a bivariate causal relationship 
between the variables, if both of them are statistically insignificant neither the 
changes in variable y nor the changes in variable x have any effect over other 
variable. 

 

3.6 Forecasting 

 

If the fitted model is adequate, then it can be used to obtain forecasts.For 
forecasting, same techniques in the univariate analysis can be applied. To produce 
forecasts and standard deviations of the associated forecast errors can be done as 
following. 

For a VAR(p) model, the 1-step ahead forecast at the time origin h is 

 
p

i
ihih YY

01
10)1(    , and the associated forecast error is 1 hh ae . The 

covariance matrix of the forecast error is Σ.  If tY  is weakly stationary, then the l-

step ahead forecast )(lYh converges to its mean vector μ as the forecast horizon  
increases.   

 

4. Data Analysis 

 

For this paper, daily observations of TCMB benchmark bond rate, USD/TRY 
foreign exchange rate, and IMKB100 index values for the four year period  
between 15.06.2006 and  15.06.2010 are used. Data between 15.06.2006  and  
15.05.2010 (980) are used in-sample estimation and data between 15.05.2010 and 



15.06.2011 are used for the out-of-sample forecasting purposes. Figure 1 below 
shows the time series plots of the three variables during the sample period.  

Figure 1: Time Series Plots of the Variables 
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Source: TCMB Database http://evds.tcmb.gov.tr 

 

In order to build an appropriate model, all series that are used in analysis must be 
stationary therefore we should check the unit-root structure of the data. Although 
above graph gives us a rough idea about the stationarity structure of the series we 
need more formal tests to check the stationary. We have applied Augmented 
Dickey-Fuller test to series in order to test unit-roots. Table 1 exhibits the results 
from ADF test applied to both levels and first differences of the series 



Table 1: ADF Unit-Root Test Results 

Variable Deterministic 
terms 

Lags Test 
value 

Critical values 

    1% 5% 10% 

interest constant,trend 2 -2.05 -3.96 -3.41 -3.12 

Δinterest constant 1 -22.118 -3.43 -2.86 -2.57 

fx constant,trend 2 -2.348 -3.96 -3.41 -3.12 

Δfx constant 1 -21.522 -3.43 -2.86 -2.57 

xu100 constant,trend 2 -1.222 -3.96 -3.41 -3.12 

log(Δxu100) constant 1 -21.868 -3.43 -2.86 -2.57 

Source: Own Study 

The ADF test results indicate that all variables are non-stationary by not rejecting 
the null hypothesis of unit-root at all levels of critical values, but they are all 
stationary after first differencing. Therefore, we use differenced series in our 
analysis, figure 2 below time series plots of the differenced series. 

Figure 2: Time Series Plot of the Differenced Variables 
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Source: Own Study 



5. Empirical Results 

 

In this part, our first aim is to determine the true lag order for the model as 
Lutkepohl [5] points out that selecting a higher order lag length than the true lag 
lengths increases the mean square forecast errors of the VAR, and selecting a 
lower order lag length than the true lag lengths usually causes autocorrelated 
errors. Therefore, accuracy of forecasts from VAR models highly depends on 
selecting the true lag lengths. There are several statistical criterion for selecting a 
lag length. We have identified a VAR(p) model for the analysis by using penalty 
selection criteria such as Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQC).  
The table 2 below shows the results of the selection criterion.  

Table 2: VAR(p) Model Order Selection Criterion 

Criteria
Lag Order AIC HQC BIC

1 -70.024 -69.742 -69.283
2 -70.670 -70.219 -69.484
3 -70.635 -70.015 -69.005
4 -70.650 -69.816 -68.530
5 -70.585 -69.628 -68.066
6 -70.503 -69.376 -67.539
7 -70.420 -69.124 -67.012
8 -70.354 -68.889 -66.502

Minimum Lag Order 2 2 2  

Source: Own Study 

The results from the table 2 suggest that the appropriate model for our data is 
VAR(2) because all three methods gave lag order 2 as minimum lag order.  

