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ABSTRACT. We present an experiment for the study of learning in a complex task which requires both 
memorisation and the ability to process several pieces of information. The outcome of an action, for 
which immediate feedback is given, depends on the context (i.e. one of thirty-two sequences of three 
features) which is know and visible to the subjects. Subjects develop some theories of the 
experimental world, which result in the stable repetition of some actions in response to certain 
conditions. These theories are modified after feedback, however mistaken answers are repeated and 
correct answers abandoned. During the game, theories become more effective (i.e. they afford more 
correct answers and a higher score), yet the improvements slow down. The theories follow from only 
a portion of the available information and when they become successful (i.e. towards the end of the 
experiment) the subjects start refining them to include a larger subset of the information, this causes 
more stable mistakes. 
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The standard view in microeconomics regards learning as the process through which economic agents 
develop increasingly rational and efficient behaviour. Even if individual agents are not at the outset 
perfectly informed or capable of efficiently employing the information they have, over time they learn 
to do so. Learning is a process that may uphold (and possibly justify the recourse to) the assumption 
of perfect individual rationality. There thus emerges a need for theoretical models that account for the 
capacity of individual agents to learn and to become increasingly skilled at making rational decisions. 
The Least Square Learning (e.g. Marcet and Sargent 1989) and the Bayesian models are good 
examples: they maintain that available data are processed by individuals in an optimal fashion and 
then included in subsequent decision processes, so that new empirical evidence interacts with and 
adds to available knowledge, and eventually brings about ever better choices. Similar conclusions may 
be reached, in several standard and stable contexts, also with models derived from psychology and 
which allow for imperfectly efficient results. Reinforcement learning models (e.g. Erev and Roth 
1998), for instance, rest on the observation that agents tend to repeat choices that had previously 
afforded positive results. This way, there is a tendency to adjust behaviour to empirical evidence, 
maintaining some actions which become increasingly probable, yet not binding because there remains 
a positive probability (though smaller and smaller) of making a different choice. 
In different ways, therefore, there have been attempts at modelling the individual capacity to adjust 
behaviour in the lights of empirical evidence about the outcome of previous decisions – what is called 
feedback. This capacity is stronger in some models than others. For instance, models informed to 
advances in the psychology of learning and decision-making regard choices as sticky and ever less 
prone to change. At some point in time, that is, choices begin to stabilize and feedback impacts less 
and less on subsequent decisions. But the impact of feedback itself may not always be 
straightforward. There are indeed several situations in which both mistakes and their causes are not 
easily observed. A firm which doesn’t sell any of its products immediately acknowledges that there is a 
problem, yet it may be very difficult to investigate whether this is because the product is unappealing 
or wrongly priced, because of the improper practices of competitors, or because of bad luck … (and 
some of these causes would not even seem to leave much room for correction). More generally, there 
are situations in which it is not possible to directly assess how good a choice is, especially when its 
effects only play out in the long run. 
In this paper we aim at analysing this problem by investigating how feedback affects individual 
decisions and learning processes in the absence of collective mechanisms that may correct or select 
out inefficient choices. Looking at the matter from a different angle, our interest concentrates on the 
capacity of individual agents of learning both how to employ available information in a stable context 
with immediate and straightforward feedback, and how information is processed and combined. 
 
7KHRUHWLFDO�EDFNJURXQG�
 
Under this perspective, the existing literature slightly deviates from that referred to above. Learning 
may be seen not only as a mechanism that prompts automatic choices, but rather as a process of 
assigning specific meanings to different states of the world. Brian Arthur (1992), for instance, 
comments that a crucial aspect of the construction of new knowledge is the definition of the 
categories which characterise it and which are not given a priori. Learning, therefore, does not boil 
down to the acquisition of new data, but it requires the construction of semantic categories that 
organise the data. Furthermore, individuals tend to build mental models of the world that keep 
together the whole of the empirical evidence they experience, and yet go beyond it. Starting from 
data individuals construct hypotheses and models that allow prediction and decision-making. These 
models and hypotheses are neither static nor unique, because the representations are continuously 
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fine-tuned through an inductive process and because it is certainly possible to hold several models 
and hypotheses at the same time, which may differ in one or more respects. Decisions are thus tested 
against real world phenomena and associated with their actual outcome, and eventually upheld or 
discarded1. Because the world presents clear and traceable patterns, Arthur believes, the skill to 
detect them is both necessary and advantageous2. 
Richard Nelson (2005) also suggests that the search for a better way of doing something is both 
oriented and limited by what an actor currently knows and believes. Nelson’s research rests on a 
model of human decision making that is boundedly rational. I t is rational in that an actor has a more 
or less clearly specified goal to achieve (for certain tasks, one may consider "finding a proper goal" as 
a goal in itself) and a more or less clear idea (i.e. a theory) of the context within which he is to 
achieve the goal. This theory thus suggests a pattern of behaviour, or a strategy, consistent with the 
goal. The gathering of empirical data and feedback about actions may lead to improved applications 
of one’s knowledge of the world, e.g. to undergo a d ifferent path towards the solution of one’s 
problem. Alternatively it may lead to an improved knowledge of the world tout court, e.g. a more 
accurate mapping of the existing and potentially fruitful paths themselves. Problem solving thus 
requires that an agent engages both in trial and error learning and in theorizing. What result a person 
achieves is thus difficult to predict as it depends on this interactive learning process (and, to some 
extent, on luck). Learning is thus used to describe both the collection of new information and the 
consequences such information has on an individual, though these are two very different processes. 
Nelson imagines a situation in which the agent learns as he performs a "goal oriented task" for which 
he must attain at least a minimal success. But decisions and learning do not occur in a stable 
environment within which the agent may maximise. Instead, a crucial aspect of learning is for the 
agent to recognize the context in which he operates, both to decide which rule to apply and to test 
when his model fails. The agent "either needs to learn how to identify different contexts, as well as a 
set of context specific guides of action, or find a broad guide to action that works reasonably well in 
all or most contexts he will face" (Nelson 2005:6). 
The connection between uncertainty, decisions, and the capacity to manage information is also central 
in Ronald Heiner (1983). Despite a relatively simple formalisation, Heiner’s model conceals a plethora 
of possible interpretations and meaningful implications; therefore we must on this occasion 
concentrate on the few selected aspects that bear the most significant influence on the matter at 
hand, namely the connection between the predictability of behaviour and the information complexity 
of an environment. I t is precisely because of uncertainty – which can be defined as a lack of 
knowledge of (or lack of the skill to define) the link between contexts and optimal decisions – that 
individuals may, more or less consciously, reduce the set of possible decisions to a subset of reliable 
options, which on average afford satisfactory outcomes. A reduction in the number of potential 
options may be achieved by reacting only to some information, ignoring the rest (i.e. to decide based 
on A, B, and C, but not D, E, …), or by disregarding the distinction among certain pieces of 
information (i.e. to acknowledge the difference between B and C, but to nonetheless treat them as 
equal for the sake of a choice), or it may be because of an individual failure in the sophisticated 
processing of information, thus resulting in somewhat generic rules of behaviour that disregard some 
variables. Heiner does not address the problem of how a reliable action could be developed. When 
relevant knowledge is yet to be uncovered, it is plausible that an actor attempts very diverse choices 
(i.e. behavioural entropy is high), and this way she sets in motion the mechanisms that help define a 
reliable action. Though he does not directly attend to the issue of learning, from Heiner’s reflections, 
and consistently with Arthur’s and Nelson’s above, le arning may be considered a capacity to better 

                                                 
1 To the extent that new empirical evidence is interpreted through the interpretative schemes constructed at the beginning 
and – probably – slow to evolve, there is a constraint to changing these very schemes.  
2 I t is possible to propose an additional explanation: mental models might be easier to manage and apply than abstract 
mathematical criteria (Egidi, 2002). 
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use information and to interpret a decision context in its entirety. What follows is an abandonment of 
perfect rationality, replaced by a definition of individual (bounded) rationality as the capacity to 
manage only some portions of the relevant information (à la Simon, 1983). As people learn, they use 
larger and larger amounts of important information and they react in more specialised ways to subtle 
changes in environmental conditions. The variability of their behaviour therefore scales up, while its 
predictability is diminished. Because behaviour follows from individual theories and cognitions, 
learning ultimately affects an agent’s behaviour through a change in the type or in the amount of 
processed information – e.g. concerning (un-)attainable or (un-)desirable outcomes; (un-)feasible, (in-
)effective or (in-)efficient actions. In this sense, all learning impacts on the theory or theories the 
agent holds about the task he is facing. There are two main vehicles for gathering this type of 
information (Bandura 1977, Witt 2000, Rizzello and Turvani 2002): vicarious learning – e.g. learning 
via observation or imitation – and direct learning – e.g. learning by doing, by using, by trial-and error, 
etc. Ruling out vicarious learning from our experimental setting, we limit our analysis to the latter on 
the present occasion. Direct learning occurs whenever an actor observes or otherwise obtains 
information from the outcome of an action he has attempted or performed. 
 
