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Wroclaw University of Technology, Poland

In exhibition of many real market data we observe characteristic traps.
This behavior is especially noticeable for processes corresponding to stock
prices. Till now, such economic systems were analyzed in the following
manner: before the further investigation trap-data were removed or omit-
ted and then the conventional methods used. Unfortunately, for many ob-
servations this approach seems not to be reasonable therefore we propose
an alternative attitude based on the subdiffusion models that demonstrate
such characteristic behavior and their corresponding probability distribu-
tion function (p.d.f.) is described by the fractional Fokker-Planck equation.
In this paper we model market data using subdiffusion with a constant
force. We demonstrate properties of the considered systems and propose
estimation methods.

PACS numbers: 05.10.-a,02.50.Ey,02.70.-c,89.65.Gh

1. Introduction

Subdiffusion described by the fractional Fokker-Planck equation (FFPE)
plays an important role in statistical physics. It has found an application
in many areas like polymeric networks, porous systems, nuclear magnetic
resonance and transport on fractal objects [1–3]. The most recognizable
features of the subdiffusive dynamics are traps - periods when the test par-
ticle stays motionless. In the general definition of the FFPE the fractional
derivative of the Riemann-Liouville type [4] 0D

1−α
t defined in (3) is respon-

sible for the power-law behavior of the mean square displacement, namely
< Y 2(t) >∝ tα, 0 < α < 1, as well as for the heavy-tailed waiting times
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in the corresponding CTRW scheme. Thus, the fractional derivative distin-
guishes the FFPE from the traditional Fokker-Planck equation, related to
the classical diffusion.

In economics the most classical and still popular approach is the Black-
Scholes model based on the Brownian diffusion process. Although there are
many generalizations of this model (for instance [5–7]), most of them do
not capture important feature observed in market data, namely periods of
constant values. The idea of subdiffusion deals with this problem.

We present two examples of economic data exhibiting subdiffusive be-
havior. The first one comes from the Polish Stock Exchange, while the sec-
ond describes prices from the Nordic Exchange Baltic Market. Regarding
characteristics of considered data we choose the suitable fractional Fokker-
Planck equation with a constant force. The subordinated process defined
in (1) is the stochastic representation of the FFPE, [8, 9] (similar relation
in case of space-dependent force is shown in [10]). The approach based on
the link between Langevin-type dynamics and the fractional Fokker-Planck
equation allows us to analyze many characteristics of such processes, such
as moments and quantile lines by using the Monte Carlo methods [10–13].
In the estimation procedure leading to an appropriate subdiffusion model
adequate to real data the most important issue is related to the estimation
of α parameter that is connected with fractional part in FFPE correspond-
ing to the analyzed process. On the other hand α is responsible for observed
traps in subordinated process. Therefore the estimation procedure should
be based on trap-data. In this paper we attempt to use such approach to
estimate unknown parameter α.

2. Subdiffusion process with constant drift

The subordinated process is defined as follows [8]:

Y (t) = X(Sα(t)), (1)

where {Sα(t)}t≥0 is inverse α−stable subordinator of {Uα(τ)}τ≥0 [14, 15],
i.e.:

Sα(t) = inf{τ > 0 : Uα(τ) > t} (2)

for α−stable nondecreasing Levy process {Uα(τ)}τ≥0 [16] with the Laplace

transform E(e−uUα(τ)) = e−τuα

, 0 < α < 1 and {X(τ)}τ≥0 satisfies the fol-
lowing stochastic differential equation with respect to the Brownian motion
{B(τ)}τ≥0:

dX(τ) = Fdτ + dB(τ), X(0) = 0
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with constant force F . Moreover B(τ) and Sα(t) are assumed to be inde-
pendent. The p.d.f. of the process {Y (t)}t≥0 is given in [9] by the fractional
Fokker-Planck equation [8]:

∂w(x, t)

∂t
=

[

−F
∂

∂x
+

1

2

∂2

∂x2

]

0

D1−α
t w(x, t), w(x, 0) = δ(x),

where the fractional derivative of the Riemann-Liouville type [4] is defined
as follows for f ∈ C1([0,∞)) and α ∈ (0, 1):

0D
1−α
t f(t) =

1

Γ(α)

d

dt

∫ t

0
(t− s)α−1f(s)ds. (3)

Using the form of the solution of the process {Y (t)}t≥0 [8] and methods of
calculating integrals of inverse subordinators [17] we obtain

< Y (t) >=
F

Γ(α + 1)
tα, < Y 2(t) >=

2F 2

Γ(2α)
t2α +

1

Γ(α + 1)
tα. (4)

The same result might be shown using the recursive relation between the
moments proved in [9].

