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Abstract We develop a framework that allows us to reproduce the
generalised agreement theorem of Samet (2010), and extend it to models
in which agents can base their decisions on false information, while high-
lighting the features that distinguish the result from the classic theorems
found in the literature. For example, it allows decisions to be based on
interactive information, and imposes no requirements on the language in
which the states are described. Finally, we produce results that are similar
to Samet’s but that do not require his assumption of the existence of a
completely uninformed agent.
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1 Introduction

The agreement theorem of Aumann (1976) states that if agents have a common
prior on some event, then if their posteriors are common knowledge, these poste-
riors must be equal, even if the agents’ updates are based on different information.
This was proved for posterior probabilities in the context of a partitional informa-
tion structure.
This result was extended by many authors to generalised decision functions, in-
stead of posterior probabilities (see Cave (1983), Bacharach (1985), Moses and
Nachum (1990), Bonanno and Nehring (1998), Aumann and Hart (2006)). How-
ever, all these generalisations have relied on the imposition of some version of
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the Sure-Thing Principle as a condition on the decision functions. Informally, all
versions of this principle attempt to capture the following intuition: “If I would
perform some action when I know that p is the case, and I would perform the same
action when I know that p is not the case, then I should also perform that same
action when I do not know whether p is the case”.

Samet (2010) also derives an agreement theorem in a partitional information
structure with generalised decision functions. However, his approach differs sig-
nificantly from the classic examples in the literature in that he does not use a
standard version of the Sure-Thing Principle. Rather, Samet assumes an “inter-
personal” Sure-Thing Principle (ISTP ) which can informally be stated as: “If I
have some information, but I know that whatever information I have about some-
thing, you will be better informed about it than me, then if I know your action, I
should perform that same action”. So, unlike the standard versions of the princi-
ple, which are conditions over the decision function of a single agent, the ISTP is
a condition imposed on the decision functions across agents.

We develop a framework which allows us to reproduce Samet’s result in a
partitional information structure. However, we are also able to keep track of
some more subtle features of the result. For example, we show that Samet’s
result allows for decision functions to be based on interactive knowledge, whereas
standard results require decision functions to be independent of such information.
Furthermore, we extend Samet’s result to a non-paritional information structure.
Partitional information imply that agents can only know what is the case; in other
words, agents cannot base their decisions on false information. But surely, it is
perfectly plausible for rational agents to do so. So our extension effectively states
that agents cannot agree to disagree even when their decision functions can based
on interactive knowledge (or belief) and possibly false information.
Finally, Samet’s results depend on the existence of an agent who is less informed
than all other agents, called the dummy. We provide agreement theorems that
replace this assumption with alternative ones.

2 Epistemic Logic

This section introduces concepts from epistemic logic. All the definitions and
results in this section are standard (e.g. see Chellas (1980) and van Benthem
(2010) for general reference).

Definition 1 (Basic syntax). Define a finite set of atomic propositions, P , which
consists of all propositions that cannot be further reduced. Let N denote the set
of all agents. We then inductively create all the formulas in our language, L, as
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follows:
(i) Every p ∈ P is a formula.
(ii) If ψ is a formula, so is ¬ψ.
(iii) If ψ and φ are formulas, then so is ψ ◦ φ, where ◦ is one of the following
Boolean operators: ∧, ∨, →, or ↔.
(iv) If ψ is a formula, then so •ψ, where • is one of the modal operators �i∈N or
CG⊆N .
(v) Nothing else is a formula.

Note that �i and CG are modal operators, while ¬,∧,∨,→,↔ are the standard
Boolean operators.

Definition 2 (Modal depth). The modal depth md(ψ) of a formula ψ is the
maximal length of a nested sequence of modal operators. This can be defined
by the following recursion on our syntax rules: (i) md(p) = 0 for any p ∈ P , (ii)
md(¬ψ) = md(ψ), (iii) md(ψ ∧ φ) = md(ψ ∨ φ) = md(ψ → φ) = md(ψ ↔ φ) =
max(md(ψ),md(φ)), (iv) md(�iψ) = 1 +md(ψ), (v) md(CGψ) = 1 +md(ψ).

So far, we have pure uninterpreted syntax. However, we can now introduce our
semantics, to determine the truth or falsity of formulas.