7KH�H[SHULPHQW�
 
The experiment took place at the Center for Cognitive Economics, Università del Piemonte Orientale, 
in Alessandria (I taly), on the 5th July 2000. The subjects were twenty-tree undergraduate students of 
Law, attending their first Economics course. The game was constructed around a fictional association 
whose members fall within one of five categories: Children, Adolescents, Young, Adults, and Elderly. 
The information about members is reported on a set of cards located on either of two shelves (Right 
and Left). Each card presents two features: one of four animals (Cow, Horse, Goose, and Chicken) 
and one of four shapes (Square, Rectangle, Circle, Oval)3. At each turn the subjects were presented 
with a combination of animal, shape, and shelf and were asked to guess the membership category 
corresponding to the combination within ten seconds4. The participants were informed with written 
instruction (see full instructions in the Appendix 3) that the connection between the card features, the 
shelves, and the membership were based on a specified criterion (i.e. it was not random) and that it 
was constant throughout the game (which last 231 turns). Instructions made it clear that there was a 
logical connection between information and results, but that such link was not related to any real 
world fact5. These notes aimed at making it clear that the criterion should and could be learned to 
fulfil the ultimate goal of making as more points as possible. Students received a monetary reward 
based on their performance (each point was worth 40 ITL, i.e. circa ¼������6. The experiment lasted 
about one hour for all players. 
The task is quite difficult. Each turn the players are faced with one of thirty-two possible 
combinations. The solution of the game, however, does not mirror all the possible features in a clear-
cut fashion, because it groups cow and horse into mammals, goose and chicken into birds, square and 

                                                 
3 We selected features that are as neutral as possible – i.e. they do not, on average, arouse emotional responses. For 
instance placing the items on an upper shelf might suggest a superior value compared with items on the lower shelf (e.g. 
Lackoff and Johnson 1981). In a previous experiment similar to this (Novarese and Rizzello 2006), the employment of 
bright/dark colors and large/small sizes may explain why the subjects associate certain combinations of features with specific 
value judgements (i.e. insufficient to excellent). On the present occasion we also tested the card features to verify neutrality. 
We asked 20 subjects to answer a sample of random sequences (as if they played the game, but without instructions nor 
goals). The responses to each sequence were quite homogeneous among the different possible alternatives. 
4 The main results are similar to those in Novarese & Rizzello (2006), where there was no time constraint. 
5 Subject were also preliminary informed that participating to the experiment would have had no influence on their academic 
evaluation an were than required if they were willing to go ahead. They were also informed that no written or oral 
communication was allowed and that they cannot write or take any kind of notes. 
6 The best performer thus earned ¼��������FLUFD��������WKH�ZRUVW�SHUIRUPHU�HDUQHG�¼ 14.32 (circa $ 18). The average and 
median compensation have been ¼��������FLUFD���������DQG�¼��������FLUFD���������UHVSHFWLYHO\� 
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rectangle into shapes with angles, and circle and oval into shapes without angles (players do not have 
this information.) This way, each combination is an instantiation of one out of height meaningful 
cards, each corresponding to one of five membership categories7. The participants were also hinted at 
the fact that some membership groups were somehow associated, because they are informed that 
Children and Adolescents pay no fee, Young pay a reduced fee, and Adults and Elderly pay full fee, 
but the nature of these associations is entirely obscure for them. The solution of the game is reported 
in TABLE 1. 
 

0HPEHUVKLS�*URXS� $QLPDO� 6KDSH� 6KHOI�

Children 
Mammal 

(cow, horse) 
With angles 

(square, rectangle) 
Right 

Adolescents 
Mammal 

(cow, horse) 
With angles 

(square, rectangle) 
Left 

 
Mammal 

(cow, horse) 
Without angles 

(circle, oval) 
Right 

Young 
Mammal 

(cow, horse) 
Without angles 

(circle, oval) 
Left 

 
Bird 

(chicken, goose) 
With angles 

(square, rectangle) 
Right 

 
Bird 

(chicken, goose) 
With angles 

(square, rectangle) 
Left 

Adults 
Bird 

(chicken, goose) 
Without angles 

(circle, oval) 
Right 

Elderly 
Bird 

(chicken, goose) 
Without angles 

(circle, oval) 
Left 

TABLE 1: Solution 
 
At the end of each turn, subjects were told the correct answer and their score. The score was 
calculated in relationship with the distance between the answer given an the correct answer: the 
distance is 0 when the answer is correct; the distance is 1 when the answer given is one membership 
category above or below the correct answer (e.g. Children/Adolescent, Elderly/Adults); the distance is 
2 when the answer given is two membership categories above or below the correct answer (e.g. 
Adolescents/Adults, Elderly/Young); the distance is 3 when the answer given is three membership 
categories above or below the correct answer (e.g. Adolescents/Elderly, Adults/Children); the distance 
is 4 when the answer given is four membership categories above or below the correct answer (i.e. 
Children/Elderly or vice versa). The score at each turn was computed as in TABLE 2. 
 

'LVWDQFH� 6FRUH�

0 +6 
1 +4 
2 +1 
3 -1 
4 -4 

no answer 0 
TABLE 2: Score system 

 
In some respects this experiment resembles a more popular game: Mastermind (see Best, 1990 and 
references therein). In Mastermind, a player called coder arranges four pegs, each of one out of six 
possible colours, in an orderly left–to-right sequence kept secret behind a screen. Another player, the 

                                                 
7 By meaningful, we refer to the cards that differ in a way that matters for the solution. 
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solver, must guess the exact code (i.e. position and colour). Whenever the solver makes a guess of a 
possible code, the coder gives him feedback on his performance by means of placing a number of 
white pegs (for correct colour and correct position) and black pegs (for correct colour and wrong 
position) next to the guess-code. In our experiment, participants must still guess the code. But they 
do not choose the sequences, which are given. The experiment is more similar to those on concept 
formation (e.g. Garner 1962) whose goal, however, was to analyse performance (i.e. number of 
mistakes) depending on available information. I t also presents a few similarities with those belonging 
to the so-called diagnostic task series. Kelley and Friedman (1999), for example, asked the 
participants in their experiment to forecast the price of a good. The price was determined according to 
a linear stochastic process with two independent variables. Players know the model, but not its 
parameters. In each of the 480 rounds, they have to forecast the price, after seeing the changing 
values of the independent variables. After each round they get information on the real value of the 
price. Kelley and Friedman’s experiment is built to test the least square models of learning, where 
economic agents are expected to be able to estimate the parameters of known models. Consistently 
with their goal, Kelley and Friedman test the accuracy of their players’ implicit estimates. In our 
experiment there is a quite different idea of learning, seen – as in the psychological literature – as the 
human capacity to modify behaviour in a more or less permanent way, whenever new experience is 
acquired. We thus elaborate on decision contexts of the kind addressed by Heiner (1983) and Nelson 
(2005). Experimental subjects (as in the real world) do not know the model which generate the 
information, but they have to create their own representation of the world. Moreover, our subjects are 
not expected to understand the real relation in TABLE 1, as, in our view, there is learning even if they 
develop a wrong system of rules. Even a (partially) wrong model of the world may in fact help them 
to successfully perform in the given environment. 
 