 

After we have identified a VAR(2) model, we move forward to model estimation 
process.  The model estimation results from the VAR(2) model are given in the 
following tables.  



Table 3.1 Coefficient Estimates for Interest Rate Equation 

Coefficient Std.Error t-value t-prob
Dinterest_1 0.0537363 0.03663 2.51 0.1427
Dinterest_2 -0.120437 0.03669 -3.28 0.0011

Dfx_1 -0.0427225 0.00902 -4.74 0
Dfx_2 0.0370755 0.008225 4.13 0

DLxu100_1 -0.0625408 0.005128 -12.2 0
DLxu100_2 -0.0395795 0.006018 -6.58 0

Constant -0.000700301 0.0001054 -0.665 0.5065
sigma 0.00328727 RSS 0.01048194609  

 

Table 3.2  Coefficient Estimates for Exchange Rate Equation 

Coefficient Std.Error t-value t-prob
Dinterest_1 -0.449198 0.1484 -3.03 0.0025
Dinterest_2 -0.481332 0.1487 -3.24 0.0012

Dfx_1 -0.0992883 0.03655 -2.72 0.0067
Dfx_2 0.0704908 0.03333 2.12 0.0347

DLxu100_1 -0.401393 0.02078 -19.3 0
DLxu100_2 -0.196682 0.02439 -8.07 0

Constant 0.000139416 0.000427 0.326 0.7441
sigma 0.0133205 RSS 0.1721134129  

 

Table 3.3 Coefficient Estimates for IMKB100 Equation 

Coefficient Std.Error t-value t-prob
Dinterest_1 0.230771 0.2295 1.01 0.3150
Dinterest_2 0.0650816 0.2299 0.283 0.7772
Dfx_1 -0.0578057 0.05652 -1.02 0.3067
Dfx_2 -0.0755216 0.05154 -1.47 0.1432
DLxu100_1 0.0683901 0.03213 2.13 0.0336
DLxu100_2 -0.0238064 0.03771 -0.631 0.5280
Constant 0.000485471 0.0006603 0.735 0.4624
sigma 0.0205988 RSS 0.4115819301  

Source: Own Study 



When we look at the coeffients for the interest rate equations apart from constant 
term and first lag of the interest rate, are all statistically significant in terms of t-
value. All coeffients are significant in foreign exchange equations, whereas only 
its first lag has statistically significant effect on stock index variable.  

 

After we have estimated a suitable VAR(2) model for the variables, this stage of 
the analysis deals with the diagnostic checking process. There are several methods 
that control the robustness of the model, we have used graphical analysis tools and 
statistical tests for the residuals for the diagnostic checks. The table 4 below 
exhibits the results of the serial correlation, normality and heteroskedasticity tests 
of the residuals. And the figure 3 and 4 shows the ACF and density plots of the 
model residuals. The diagnostic results imply that VAR(2) model should be 
extended by making heavy tailed distrubituonal assumptions of the residuals as 
the distributional properties of the residuals are not normal. Also, 
heteroskedasticity testing results suggest the application of a multivariate GARCH 
model for the series. We can say that for the interest rate and IMKB100 index 
VAR(2) could be a good model as it eliminates the serial correlation, but for the 
foreign exchange series there is still correlated residuals as the test statistics 
suggest the rejection of the null hypothesis of no serial correlation until lag 12. 
Perhaps, instead of symmetric lag order, we can use assymmetric lag order model 
for the variables. 

Table 4: Residual Diagnostic Tests 

Dinterest Serial Correlation Test F(12,958) = 14.861 [0.1231] 
Dfx Serial Correlation Test F(12,958) = 28.820 [0.0006]** 

DLxu100 Serial Correlation Test F(12,958) = 16.097 [0.0833] 
Dinterest Normality Test Chi^2(2) = 1528.1 [0.0000]** 

Dfx Normality Test Chi^2(2) = 2040.2 [0.0000]** 
DLxu100 Normality Test Chi^2(2) = 184.44 [0.0000]** 
Dinterest Heteroskedasticity Test F(12,957) = 57.043 [0.0000]** 

Dfx Heteroskedasticity Test F(12,957) = 11.428 [0.0000]** 
DLxu100 Heteroskedasticity Test F(12,957) = 48.484 [0.0000]** 

 

Source: Own Study 



Figure 4:  Correlations of Residuals 
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Source: Own Study 

Figure 5: Residuals Density Plots 
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Source: Own Study 



In order to see the dynamics of the variables we have applied impulse response 
analysis and Granger causality tests.  