The explicit formulas for measures of dependence (covariance and cor-
relation functions) of the considered process with F = 0 can be calculated
by using the fact that {Y (t)}t≥0 in that case is a martingale with respect to
the σ−field Gt defined in details in [18]. Namely, the theoretical covariance
function cov(t, s) =< Y (t), Y (s) > − < Y (t) >< Y (s) > is as follows:

cov(t, s) =











sα

Γ(α+1) for s ≤ t

tα

Γ(α+1) for s > t.
(5)

As we observe the covariance depends only on min{t, s} what indicates that
increments of the analyzed process are non-stationary. The similar problem
is also considered in [19]. In that simple case the correlation function is
given by:

corr(t, s) =
cov(t, s)

√

< Y (t)2 >< Y (s)2 >
=

(

min{t, s}

max{t, s}

)α/2

.

The form of the subordinated process (1) describing subdiffusion in
terms of stochastic processes provides a powerful analysis tool, namely sim-
ulations and Monte Carlo methods. For a detailed description of the sim-
ulation procedure, see [20]. In Fig. 1 we present mean and variance of
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Fig. 1. Mean (left panel) and variance (right panel) of the subdiffusion process with

F = 0 and α = 0.9 obtained from Monte Carlo simulations with 10000 iterations.

The values are consistent with explicit formulas (4).
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Fig. 2. Quantile lines and two sample trajectories of the subdiffusion process with

F = 0 and α = 0.9 obtained from Monte Carlo simulations with 10000 iterations.

the considered subdiffusion process obtained from Monte Carlo simulations
with 10000 iterations. Moreover in Fig. 2 we demonstrate the quantile lines
and two sample trajectories of the process {Y (t)}t≥0. The covariance based
on the 1000 trajectories of subordinated process with F = 0, α = 0.7 and
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Fig. 3. The covariance based on the 1000 trajectories of the subordinated process

with F = 0, α = 0.7 and corresponding the theoretical function cov(t, s) given in

formula (5) for fixed value of s = 5.

theoretical function cov(t, s) given in formula (5) for fixed value of s = 5
is shown in Fig. 3. As we observe the presented functions are constant for
s > 5.

3. Estimation of the index α

In order to apply subdiffusion model (1) to real market data it is cru-
cial to give parameters estimation procedures. Here, we focus on the α-
parameter estimation.

As we know, the specific traps in subdiffusion trajectories occur when
the time process Sα(t) (2) is constant for some period. As Sα(t) is the
inverse α-stable subordinator, the length of constant periods has a totally
skewed α-stable distribution. In Fig. 4 we illustrate relation between process
Sα(t) and Uα(t). In order to find parameter α we calculate the sizes of
traps and treat them as independent and identically distributed (i.i.d.) α-
stable random variables. Parameter α is then estimated by using methods
known for α-stable distributions. In our study we consider six methods of
α−estimation. The first one, Hill estimation method [21] is based on the
assumption that the upper tail of the distribution is of the form 1−F (x) ∼
x−α (heavy tail behavior). If X(1), X(2), . . . , X(N) are the order statistics
of the analyzed sample from the population with cumulative distribution
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Fig. 4. The relation between the process Uα(τ) and it’s inverse subordinator Sα(t).

Observe that constant periods of Sα(t) occur accordingly to the jumps of the process

Uα(τ).

function (c.d.f) F such that X(1) ≤ X(2) ≤ . . . ≤ X(N), then the Hill
estimate based on the k largest statistics is given by the following equation:

αHill(k) =

(

1

k

k
∑

n=1

log
X(N−n+1)

X(N−k)

)−1

.

For the more detailed description of this method and it’s main features
see [22].