7HVWLQJ�WKH�K\SRWKHVHV��VWUDWHJLHV�DQG�IHHGEDFN�
 
Subjects’ ultimate goal is to score as high as possible, while their proximate goal is to learn the 
criterion regulating the game. The two goals are not only compatible, but to a large extent they 
overlap. As Arthur (1992) commented subjects indeed show a tendency (which reflects both a need 
and a desire) to explain the functioning of the world, and thus go on to elaborate and test models 
based on various observed regularities and perceived patterns. Yet, one should not hastily assume 
that pursuing the proximate goal is the best, easiest, or most common way to go about the ultimate 
goal. There is indeed no reason to presume that a successful rule of play must inescapably “have a 
principled relationship with a person’s underlying knowledge of the task’s structure” (Best 1990: 63). 
Even fairly successful strategies only require a rough approximation of certain in-game relationships. 
More generally, the acquisition of new knowledge and the employment of feedback may be voluntary 
or accidental and, at any rate, they need not rest on any real understanding of the causal connections 
between the forces at play in a given phenomenon. For example, one may observe that a pebble 
lands farther away when one flings it upwards instead of straight. On the other hand, one may 
experience that under certain circumstances (i.e. in the presence of a large body of calm water and a 
flat pebble) one can make the pebble bounce on water to reach farther than by throwing it in the air. 
All this while remaining completely innocent of the presence and working of gravitational forces. For 
the simple task of tossing a stone as far away as possible, experience and memory usually provide 
enough grounds for choosing how to throw in most circumstances. Our experiment, on the contrary, 
is too complex for that. One may remember that he threw a the stone very far away in the same lake 
years before, but it is highly implausible that a player may memorise all the combinations she 
encounters, so that in turn sixty-two she observes the combination Goose-Circle-Right and she thinks: 
“just like in turn eleven!” Another source of complication is that our subjects need to develop rather 
fine grained theories, which allow for sophisticated discrimination among a host of very similar card 
features. I t does not matter much whether the throwing spot by the lakeshore is exactly the same as 



�7 

three years earlier. I t might just as well be twenty meters away and the prevailing conditions for the 
throw remain almost the same. Conversely, two combinations which look almost the same, in our 
experiment bring about different outcomes. In order to perform successfully, the subjects could not – 
and did not – rely on memory alone. 
One might expect a typical player to give random answers to the early combinations (this was even 
suggested in the instructions, so to confirm the fact that results and information have no link to any 
real world phenomenon). At first, the answers are mostly mistaken, or they are correct about as often 
as chance predicts – i.e. twenty percent of the times. As he observes more and more feedback from 
the computer revealing the correct answers, player will begin to associate certain features in the 
combinations with specific membership categories. This way he develops some ideas about the 
relationships between the items in the game, which translate into his beliefs about the experimental 
world and how to best perform within such world – what we might call a theory. This theory, if early 
on, it is certainly incomplete (i.e. it only maps some of the relationships between features and 
memberships), it is nonetheless better than wild guessing and it can be expected to evolve during the 
game and to become progressively better tuned as more feedback is gathered, thereby leading the 
player closer and closer to the solution. This player is now equipped with a rough understanding of 
the game, which he continuously supplements with new information concerning the features and 
membership groups not yet addressed. Every time he encounters a combination that falls within the 
range afforded by his theory, he applies it – i.e. he employs a strategy consistent with the theory. 
When he does so, two events may occur. One possibility is that the answer is correct, so the strategy 
is confirmed and the theory upheld. On the other hand the answer may be incorrect, therefore the 
theory needs be revised. Because we allow for a range of points earned based on the degree of 
correctness of an answer, the mistake may be small or large. I f the mistake is small, perhaps the 
player chooses to disregard it and preserve the theory to see to what extent does it hold and maybe 
wait until later to look for a refinement. The longer one has successfully employed the theory, the 
more resistant he probably is to abandon it when it fails, especially if the failure is negligible. I f the 
mistake is large, he may want to figure a way to replace the assumption he had been making. The 
theory, however, is based on several assumptions which might be replaced, so that he might replace 
a wrong or a correct assumption. Only future feedback will tell. 
When the player observes a sequence which he has already encountered and responded correctly to, 
will he again respond correctly? And why? The best speculation we can make is that, if he indeed 
responds correctly he is reapplying a successful strategy (perhaps following from a revised version of 
the original theory). I f he does not, he is elaborating a new theory8. We might therefore observe, as 
the game proceeds, that players may repeat mistakes they should have learnt to avoid, either 
because the mistake was disregarded and the wrong theory maintained, or the correction was 
incorrect, too. We might also observe that some right answer can be abandoned, because our player 
revised a portion of a theory which was originally correct and replaced it with an incorrect one. 
As said, the payoff depended solely on the actual score. I t is thus possible that some of our subjects 
had perhaps no desire to understand, as it were, the working of gravitational forces, but simply 
wanted their pebble to fly as far as possible. Because our – that is the experimenters’ – goal, instead, 
is to understand how players learn the criterion governing the experiment, for our results to be 
meaningful at all we must observe an attempt at figuring out the criterion from the subjects and we 
would ideally rule out some strategies that do not rest on in-game theories (TABLE 3). 
A participant faced with the complexity of the task and uninterested in its functioning, might decide to 

                                                 
8 I t could also be the case that the player remembers (and possibly remembers incorrectly) what response he had given 
earlier in the game. Though this is certainly possible, and it probably happened now and then, we find this explanation 
unlikely to apply to most of our answers (as it will be show later). Remember, also, that in the postexperiment stage we 
conducted an extensive survey which lets us rule out the ‘attempted memorisation’ as a major explanati on to account for our 
subjects’ behaviour throughout the experiment. 
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systematically give random responses (STRATEGY 1 in TABLE 3). Even this very simple strategy only makes 
sense if it rests on the theory that each age category is (roughly) equally represented in the solution 
(in practice such theory would be mistaken)9. Therefore, when we suggest that one does not need a 
thorough or profound grasp of the underlying mechanisms behind a given task context, we do not 
mean that one can do without a theory. 
 

6WUDWHJLHV� $QVZHUV� 6FRUH�

STRATEGY 1 Random answer expected: about 600 

STRATEGY 2 Young (always) 900 

TABLE 3: Some out-game strategies 
Another reliable strategy exists at the outset: < Always play Young> . A player may formulate this 
strategy based only on the payoff table. Since the Young category is either one or two steps away 
from the other age categories, it always affords positive score (i.e. + 6, + 4, or + 1). One can uphold 
STRATEGY 2 on the grounds of a theory maintaining that the categories in which it performs worst (i.e. 
Elderly and Children) are not significantly over-represented. Moreover, though the players do not 
know this at the beginning, the Young category is associated with 50% of the possible combinations, 
making its probabilities of giving the highest score four times more likely than those of any other 
category. Through feedback, therefore, a player figures out that the strategy he is following is better 
than he initially thought. In a case like this, there would be another obvious problem: though he 
learns new facts about the way our experimental world works, the player in question would not 
change his game conduct, therefore some learning might go undetected. 
STRATEGY 1 and STRATEGY 2 seem the only reasonable options available to a player, based exclusively on 
the instructions, as every more refined strategy requires at least a rough understanding of the 
feedback. These two strategies, however, may be presumed rarely followed, as also shown by 
experiments very different from ours. For instance, when they are asked to guess the numbers 
extracted from an urn containing, say, 70% number 1 and 30% number 0, subjects tend to give 
responses which reflect the relative frequency of 1’s and 0’s, though it would be more sensible to 
always respond 1 (Feldman, 1973). The situation is somewhat analogous here. For instance, STRATEGY 1 
should afford 43% of the maximum score attainable, or 600 out of a maximum of 1386. Every player 
in our experiment scored above this level, which we take as an indication that no player systematically 
gave random answers. On the other hand, by consistently following STRATEGY 2, a player would have 
earned circa 65% of the total score, or 900, but this did not happen with any of our subjects. Because 
our players did not follow the two simple strategies, we can rule out the possibility that they played 
without an in-game theory10. Is this a good thing? For us, yes, as we are interested in studying 
learning. For them, it is not necessarily good, because a refined theory needs not inescapably lead to 
a higher final score than a cruder one. TABLE 4 reports some score statistics. The average score is 
higher than chance predicts (200 points), which means that after the first few turns almost every 
player begins to form a strategic outlook on the game that is more sophisticated (at least, more 
successful) than STRATEGY 1. What we found surprising, instead, is that as the game proceeds the 
median score stabilizes only slightly above the performance of STRATEGY 2. At the individual level, there 
are 10 players (43.5%) who scored less than 900, and would have thus been better off by always 
responding Young. In an ideal situation all our players would eventually develop a perfect 
understanding of the criterion, so that in the last phase they accurately reproduce the solution scheme 