Definition 3 (Kripke semantics). A frame is a pair �Ω, Ri∈N�, where Ω is a finite,
non-empty set of states (or “possible worlds), and Ri ⊆ Ω×Ω is a binary relation
for each agent i, also called the accessibility relation for agent i. A model on a
frame �Ω, Ri∈N�, is a triple M = �Ω, Ri∈N ,V�, where V : P × Ω → {0, 1} is a
valuation map.

Definition 4 (Truth). A formula ψ is true at state ω in model M = �Ω, Ri∈N ,V�,
denoted M, ω |= ψ, in virtue of the following inductive clauses:

M, ω |= p iff V(p, ω) = 1

M, ω |= ¬ψ iff not M, ω |= ψ

M, ω |= (ψ ∧ φ) iff M, ω |= ψ and M, ω |= φ

M, ω |= �iψ iff ∀ω� ∈ Ω, if ωRiω
� then M, ω� |= ψ

M, ω |= CGψ iff ∀ω� ∈ Ω accessible from ω in a finite sequence

of Ri (i ∈ G ⊆ N) steps, M, ω� |= ψ

The truth of formulas involving the other Boolean operators are similarly defined.
Furthermore, note that if M, ω |= CGψ, then one can generate any formula of
finite modal depth of the form �i�j...�rψ with i, j...r ∈ G, and this formula will
be true at ω in model M.1

1Note that the definition of the operator CG is drawn from van Benthem (2010), where it is also
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Definition 5 (Component). For any ω ∈ Ω, we will denote the set of all states
that are accessible from ω in a finite sequence of Ri (i ∈ G) steps, by ΩG(ω). We
will call this set the component of ω.

Definition 6 (Validity). Formula ψ is valid in a model M, denoted M |= ψ

iff ∀ω ∈ Ω in M, ω |= ψ. Formula ψ is valid in a frame �Ω, Ri∈N�, denoted
�Ω, Ri∈N� |= ψ, iff ∀M over �Ω, Ri∈N�, M |= ψ. Formula ψ is T -valid (or valid),
denoted |= ψ, iff ∀�Ω, Ri∈N� ∈ T (T , a collection of frames), �Ω, Ri∈N� |= ψ.

We can identify classes of frames by the restrictions that we impose on the
accessibility relations.

Definition 7 (Conditions on frames). We say that a frame �Ω, Ri∈N� is,

Reflexive if ∀i ∈ N, ∀ω ∈ Ω, ωRiω

Symmetric if ∀i ∈ N, ∀ω, ω� ∈ Ω, if ωRiω
� then ω�Riω

Transitive if ∀i ∈ N, ∀ω, ω�, ω�� ∈ Ω, if ωRiω
� and ω�Riω

�� then ωRiω
��

Euclidean if ∀i ∈ N, ∀ω, ω�, ω�� ∈ Ω, if ωRiω
� and ωRiω

�� then ω�Riω
��

Serial if ∀i ∈ N, ∀ω ∈ Ω, ∃ω� ∈ Ω, ωRiω
�

The system S5 consists of all frames that are reflexive, symmetric and tran-
sitive; and the system KD45 consists of all frames that are serial, transitive and
Euclidean. The following formulas are validities in the respective frames, and in
fact, the systems can be axiomatised in the sense that if the validities are assumed
then they imply the desired restrictions on the accessibility relations:

S5 axioms KD45 axioms Axiom names
�i(ψ → φ) → (�iψ → �iφ) �i(ψ → φ) → (�iψ → �iφ) Distribution

�iψ → ψ �iψ → ¬�i¬ψ Veracity; Consistency
�iψ → �i�iψ �iψ → �i�iψ Positive introspection

¬�iψ → �i¬�iψ ¬�iψ → �i¬�iψ Negative introspection

It is standard to take the axioms of S5 as describing properties of (a rather strong
notion of) knowledge. Thus, in S5, �iψ is interpreted as “agent i knows that
ψ”. In KD45 however, since veracity is dropped in favour of consistency, we are
in a system in which to “know” that something is the case does not imply that
it is true. The axioms of KD45 are thus rather seen as describing properties
of a belief operator, so �iψ is interpreted as “agent i believes that ψ”. These

mentioned that an alternative definition can be given: One can define a new accessibility relation
R∗