Figure 6: Impulse Response Function 
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Source: Own Study 

The figure 6 shows the combined graph of the impulse responses of each variable. 
As we can see from the graph that one exogenous shocks to interest rates and 
IMKB100 index have immediate effect on foreign exchange rate, whereas interest 
rate responses are not significant. And, IMKB100 index has very little response to 
exogenous shocks to other variables.  

 



Table 5: Granger Causality Test 

 
Pairwise Granger Causality Tests 
Sample: 1 1001  
Lags: 2   

    
      Null Hypothesis: Obs F-Statistic Probability 
    
      DFX does not Granger Cause DINTEREST 998  11.3080  1.4E-05 

  DINTEREST does not Granger Cause DFX  6.97222  0.00098 
    
      DLXU100 does not Granger Cause DINTEREST 998  91.2241  4.3E-37 

  DINTEREST does not Granger Cause DLXU100  0.39779  0.67191 
    
      DLXU100 does not Granger Cause DFX 998  230.457  6.1E-83 

  DFX does not Granger Cause DLXU100  1.94853  0.14303 
    
    

 
 

Source: Own Study 

Table 5 shows the Granger causality test results.  The test results indicate that 
there is a bivariate causal relationship between interest rates and foreign exchange 
rates by rejecting the null hypothesis of no Granger causality. Whereas, there is 
one way causal relationships between interest rates and IMKB100 index, and 
between foreign exchange rates and IMKB100 index. While changes in IMKB100 
index have direct effect over other variables, the changes in interest rates and 
foreign exchange rates do not cause changes in the IMKB100 index.  

 

After we have estimated and checked our model for in-sample analysis, this stage 
deals with the out-of-sample forecasting performance analysis. We have used 21 
observation for the forecast purposes and compare the results of the VAR(2) 
model with the univariate models which are chosen for each variable by penalty 
selection criteria. ARMA(1,1) model is chosen as best suitable model for interest 
rate and foreign exchange rate series, and ARMA(1,3) for the IMKB100 index 



series.  Root mean squared error (RMSE) statistics are used for the performance 
evaluation tool. The table 6 shows the test results. 

Table 6: RMSE Staistics for Forecast Performance 

VAR(2) Model Univariate Model
Dinterest 0.0011594 0.00094486

Dfx 0.0092412 0.015170
DLxu100 0.018278 0.018482  

Source: Own Study 

According to RMSE statistic, univariate model  gives better out-of-sample 
performance for interest rate series, whereas VAR(2) model outperforms 
univariate models in forecasting the foreign exchange rates and IMKB100 index.  
The statistic also suggest that VAR(2) models out-of-sample forecasting 
performance for interest rates are better than for the other variables. 

 

6. Conclusion 

 

In this paper, we have attempted to build a multivariate time series model for the 
Turkish financial markets. We applied vector autoregressive (VAR) model in 
modeling and forecasting the Turkish interest rates, USD/TRY exchange rates, 
and IMKB100 index for the four year period between 15.06.2006 – 15.06.2010. 
VAR(2) model has been choosen as best candidate model for the varibles in 
sample period.Model estimation results, impulse response analysis and Granger 
causality tests indicate that while VAR(2) model is a satisfactory model for 
interest rates and exchange rates, it is not a suitable for the stock market 
dynamics. A further study on continuous-time stochastic models should be better 
for modeling the dynamics of Istanbul Stock Exchange. Also, heteroskedasticty 
tests show that volatility of the series are not constant, an extended study on 
multivariate GARCH models would be better for modeling the series for the 
sample period.  
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