                                                 
9 Unfortunately we may not confidently say from which theory does a strategy follow because the same strategy can be the 
manifestation of several different theories. 
10 Even responses based on the subjectively perceived probability distribution of responses, in a fashion akin to that in 
Feldman’s experiment would require an in-game theory. 
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in their responses. This did not happen (except for three players, one of which – remarkably – found 
the solution around the 70th turn), but perhaps it could have, had the players been given a longer time. 
After all, we set an end to the experiment, but it is quite clear that almost every participant in the 
experiment is still learning throughout the late turns. 
 

$YJ� 931 
6W�'HY�� 157.4 
0HGLDQ� 904 
0LQ� 716 
0D[� 1276 

TABLE 4: Score Statistics 
 
3UHOLPLQDU\�ILQGLQJV�
 
An experiment as long and complex as ours may elicit the observation of several interesting variables. 
Because our focus is on learning, however, we must concentrate on this aspect. The first and 
foremost observation that concerns us is the capacity to learn, to improve the number of correct 
answers that is, benefiting from the information acquired in the course of the game. Because the 
number of possible combinations is much smaller than the number of turns in the game, each 
combination occurs several times (yet never in consecutive turns)11

. These are precisely the events 
that let us investigate the patterns of learning of our subjects. 
The major variables we analyse are the most intuitive measures of performance and learning: 
successful and unsuccessful answers. We supplement these with a selective analysis of the score, 
which depends both on the number of correct and wrong answers and on the type of wrong answer. 
We do so only in passing because there is a large variation in score for mistakes (i.e. from -4 to + 4) 
that might blur many of the aspects connected with learning that interest us. 
 

�
FIGURE 1: Average number of mistakes, by 10-turns 

 
On the whole, as expected, the number of errors decreases rather fast at the beginning of the 
experiment, and somewhat less fast later on (FIGURE 1, AND TABLE A1 in the Appendix 1). The process, 
however, is not monotonic because individual differences in performance may be very large and 

                                                 
11 The participants are not explicitly told that the sequences are repetitions of previously appeared combinations. 
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because, on any given turn, the number of mistakes is affected by several factors – e.g. the specific 
combinations that were presented, how much did two consecutive sequences differ, to which 
combinations did a subject already give a correct answer (and why), etc. 
Towards the end we introduced numerous combinations which, while still reproducing the original 
structure, have never appeared before. The worse performance in the late turns, however, is not due 
to these novel sequences. The average response time to new combinations in the third phase is 
roughly the same as that to old combinations (actually, even shorter): 4.99 and 5.14 seconds, 
respectively. The same is true for average score: 4.26 for the new sequences and 4.02 for the old 
ones. New sequences, therefore, do not seem to be handled differently from old ones. This 
observation also serves as a first indication that memorisation does not play a major role in the choice 
and performance of our subjects, at least at the end of the experiment. If the reduced improving of 
subjects’ performance is not caused by novel sequences, we speculate that it may be caused by a 
slowdown in learning and a crystallization of the rules, or by alternative factors such as boredom or 
fatigue. I t is not easy to measure these effects, nor is it clear that they should unmistakably be 
present. Our experiments last about one hour, which is not a very long time. Kelley and Friedman's 
(1999) experiments last about three hours overall (though with some breaks) and yet their subjects’ 
performance keeps increasing. I t is so more likely that this reduction in performance improvement is 
because in the late turns the subjects entertain themselves with more sophisticated theories, that 
cannot easily be upgraded (more on this below). 
 
+\SRWKHVHV�
 
In the lights of what we said so far, we regard learning as a change in behaviour that follows from 
experience and we can already point out one of its central features: learning is outcome-improving. 
By some definitions of outcome-improvement this may be untrue, but in a broader sense and in a 
medium-to-long-term perspective, we expect that: 
[1.]  subjects perform increasingly well (i.e. make less mistakes and score higher on average) as the 
experiment progresses. Consistently with the majority of experimental investigations of learning, we 
further predict that: 
[2.]  learning is faster at the beginning and then it slows down – i.e. behaviour both changes and 
improves its results relatively more at the beginning. Since we interpret improved performance as 
evidence of learning, we must hypothesise that: 
[3.]  subjects (tend to) respond identically and correctly to the same sequences as they appear later in 
the game, i.e. they develop stable strategies. 
The present experiment also elaborates on results obtained in previous sessions with different 
information and manipulations (e.g. Novarese and Rizzello 2006). Based on earlier observations and in 
the lights of the previous discussion, we note that: 
[4.]  in the process of elaborating their strategies, subjects may ignore specific portions of the 
information available to them. 
Because memory and perceptions are affected by the hypotheses and knowledge held at a given 
moment, it is probable that: 
[5.]  subjects also develop incorrect strategies, i.e. they answer identically and incorrectly to some 
sequences (at least temporarily). 
The upshot of [5.]  should be that : 
[6.]  subjects do not correct some mistakes and instead keep repeating them (at least temporarily); 
[7.]  and they abandon correct answers and substitute them with mistaken ones (at least temporarily). 
Mistakes of these two types are neither accidental nor random and more generally we believe that: 
[8.]  mistakes may be predicted: they cluster around the correct answers not in a random way. 
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7KH�XVH�RI�LQIRUPDWLRQ 
 
We can now advance some additional hypotheses based on a dynamic elaboration of Heiner’s model. 
We propose that, since the experimental environment is new and unknown to our subjects, they have 
no reliable rules that may apply, and they must develop one or more such rules. In the first part of 
the game, therefore, we expected a very much erratic behaviour, with several answers perforce given 
at random or with continuously changing theories (based also on a idiosyncratic and not empirically-
based evaluation of the significance of the information). At some point, however, the subjects should 
start formalising some more stable strategies and – consequently – reduce the range of possible 
answers they give to each sequence, though they may not have yet figured how to best respond to 
those sequences. At this stage, we should observe that subjects rely on a subset of the information. 
We shall assume – inspired again by a combination of previous findings and of the literature – that 
players could respond often on the basis of Animal and Shelf only. The first seems to be more visible, 
because it is the first information shown, while the latter is easier to manage because it only has two 
modalities. Over time, as they learn to react to some given information only, subjects errors should 
become increasingly predictable, at least for given sequences, and their behavioural entropy should 
fall. To investigate this hunch we elaborate on the concept of behavioural entropy (Heiner 1985 
appropriates it from psychological literature), which is defined as:  
 

∑−= ��

✁

KK( ORJ  

 
where a is an element in the set of possible actions A, and ha= p(a) is the probability (relative 
frequency) of choosing a given action (see Appendix 1). We aim at measuring this index, given a 
context, defined by two pieces of information only: Animal and Shelf. The higher the number of 
chosen actions under the same conditions and the more uniform their frequency (for instance when 
an agent gives random answers), the higher is behavioural entropy and the harder it is to predict this 
agent’s choices. Conversely, if an agent’s behaviour i s stable (for instance he always responds Young), 
entropy is 0. When entropy is low it is also easier to predict what action an agent will choose. Given 
all the information, entropy is null also for a player who always gives the correct answer, because 
under some conditions he always responds the same way. But this changes if, as we suggest, the 
choice context is defined by just two features (Animal and Side). In such case, each sequence (e.g. 
Horse-Right) has two possible correct answers (i.e. Children and Young) depending on the third 
(Shape), unobserved, feature12. Because the two correct answers are not evenly distributed, 
depending on their actual frequency we may calculate, as it were, the correct entropy, that is the 
behavioural entropy of an agent who always gives the correct answer in a scenario in which two 
features instead of three are taken into account. So – in addition to the fact that theories evolve, 
some answers are random, there are accidental and systematic mistakes, and memory is imperfect – 
the entropy we observe is also caused by the missing piece of information. Consequently, if we 
observe that the entropy for a combination of two features is inferior to the correct entropy, we have 
a strong confirmation of the hypothesis that (in such context) agents do not employ all the available 
information. For example: if a player faces the sequence Goose-Left and chooses Elderly seven times 
out of nine, but the correct responses were five times Elderly and four times Young, the entropy of 
this player is lower than the correct entropy13. 