G for the whole group G as the reflexive transitive closure of the union of all separate relations
Ri (i ∈ G), and then simply let M, ω |= CGψ if and only if ∀ω� ∈ Ω, if ωR∗

Gω
� then M, ω� |= ψ.
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two systems mirror the patitional and non-partitional structures mentioned in the
introduction.2

Similarly, the operator CGψ is interpreted as “it is common knowledge to all the
agents in G that ψ” in S5, and as “it is common belief to all the agents in G that
ψ” in KD45.

3 Models with information and decisions

Let P be a finite set of atomic propositions. Since P is finite, its closure under the
standard Boolean operators, denoted P ∗, is tautologically finite.3 So P ∗ is just the
set of all possible inequivalent formulas that can be created out of the propositions
in P and the Boolean operators. Let Ψr

0 be the set of all possible modal formulas
that can be generated from P ∗ with modal depth 0 up to r for an arbitrary r ∈ N0.
Again, since P ∗ is finite, so is Ψr

0, so |Ψr
0| = m, for some m ∈ N; and note that

Ψ0
0 = P ∗.4

Definition 8 (New operators). For each agent i ∈ N create a set of modal
operators, Oi = {�i, �̂i, �̇i}, where for every formula ψ, �̂iψ := �i¬ψ and
�̇iψ := ¬(�iψ ∨ �̂iψ).
The interpretation, for example in S5, is that �̂iψ stands for “agent i knows that
it is not the case that ψ”, and �̇iψ stands for “agent i does not know whether it is
the case that ψ”. There are similar counterpart interpretations in KD45.

Definition 9 (Kens). Order the set Ψr
0 into a vector of length m: (ψ1, ψ2, ..., ψm),

and for each agent i ∈ N , create the sets

Ui = {(ν1
i ψ1 ∧ ν2

i ψ2 ∧ ... ∧ νm
i ψm)|∀n ∈ {1, ...,m}, νn

i ∈ Oi}

Vi = {νi ∈ Ui| |= ¬(νi ↔ (p ∧ ¬p))}

A ken (νi ∈ Vi) for agent i, describes i’s information concerning every formula in
Ψr

0. So, calling νn
i ψn the nth entry of i’s ken, νn

i ψn states whether i knows that the
formula ψn is the case, or knows that it is not the case, or does not know whether
it is the case.
Note that Vi is a restriction of Ui to the set of kens that are not logically equivalent
to a contradiction; so only the logically consistent kens are considered.

2The philosophical grounds for these systems originated in Hintikka (1962), and for an exten-
sive formal treatment, see Chellas (1980).

3In the sense that there is only a finite number of inequivalent formulas (so p and p∧ p count
as one).

4If P = {p, q}, then one can generate 20 inequivalent formulas: 2 from p alone, 2 from q alone
and 16 out of p and q together, so |P ∗| = 20.
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The following lemma shows that at each state, there exists a ken for each agent
which holds at that state, and moreover, that any two different kens must be
contradictory at any given state.

Lemma 1. (i) ∀ω ∈ Ω, ∃νi ∈ Vi, ω |= νi, (ii) ∀ω ∈ Ω, ∀νi, µi ∈ Vi, if νi �= µi then
ω |= ¬(νi ∧ µi).

By the above lemma, there is a unique ken in Vi that holds at a given state.
So for any νi ∈ Vi, if ω |= νi, we can index the ken by the state, denoting it, ν(ω)i.

Definition 10 (Informativeness). Create an order �⊆ Vi×Vj for all i, j ∈ N . We
say that the ken νi is more informative than the ken µj, denoted νi � µj, if and
only if whenever i knows that ψ then j either also knows that ψ or does not know
whether ψ, and whenever i does not know whether ψ, then so does j.5

Note that � is not a complete order on kens. For example, consider any two kens
νi and µi for agent i, in which the nth entry is νn

j ψn = �iψn and µn
jψn = �̂iψn.

These two kens would not be comparable with �.
Finally, note that νi ∼ µj denotes νi � µj and µj � νi; which is interpreted as νi
and µj carrying the same information, but seen from the perspectives of agents i

and j respectively.