The second considered method proposed in [23], the Pickands estimate,
similar as the Hill method, is based on the heavy-tail behavior. The formula
for the estimate that considers k largest order statistics is as follows:

αPickands(k) = log 2

(

log

(

X(N−⌊k/4⌋) −X(N−⌊k/2⌋)

X(N−⌊k/2⌋) −X(N−k)

))−1

.

The third method of α estimation, the type of EVI estimate (Extreme Value
Index) [24] based on the k largest order statistics has the following form:

αEV I(k) =





1

αHill(k)
+ 1 −

1

2

(

1 −
H(2∗)(k)

αHill(k)2

)−1




−1

,
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where

H(2∗)(k) =





1

k

k
∑

n=1

(

log
X(N−n+1)

X(N−k)

)2




−1

.

Unfortunately, for the three proposed methods it is difficult to choose
the right value of k. In practice, the estimates are plotted against k and one
looks for the region where the plot levels off to identify the correct order
statistics [22]. Therefore in our study for simulated data as well as for real
financial data as an estimate we give the range of obtained statistics.

The POT estimate (Peaks Over Threshold) of α parameter [23, 25] is
based on the Pickands-Balkema-de Haan theorem that the conditional c.d.f

Fu(x) = P (X − u ≤ x|X > u), u ≥ 0, x > 0

where X has α−stable distribution, can be approximated by c.d.f. of Gen-
eralized Pareto Distribution (GPD) having following form:

Gα(x) = 1 −

(

1 +
x

α

)−α

.

In this method for a given sample X1, X2, . . . , XN we select a high threshold
u and denote Nu as the number of exceedances above u. Moreover we denote
Yk = Xjk−u for k = 1, 2, . . . , Nu such that Xjk > u. Next, we fit GPD to the
excesses Y1, Y2, . . . , YNu

by using maximum likelihood method to estimate
the parameter α.

The next estimation method, the M-S estimate, is proposed by Meer-
schaert and Scheffler in [26]. It is defined for N observations X1, X2, . . . , XN

as follows

αM−S =
2(γ + log(N)

γ + log+
∑N

i=1(Xi− < X >)2
,

where γ = 0.5772 is the Euler’s constant, < X > - the sample mean
and log+(x) = max(0, log(x)). For data from heavy tail distribution these
asymptotics dependent on the tail index and not on the exact form of the
distribution [26].

In the last considered estimation method, PCF (Power Curve Fitting),
we assume that the given sample X1, X2, . . . , XN is generated as a sequence
of i.i.d. random variables with heavy tail behavior with index α. In such
procedure we create the empirical c.d.f. F and apply the regression method,
namely to the function 1 − F (x) we fit, by using least squares method, the
power function of the form ax−α. As a result we obtain the tail index α.
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Fig. 5. Simulated trajectory of the subdiffusion process (1) with F = 0 and α = 0.5.

4. Applications

In order to demonstrate the presented estimation methods of α param-
eter let us first consider the simulated subdiffusion process with drift equal
to zero and α = 0.5. The sample trajectory is plotted in Fig 5. Because
the α parameter is responsible for traps observed in subordinated process
before the further analysis we calculate sizes of the observed traps. As we
mentioned before, the estimation procedures are based only on trap-data.
In Table 1 we demonstrate the obtained values of the estimates of the α

parameter. As we observe the received values indicate the value of α close

α Hill Pickands EVI POT M-S PCF

0.5 (0.4, 0.56) (0.48 0.5) (0.5, 0.6) 0.47 0.5941 0.48

Table 1. The values of α estimates for simulated data.