                                                 
12 Note, however, that the solution in TABLE 1 still holds. 
13 Again, this result may be fortuitous, but it would be very unlikely to observe seven in nine repetitions of the same answer 
when this answer is 20% likely to come out on each occasion. 
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6WDJH� $QLPDO� 6LGH�
%HK��(����&RUU�(��

�D��
%HK��(�� �&RUU��(��

�E��
&RUUHODWLRQ�

EHWZHHQ�D�DQG�E�

1 Cow Right 2 1  
1 Cow Left 2 2  
1 Horse Right 1 1  
1 Horse Left 2 0  
1 Chicken Right 8 2  
1 Chicken Left 1 4  
1 Goose Right 0 2  
1 Goose Left 1 3  
   17 15 -0.09 
2 Cow Right 2 3  
2 Cow Left 1 3  
2 Horse Right 8 2  
2 Horse Left 1 2  
2 Chicken Right 0 6  
2 Chicken Left 2 9  
2 Goose Right 5 1  
2 Goose Left 3 5  
   22 31 -0.42 
3 Cow Right 3 9  
3 Cow Left 4 5  
3 Horse Right 9 3  
3 Horse Left 2 3  
3 Chicken Right 5 4  
3 Chicken Left 4 3  
3 Goose Right 5 3  
3 Goose Left 7 4  
   39 34 -0.33 
4 Cow Right 1 10  
4 Cow Left 4 7  
4 Horse Right 2 7  
4 Horse Left 9 7  
4 Chicken Right 8 7  
4 Chicken Left 6 5  
4 Goose Right 1 5  
4 Goose Left 5 3  
   36 51 -0.19 

TABLE 5: Behavioural Entropy, by Stage 
 
For the analysis of behavioural entropy we divide the experiment into four stages (i.e. from turn 1 to 
57; from 58 to 115; from 116 to 173; and 174 to 231). For each two-feature-sequence TABLE 5 reports, 
for all players, how many cases show behavioural entropy below and equal to what we would observe 
with correct responses. For each of these, we reject the random hypothesis14. For example, at stage 
one, there are two players whose behavioural entropy is lower that the correct entropy for the 
sequence Cow-Right (while only for one player the two are identical). The frequencies are low, but, as 

                                                 
14 In order to make the test more demanding, we also accounted for missing answers in computing behavioural entropy – 
even though these are not possible when calculating the correct entropy. 
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said, there are many elements adding to behavioural entropy (consider also that the division in four 
parts is artificial and does not allow the detection, if not by chance, of the exact steps used by players 
to develop and modify their theories. The cases in which the behavioural entropy is lower than the 
correct one change over the periods (as an example Chicken-Right has a frequency equal to eight in 
stage 1 but it is zero in the following period). This testifies to the frequent changes in theories. 
We are here interested also in analysing the evolution of these numbers along the game. The 
tendency to simplify – i.e. to employ a subset of the total information – increases during the first 
three stages, and only then it decreases a little. In the third stage there are sixteen subjects out 
twenty-two who behave as if they disregarded one feature at least on one occasion (and on average 
they do so more than twice; given the measurement problems, this is a rather high value). Overall, 
there are thirty-nine cases of this kind, which is more than the thirty-four cases in which the entropy 
is correct. In the fourth stage the number of reduced-entropy cases shrinks to thirty-six, which involve 
seventeen subjects. Conversely, the number of sequences for which we observe correct entropy 
increases across the whole experiment, including in the last stage15. 
 

  Stage I    
�

✂☎✄✝✆✟✞✟✠
�� 6FRUH� &RUUHFW�

✂☎✄✝✆✟✞✟✠
��

✂☎✄✝✆✟✞✟✠
�� 1    

6FRUH� - .369 1   
&RUUHFW� - .338 .715 1  
✂☎✄✝✆✟✞✟✠

�� .963 - .328 - .328 1 
  Stage I I    

�
✂☎✄✝✆✟✞✟✠

�� 6FRUH� &RUUHFW�
✂☎✄✝✆✟✞✟✠

��
✂☎✄✝✆✟✞✟✠

�� 1    
6FRUH� - .428 1   
&RUUHFW� - .435 .824 1  
✂☎✄✝✆✟✞✟✠

�� .997 - .422 - .432 1 
�  Stage I I I    
�

✂☎✄✝✆✟✞✟✠
�� 6FRUH� &RUUHFW�

✂☎✄✝✆✟✞✟✠
��

✂☎✄✝✆✟✞✟✠
�� 1    

6FRUH� - .102 (* ) 1   
&RUUHFW� - .285 .853 1  
✂☎✄✝✆✟✞✟✠

�� .999 - .099 - .283 1 
�  Stage IV   
�

✂☎✄✝✆✟✞✟✠
�� 6FRUH� &RUUHFW�

✂☎✄✝✆✟✞✟✠
��

✂☎✄✝✆✟✞✟✠
�� 1    

6FRUH� - .223 1   
&RUUHFW� - .340 .875 1  
✂☎✄✝✆✟✞✟✠

�� .995 - .221 - .333 1 
Correlation is significant at the 0.01 level (2-tails), except where marked with *  in which case it is 
significant at the 0.05 level. 

TABLE 6: Correlation among variables, By Stage 
 
When a theory results in mistaken answers, a player should question and revise it. His behavioural 
entropy should therefore be high – or at least higher than if he always answered the same (correct) 
way. Higher score is therefore associated with lower entropy (negative correlation). The decision to 

                                                 
15 The cases in which behavioural entropy is higher than correct entropy cluster around certain sequences, with a negative 
correlation (yet not very large) compared with the cases of correct entropy. This correlation is only in part tautological 
because there is a third phenomenon which determines a degree of freedom: the cases in which behavioural entropy is 
higher that correct entropy. This suggests that some sequence allow a better use of information, while others are more 
difficult to be deal with, among all players. 
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employ only two pieces of information, yet, proves reliable if it scores quite well and often enough, 
but not necessarily always. We can thus expect, for each sequence, reduced entropy, with several 
correct answers, but some mistakes as well. The correlation between entropy and score, 
consequently, is weakened. In other words, if a player uses two pieces of information, the correlation 
between score and entropy is very low, because mistaken answers do not lead him to change his 
theory. The correlations under exam are calculated in TABLE 6, based on two definitions of entropy that 
include (ENTRO2) or exclude (ENTRO3) missing answers. As expected the correlation between entropy 
and score and that between entropy and number of correct answers are always non-zero and 
negative. The trend in these correlations, moreover, is revealing. They are higher in the preliminary 
stages, but then decrease in the third, and later increase again in the last part. This is the kind of 
result we would expect if, at a certain point in the experiment, the participants start to focus on a 
subset of information that helps them come up with satisfactory theories, and then they eventually 
start enriching these theories again by devoting more attention to the features they had temporarily 
disregarded. I t also seems that the participants focus more and more on correct answers instead of 
focussing on score as the game advances (the correlation of both ENTRO2 and ENTRO3 with the score in 
the last two periods is lower that that with the number of correct answers). 
 
3UHGLFWLQJ�PLVWDNHV�
 
Besides helping in studying behavioural entropy, our interpretation of Heiner’s model allows to 
understand and predict the kind of mistakes subjects make. The reduction in entropy can be 
explained with the development of a theory that disregards one piece of information: Shape. As a 
consequence we observe that, as the game proceeds, subjects fail to answer Young when it is the 
correct answer. This is only one of the possible mistakes, which is particularly relevant as Young is the 
most frequent (correct) membership in the game. So we can explain a large number of errors (even if 
in relative terms the percentage of errors when the right answer is Young is not different from the 
mean). This helps us pointing out regularities in game conduct which would be more difficult to detect 
with less frequent sequences. 
When the correct answer is Young, responding Adults or Adolescents is indifferent: both mistakes 
have the same distance from the correct answer and thus guarantee the same score. The same holds 
for Elderly and Children: none is more advantageous than the other. So we have no reason to expect 
any of the mistaken answers to prevail. TABLE 7 shows instead that, when the correct answer is Young, 
mistakes are not random and they tend to cluster in a specific direction (see table A2 in Appendix 1 
for a similar table with data by Animal and Shelf). The results are rather plain: when the Animal is a 
Mammal, mistakes group around the youngest two membership categories, and vice versa with Birds. 
Another explanation for this phenomenon may be that players respond with the membership which 
they are successfully able to classify. I f, for a given Animal a player is accustomed to respond 
Children, it is more likely that he responds Children also when the correct response is Young, instead 
of, say, Elderly. We can see this by means of TABLE 8, in which we calculate the percentage of correct 
answers for each player, depending on the Animal and then we determine its correlation with the 
incorrect responses given when the correct answer was Young. As we expected, the more often one 
correctly responds Children to a combination beginning with Horse, the more often he will respond 
Children to a combination starting with Horse although this time the response is incorrect because the 
solution is Young. We calculated coefficients based on multiple observations from each player and 
these may not be independent. The table serves the purpose of conveying a hunch of an individual 
explanation for the general tendency. We have too few observations for a more detailed analysis 
(which would require both correct and wrong answer to the sequence starting with Children; most of 
players respond correctly, while there are few wrong answers). 
These results suggest that mistakes are not failures tout court, but they are manifestations of some 
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theories, which perhaps need further refinements or revisions. Only a subset of the available 
information, therefore, seems to be meaningful to our players for a large part of the experiment, and 
while this may be a promising way to proceed, it may at the same time stick and consequently slow 
down the successful processing of new feedback. 
 

VWDJH� DQLPDO� HOGHUO\� DGXOWV� DGRO� FKLOG� 1�$� ��HUURUV�

1 horse 0.07 0.13 ����� ����� 0.08 40% 
1 cow  0.12 0.15 ����� ����� 0 53% 
1 chicken ����� ����� 0.17 0.11 0.02 38% 
1 goose ����� ����� 0.11 0.20 0.05 23% 
       0% 
2 horse 0.06 0.22 ����� ����� 0 85% 
2 cow  0.09 0.22 ����� ����� 0 53% 
2 chicken ����� ����� 0.08 0.35 0 17% 
2 goose ����� ����� 0.10 0.21 0 31% 
       0% 
3 horse 0.03 0.23 ����� ����� 0 49% 
3 cow  0.07 0.15 ����� ����� 0 48% 
3 chicken ����� ����� 0.08 0.15 0 36% 
3 goose ����� ����� 0.11 0.25 0 25% 
       0% 
4 horse 0.05 0.24 ����� ����� 0 25% 
4 cow  0.09 0.18 ����� ����� 0.02 39% 
4 chicken ����� ����� 0.10 0.22 0 33% 
4 goose ����� ����� 0.05 0.15 0 29% 

We averaged the total number of individual mistakes for each membership category 
when the correct answer was Young and then rearranged them according to the Animal 
in the corresponding sequence. Percentages are all significantly different in all cases 
(with both variance test and Kruskal-Wallis non-parametric test). 
TABLE 7: Mistakes when the correct answer is Young, By Stage and Animal 

 
 Type of mistakes when the correct answer is Young,�
Correct &KLOGUHQ� $GROHVFHQWV� $GXOWV� (OGHUO\�

&KLOGUHQ� .407 .222 - .275 .325 
$GROHVFHQWV� .070 .357 - .192 .256 
$GXOWV� - .220 - .246 .350 .095 (* ) 
(OGHUO\� -.323 - .325 .152 .499 
Correlation is significant at the 0.01 level (2-tails), except where marked with *  in which case it is 
significant at the 0.1 level. 
TABLE 8: Correlation between correct answers and mistakes when the correct answer 

is Young, Aggregate 
 
7KH�GHYHORSPHQW�RI�VWUDWHJLHV�
 
I f a subject systematically gives the correct response to a specific sequence, he has probably 
understood or memorised the functioning of a portion of the game, which is thus coded in a strategy 
of his current theory. I f he often gives a wrong answer he hasn’t (yet) understood nor memorised. 
But, if the wrong answer is systematically the same, he has probably developed a strategy within an 
imperfect theory. In the context of our experiment we regard a strategy as the (presumably principled 
and stable) association of an answer with a combination, at least for some time: we thus now divide 
the game in three phases (turns 1-77, 78-154, and 155-231), so to group together enough 
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observations (this would be impossible with a division in four parts as before). The assumption that 
there are principles and stability behind answers given only once or twice may be far-fetched; we thus 
consider strategies only iterated responses to combinations that appear at least four times during the 
experiment (but on average they appear ten times) and at least three times in any of the phase. In 
each of the three phases, we count as strategies identical responses given from individual players at 
least 75% of the times. 
As expected, players develop quite stable associations between combinations and responses. The 
number of strategies we observe increases from 130 in the first phase to 235 in the third. The 
strategies also become increasingly accurate (56% and 67% of them are correct, in phase one and 
three respectively). While it is true that the players improve their overall performance throughout the 
experiment, mistaken strategies represent anyway, a sizeable proportion of all strategies: 42% in the 
last phase (31% in the first). Though we require that they be selected 75% of the times, some 
strategies were chosen 100% of the times. And these were no more accurate: only 57% are correct, 
while 43% are wrong (though they often ensure a positive score). And these are likely the 
consequences of a failure in processing or in implementing some observed feedback. 
 
7KH�OLPLWHG�HIIHFW�RI�IHHGEDFN�
 
Since a player’s theory only encompasses a finite number of presumably relevant features, it seems 
plausible that feedback only matters for the aspects currently covered by a theory. Though a theory 
may disregard certain features (e.g. Shape), the very decision to disregard some information must 
follow from a portion of the theory itself: a theory might maintain that focusing on a subset of 
elements will not compromise the possibility to understand the functioning of the remaining elements. 
For example, we can assume that theories do not even consider the possibility that "whether the 
internal sum of the turn number is even or odd" or "whether the features of the card are 
alphabetically ordered" matter in the experiment. One may surely translate this as a tacit portion of 
the theory maintaining that "alphabetic ordering of the features" and "internal sum of the turn 
number" do not matter. Because it is tacit, however, no player (we again assume) processed such 
information into knowledge, though he could easily observe it every turn. Each theory filters 
information differently and is therefore subject to different revisions, these revisions again produce 
different feedback filtering, and so on. Nonetheless, a large majority of the participants manages to 
process feedback in a successful manner, and in a manner that is quite similar for all subjects (more 
on this below). 
 