to 0.5.
In the next step of our study we consider real data describing stock

prices of two companies: Polish Sanwil and Estonian Kalev. Analyzed data
are available on the web sites of the Polish Stock Exchange and the Nordic
Exchange Baltic Market, see [27,28]. In Fig. 6 we demonstrate logarithmic
prices of the considered assets. Similar as in simulated data we observe here
the trap behavior, therefore we propose to use the subdiffusion process (1).
In the analyzed logarithmic prices we do not observe any trend thus we
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suggest to consider the subdiffusion process with force equal to zero. Here,
the constant periods of stock prices occur when the liquidity of the assets
is low. It is common for emerging markets or for small company’s stocks.
Because each transaction on the market brings additional cost, investors
usually don’t pay much attention to small fluctuations of stock prices. Thus,
if the price doesn’t change more than 0.1, we treat it as a constant. The time
periods of the considered stock prices are as follows: for Sanwil - from 3-10-
2005 to 25-09-2008; for Kalev - from 12-02-1998 to 19-09-2008. According
to the estimation procedure described at the beginning of this section first
we calculate sizes of the traps. However, due to the lack of continuous data
- we consider only daily prices - the obtained values are only that exceeding
the time between quotations. Thus, the estimation procedures base only
on this realizations of α-stable random variables that are above threshold
equal to 1 and characterize only it’s tail behavior. However, each of the
described estimates can be calibrated for using only tail observations. The
Hill, the Pickands as well as the EVI procedure is based only on the k last
order statistics, so they are appropriate for the considered data sets. The
POT estimate requires only the observations that exceed some threshold u,
so for our study we choose u = 1. Also the PCF method can be calibrated
to the analyzed data set by fitting the estimated non scaled part of the
empirical distribution to the function ax−α + b. Only one from presented
estimation methods, the M-S estimate, requires not only tail observations.
In spite of this in order to demonstrate its behavior for such kind of data
we take into consideration the values of the estimate. Notice the obtained
M-S estimates are close to values of another statistics for three considered
sets of data (including simulated data). In Table 2 we present the obtained
values of the α parameter estimates. For real data we calculate the α as the
mean of POT, M-S and PCF statistics and then we check if the obtained
values are included in the range of the Hill, Pickands and EVI estimates.
Therefore for Sanwil stock prices we obtain α̂ = 0.64 and for Kalev we get
α̂ = 0.86.

Stock’s Hill Pickands EVI POT M-S PCF

name

Sanwil (0.4, 0.9) (0.8, 1.4) (0.6, 0.9) 0.59 0.71 0.62
Kalev (0.5, 0.86) (0.6, 1) (0.8, 0.9) 0.89 0.88 0.81

Table 2. The values of α estimates for two kinds of considered data.

5. Conclusions

Many studies have shown that subdiffusion processes allow for modeling
different kinds of phenomena when the diffusion systems for the observations



10

24−04−2002 20−11−2002 30−06−2003 7−01−2004 8−07−2004 30−11−2004 22−04−2005

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

date

lo
g

(p
ri
c
e

) 
[l
o

g
(P

L
N

)]

26−06−2007 4−09−2007 13−11−2007 29−01−2008 10−04−2008 20−06−2008 2−09−2008

0.2

0.3

0.4

0.5

0.6

0.7

date

lo
g

(p
ri
c
e

) 
[l
o

g
(E

U
R

)]

Fig. 6. Logarithmic daily prices of the Sanwil (upper panel) and the Kalev stocks

(lower panel). Notice similar properties as observed in the simulated subdiffusion

process, see Fig. 5. We also identify trap behavior, however constant periods are

shorter than for simulation with α = 0.5. It suggests higher parameter α, what is

consistent with the estimation results.

seem not to be reasonable. The list of observed processes that exhibit
subdiffusive dynamics is extensive and still growing [1–3]. We also observe
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such special behavior in financial data, especially in stock prices, when in
some periods of time quotations exhibit small deviations or are simply on
the same level.

In this paper we considered financial data in context of subdiffusion
process. Such process with constant drift defined in (1) is proposed as a
model describing logarithmic daily stock prices. We present the form of
the solution of such subordinated system and also the explicit formulas
for first and second moments as well as the covariance and correlation.
The analyzed model exhibit certain deviations from the classical Brownian
linear time-dependence of the centered second moment. This behavior is
demonstrated by using the Monte Carlo method that is based on the link
between subdiffusion and FFPE [10–13]. Moreover we refer to the FFPE
that describes the p.d.f. of the considered process.

In this article we proposed a new approach concerning the application
of the subdiffusion process to market data. This issue is still missing and
therefore we overcome this gap by proposing estimation techniques what can
be a starting point to prediction of such systems. The analyzed approach
can be used in various fields connected with market concerns, such as pricing
financial instruments and issues of financial engineering.
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