7XUQ� $QVZHU�JLYHQ�

12 no answer 
26 (OGHUO\�

56 (OGHUO\�

60 (OGHUO\�

109 Adolescents 
122 Adolescents 
135 Adults 
144 Adults 
171 (OGHUO\�

181 Adults 
199 Adults 
209 Adults 

TABLE 9: Responses to Chicken-Oval-
Left by one player 
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One of the common ways to react to feedback, however, is to somewhat disregard it. We can see this 
by observing the responses that one of our subjects gave to the sequence Chicken-Oval-Left, whose 
correct answer was Elderly (TABLE 9). After a skipped answer at turn twelve, the player seems to 
identify the correct responds, which he then repeats twice. One would imagine the player has 
understood and is going to consistently give the correct response from now on. Instead, he switches 
to Adolescents, which he gives twice. He moves to Adults, again twice. Afterwards, at turn 171, the 
player returns to the correct response. He finally stabilizes, from turn 181 to end, on the incorrect 
answer Adults. This player incurs in seven mistakes, including the missed response. After three of 
these (out of six possibilities, because the last cannot be repeated), he confirms the same one. This 
player therefore has a 50% confirmation rate for this sequence. We calculate similar frequencies for 
every sequence and then compute a mean value for single players. The student in the example above 
confirmed 34% of the errors. The mean value, among all players, of wrong confirmed answers is 
about 33%. The probability to confirm by chance m out of n answers, can be computed using a 
binomial function. The probability of a random confirmation is 1/5 (as there are five possible 
answers). We can reject this possibility for 18 out of 23 players with a 95% interval and for 20 with a 
90% interval. 
The trend of this phenomenon, moreover, is rather counterintuitive because the number of confirmed 
mistakes scales up: it is 27% in the first stage, 31% in the second, 39% in the third and just in the 
last part it starts to go down 37%16. The differences between stage 1 and 2 is almost significant both 
with the t test for paired sample (p value 0.15) and Wilcoxon test (p value 0.11); the difference 
between the second and third period is again significant with both t test (p value= 0.032) and 
Wilcoxon (p value= 0.047). The difference between the last two periods is not significant (the p value 
of the t test is 0.437 and that of the Wilcoxon test is 0.375)17. The reduction of the last part indeed is 
not homogeneous among players18. 
These results suggest that the rate of confirmation of mistakes increases when the players 
presumably base their decisions on a broader theoretical model of the experimental world, in an 
attempt at building a singular consistent model for the largest possible number of frequencies. Such 
model evolves during the experiment and it should indeed lead to a larger number of confirmed 
mistakes towards the end. Each player often confirmed mistakes in different sequences during the 
experiment precisely because they reflect an attempt at harmonising different rules. Mistakes, so, 
result from reasoning and cognition and not at random or from some adaptive or reinforcement 
mechanism. Not even a simple mechanism for the acceptance of a satisfactory result would explain 
this tendency because it does not justify the fact that it happens only with some sequences and not 
with others. Some mistakes, therefore, are reproduced on given sequences throughout the game, 
while others appear suddenly on sequences for which the phenomenon had not happened before. 
Conversely, there are 335 correct responses given at least twice, of which 101 (30%) are later 
abandoned. Consider the similar and more surprising cases in which a player abandons a correct 

                                                 
16 Consider the sequence in table 9. I f the player makes a mistake at turn 56, there is one mistake which can be confirmed. 
The next time the same sequence appears, during turn 60, belongs to the second stage. We thus count the eventual 
confirmation as a confirmation in the second stage even though the original mistake occurred during the first, because we 
are here interested in the confirmation and it cannot occur in the first stage. 
17 Also the differences between the first and the third and between the first and the fourth are significant, but not that 
between the second and the fourth. 
18 I f we compare the percentage of confirmed mistakes, for individual players on specific sequences, between the second 
and the third stage (the one which features the highest number of mistakes confirmations), we observe an increase in 108 
out of 216 cases for which a comparison is possible. (For example, in the sequence Horse-Oval-Left, six players increase the 
percentage of confirmed mistakes. One player, for instance, commits this mistake once in the second stage and does not 
confirm it, but in the third stage he commits it five times and confirms it four.) To better appreciate the extent of this 
phenomenon, we note that for 15 players this happens on at least four distinct sequences, for 18 players on at least three. 
Only two players decrease the percentage of confirmed mistakes. 
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strategy after (at least) two repetitions and makes (at least) two mistakes. A pattern of this kind can 
hardly be accidental (the probability of giving the same answer twice to the same combination by 
chance is 4%), especially when it is as common as TABLE 10 reveals. 
 

3OD\HU� &RUUHFW�
$EDQGRQHG�

3OD\HU� &RUUHFW�
$EDQGRQHG�

1 0 13 7 
2 5 14 1 
3 3 15 0 
4 4 16 4 
5 5 17 0 
6 3 18 5 
7 11 19 6 
8 6 20 4 
9 6 21 2 
10 5 22 8 
11 3 23 6 
12 1 7RWDO� ���

TABLE 10: Number of responses given correctly twice and 
then twice incorrectly, by player 

 
Three players never incurred in this kind of conduct and two others only do so once. But every other 
player responds correctly twice and then incorrectly twice to several sequences (average and median 
is about four). The variance is very high because someone had not given answers of this type while 
someone did so no less than eleven times. We also note that the average distance (in turns) between 
a given correct answer and the next forgotten or remembered identical sequence is twenty-three and 
twenty-two turns respectively. There are even thirty-three correct answers which are abandoned 
within fifteen turns. We can thus reject the possible explanation that players remember the sequence 
when it is repeated in the immediately subsequent turns, but then forget it when it reappears much 
later in the game. We instead regard these patterns as further evidence of work in progress. If the 
players are subjecting their theories to some revisions, they probably respond in a certain way – be it 
correct or not – for a number of turns until they move on to a new theory. 
�
&RQFOXGLQJ�UHPDUNV�
 
We presented an experiment aimed at studying the way in which persons learn to perform a complex 
task which requires both memorisation skills and the ability to understand how to best employ several 
pieces of information. Our background hypotheses derive from several economic models inspired by 
cognitive psychology, which show in various ways how a central aspect of learning is the processing 
of information and the management of feedback. In contexts like that of our experiment the decision-
making problem is substantially different from that faced by a fully rational standard agent. A 
comparison with the received microeconomics view on learning, therefore, can be meaningful only 
when it is confined to some specific aspects. Since the environment was stable, had the game lasted 
longer – though how much longer we cannot say – it is probable that every player would have 
understood the correct criterion (perhaps with a subjective representation that deviates from ours). 
Our goal was to identify some mechanisms of learning by transcending the usual focus on 
performance, to penetrate its black box. 
To make sense of our findings it seems necessary to imagine that agents construct some theories and 
representations of the experimental world, and then modify and refine them throughout all the game. 
There is an improvement in performance, but it becomes ever harder. Simplified rules and heuristics 
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are the product of a learning process which takes time. Once they have been developed, they become 
harder to amend, because that probably calls for a much finer understanding of the environment 
together with the alteration of the already crystallised mental representation. The confirmation of 
mistaken answers and the abandonment of correct ones only seem explainable if the data are 
interpreted within a broader theory of the functioning of the experimental world. Such interpretations 
may then translate into simplified strategies with some general validity in a variety of contexts (in the 
experimental world). These strategies are quite stable, but they may be subject to revisions according 
to a crucial trade-off between capacity for change and tendency to stability. 
The results obtained confirm the hypotheses we advanced and reinforce the previous observations in 
Novarese and Rizzello (2006) and they are, more generally, in line with a wide economic and 
psychological literature on the subject. The construction of an alternative decision model is bound to 
emerge from a more refined understanding of the way people interpret situations and simplify them, 
thereby reducing the number of variables they evaluate and creating broad categories. Bounded 
rationality, however, does not entail choices given at random or without context-specific principles. 
The results in TABLE 7 can also be interpreted in terms of reinforcement learning, since they connect 
mistakes to strategies that prove successful elsewhere. The reinforcement, however, is here 
conditioned by and related to a conscious capacity (if perhaps not optimal) to process some 
environmental information. This remark takes us back to Heiner’s model which we selected as our 
basic tool, precisely for its focus on the connection between the predictability of behaviour and the 
capacity to process environmental information. With respect to this model, our results also exemplify 
what a reliable action is(well functioning on average, easy to memorise and to apply, perhaps because 
it only employs a subset of data…), its link with the use of information and the difference with a 
tradition model in term of efficiency. Data on the evolution of behaviour in the late turns of the 
experiment (though this aspect awaits further corroborating evidence) point towards the idea that 
achievement of a reliable strategy seems a useful, if not indispensable, condition to progress towards 
an ever better understanding of the environment. This aspect will be formally investigated in a future 
work. 
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$SSHQGL[����7DEOHV�
 
 

7XUQV� 0LVWDNHV� µ/HDUQLQJ
� 7XUQV� 0LVWDNHV� µ/HDUQLQJ
�

1-10 0.74 -- 121-130 0.58 - 13% 

11-20 0.71 4% 131-140 0.53 8% 

21-30 0.66 7% 141-150 0.52 2% 

31-40 0.60 9% 151-160 0.47 9% 

41-50 0.66 - 9% 161-170 0.54 - 15% 

51-60 0.62 6% 171-180 0.48 11% 

61-70 0.57 8% 181-190 0.49 - 1% 

71-80 0.65 - 15% 191-200 0.48 1% 

81-90 0.58 11% 201-210 0.46 5% 

91-100 0.54 7% 211-220 0.54 - 19% 

101-110 0.54 - 1% 221-231 0.51 6% 

111-120 0.51 6%    
TABLE A1: Average number of mistakes, by 10-turns 
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DQLPDO� VKHOI� VWDJH� HOGHUO\� DGXOWV� DGRO�� FKLOGUHQ� 1�$��

horse right 1 0.02 0.12 0.35 0.52 0.00 
horse left 1 0.09 0.14 0.38 0.24 0.14 
chicken right 1 0.37 0.32 0.08 0.20 0.03 
chicken left 1 0.27 0.45 0.18 0.09 0.00 
cow right 1 0.03 0.17 0.33 0.47 0.00 
cow left 1 0.17 0.18 0.42 0.23 0.00 
goose left 1 0.39 0.25 0.20 0.11 0.05 
     * *  (KW)       
horse right 2 0.07 0.18 0.38 0.38 . 
horse left 2 0.06 0.25 0.48 0.22 . 
chicken right 2 0.32 0.21 0.32 0.16 . 
chicken left 2 0.40 0.27 0.33 0.00 . 
cow right 2 0.05 0.11 0.47 0.37 . 
cow left 2 0.11 0.25 0.39 0.25 . 
goose right 2 0.16 0.43 0.26 0.15 . 
goose left 2 0.25 0.60 0.13 0.03 . 
      * *  (KW)   * *  (AV, KW)    
horse right 3 0.07 0.16 0.40 0.37 0.00 
horse left 3 0.02 0.30 0.40 0.27 0.01 
chicken right 3 0.25 0.49 0.15 0.11 0.00 
chicken left 3 0.44 0.33 0.16 0.06 0.00 
cow right 3 0.00 0.19 0.47 0.34 0.00 
cow left 3 0.11 0.12 0.50 0.27 0.00 
goose right 3 0.19 0.31 0.31 0.19 0.00 
goose left 3 0.23 0.45 0.23 0.10 0.00 
              * *  (KW) 
horse right 4 0.00 0.21 0.44 0.35 0.00 
horse left 4 0.09 0.25 0.54 0.13 0.00 
chicken right 4 0.28 0.44 0.18 0.10 0.00 
chicken left 4 0.37 0.32 0.24 0.08 0.00 
cow right 4 0.12 0.12 0.41 0.34 0.01 
cow left 4 0.07 0.30 0.35 0.24 0.03 
goose right 4 0.28 0.53 0.14 0.06 0.00 
goose left 4 0.42 0.37 0.17 0.04 0.00 
    * *  (AV, KW)   * * *  (KW) 
Percentages are significantly different in all cases (with both variance test and Kruskal-Wallis non-parametric 
test), except where marked with * *  (in parenthesis is marked the non significant test), in which case it is 
significant at the 0.05 level. When marked with * * *  the difference is not significant 

TABLE 7B: Mistakes when the correct answer is Young, By Stage, Animal and Shelf 
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$SSHQGL[�����(QWURS\ 
 
Consider correct answers: in the case of a given sequence of two features (Cow-Right) in a phase of 
the game (the fourth). Out of five occasions in which the sequence appears, the correct answer is 
four times Young and once it is Children. We calculate the relative frequency of these values and the 
corresponding logarithm. We then multiply relative frequency by the log and we sum the two results 
thus obtained: such sum is the entropy. I t is possible to compute the same value for each sequence, 
starting either for the correct answers or for the actual responses given by a player. 
 
HOGHUO\� DGXOWV� \RXQJ� FKLOGUHQ� DGRO�� WRWDO� �

0.00 0.00 4.00 1.00 0.00 5.00 frequency right answers 
              

0 0 0.800 0.200 0   frequency 
              
    -0.100 -0.700     logarithm of the frequency 
              
    ������� �������     logarithm of the frequency * frequency 

TABLE 11. Calculating Entropy, an example. 
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In what follows we report the instructions of the game you will take part in. 
You will be compensated with real money (40 ITL per point). 
 
The Game 
An association has different membership categories which pay different fees and have access to different 
services. 
The categories are: 
- children 
- adolescents 
- young 
- adults 
- elderly 
 
Children and adolescents do not pay. Young pay a reduced fee. Adults and Elderly pay the full fee. 
 
Members’ information are recorded on a set of cards, stored on different shelves. Each card is characterized by: 
- the drawing of an animal 
- the drawing of a shape 
- a shelf 
 
e.g. A card might have the drawing of a cow and a square, and be placed on the right shelf. 
 
We ignore the classification system and thus which cards corresponds to which category. 
The goal of the game is to understand this correspondence. 
 
The game lasts 231 turns. In each turn you will be shown the information from one card, so you will see 
information about: 
- animal 
- shape 
- shelf 
 
Based on this information you shall indicate the correct membership category, keeping in mind that: 
- there is a logical relationship between the information and membership categories 
- the relationship is constant throughout the game 
- the relationship is completely artificial (therefore it is neither necessary nor useful to have experience of actual 
filing systems or any other specialised knowledge) 
 
Obviously, the earliest answers will be given at random. 
 
Therefore each turn the game will take place this way: 

1- You see the information; 
2- You give your answer (note: you must choose within 10 seconds, after this time the system proceeds 
to the next turn); 
3- You are told the correct answer and your score in the last turn. 
4- You move on to the next turn and you start again. 

 
During the game you are not allowed to talk, nor to take notes 
 
The Score 
In order to calculate the score we define the distance between the answer you gave and the correct answer, as 
follows: 
- if the answer is correct, the distance is 0; 
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- if the answer given I  children and the correct answer is elderly (or vice versa), the distance is highest: 4; 
- if the answer given is children and the correct answer is adult (or vice versa), or if the answer given is 
adolescents and the correct answer is elderly (or vice versa), the distance is 3; 
- if the answer given is children and the correct answer is young (or vice versa), if the answer given is 
adolescent and the correct answer is adult (or vice versa), or if the answer given is young and the correct 
answer is elderly (or vice versa), the distance is 2; 
- if the answer given is children and the correct answer is adolescents (or vice versa), if the answer given is 
adolescent and the correct answer is young (or vice versa), if the answer given is young and the correct answer 
is adults (or vice versa), or if the answer given is adults and the correct answer is elderly (or vice versa), the 
distance is 1. 
 

'LVWDQFH� 6FRUH�

0 +6 
1 +4 
2 +1 
3 -1 
4 -4 

 
I f you do not answer, the score is 0. 
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Game dynamics 
The game lasts 231 turns which can be divided into two parts. 
 
The first part requires that you choose one of the five alternatives offered, by means of selecting the 
corresponding button and then “Enter”. 
I t is important that you complete these operations within 10 seconds because, when such time has elapsed, the 
system moves on with the test and it records “No Answer” corresponding to zero points. 

 
 
After you made your choice, or after 10 seconds, you move on to the second part of the turn. 
 
The screen will report the outcome of the present turn. I t reminds you the choice you made, the correct answer, 
and your score for this turn. The window stays open for 6 seconds, after which the system starts the next turn. 
 

 
 
 