Definition 11 (Decision function). For each i ∈ N , Di : Vi → A, is the decision
function of agent i, where A is a set of actions.

Definition 12 (Action function). For all νi ∈ Vi, |= νi → d
Di(νi)
i

The action function di selects the action that is actually chosen at each state.6

“Di(νi) = x” is read as “if i’s ken is νi, then i’s decision is to do x”, whereas “dxi ” is
read as “i performs action x”. So although the decision function, Di, determines
what the agent would do over all possible kens, d

Di(νi)
i is the formula - added to

the syntax - describing the agent performing the action that her decision function
requires her to take given the ken she has at each particular state.7

3.1 Main assumption

We will assume that the Interpersonal Sure-Thing Principle is a formula, ISTP ,
that is valid in every model that we will consider.

5Formally, (i) if νni ψn = �iψn then (µn
j ψn = �jψn or µn

j ψn = �̇jψn), (ii) if νni ψn = �̂iψn

then (µn
j ψn = �̂jψn or µn

j ψn = �̇jψn), and (iii) if νni ψn = �̇iψn then (µn
j ψn = �̇jψn).

6Lemma 1 guarantees that the action function is well-defined.
7Technically, we let all propositions of the form “Di(νi) = x” live in a set D, and all proposi-

tions of the form “dxi ” live in a set Q. Then the set of a propositions is P = P ∪ D ∪ Q, so the
valuation function is V : P × Ω → {0, 1}.
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Assumption 1 (Interpersonal Sure-Thing Principle). For all ω ∈ Ω, ω |= �i(ν(ω)i →
ν(ω)j � ν(ω)i) → (�i(d

x
j ) → dxi )

The above states that for any agents i and j, if i knows (believes) that her
having ken νi implies that j’s ken is more informative than hers (νj � νi), then if
i knows (believes) that j performs action x, then i performs action x.

4 Samet’s (2010) result in S5

In S5, the accessibility relation Ri is an equivalence relation for each i ∈ N . Let
Ii(ω) = {ω� ∈ Ω|ωRiω

�} be the information cell of i at ω. One can verify that the
set Ii = {Ii(ω)|ω ∈ Ω} is a partition of the state space Ω.

The following lemma states that at any state in which the information cell of
agent i is a subset of agent j’s cell at that state, then j’s ken is more informative
than i’s ken at that state.

Lemma 2. For any ω ∈ Ω such that Ii(ω) ⊆ Ij(ω), if ω |= νi∧νj then ω |= νi � νj.

We will require two further lemmas.

Lemma 3. ∀i ∈ G,
�

ω�∈ΩG(ω) Ii(ω
�) = ΩG(ω).

Lemma 4. If for some ω� ∈ Ii(ω), ω
� |= νi, then for all ω�� ∈ Ii(ω), ω

�� |= νi.

Samet (2010) assumes that there always exists an “epistemic dummy”: An agent
whose information cell is equal to the entire component ΩG(ω).

Assumption 2 (Epistemic dummy). ∃h ∈ G, Ih(ω) = ΩG(ω).

Theorem 1. Suppose that there exists an epistemic dummy, ISTP holds, and
that the system is S5. Let G = {i, j, h} with h the epistemic dummy. Then,
|= CG(d

x
i ∧ d

y
j ∧ dzh) → (x = y = z).

4.1 Discussion

The intuition driving the result is that by assuming that there exists an epistemic
dummy, one is assuming that there is an agent h whose performed action is based
on a ken that is less informative than every other agents’. However, h knows the
performed actions of the other agents, and knows that those actions are based on
information that is more informative than her ken. She therefore models her choice
on the performed actions of each of the other agents. But if those more informed
agents were taking different actions then she would have to simultaneously copy
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two different actions, which is impossible, thus the actions of the more informed
agents must be the same.

In Tarbush (2011) it is shown that previous agreement theorems require the
assumption that decision functions only be based on kens where Ψr

0 is such that
r = 0. That is, decisions cannot be based on interactive information.8 So, in
previous results, agents can agree to disagree if say i bases her decision on what
she knows about what j knows. However, one of the main distinguishing features
of Samet’s result is that this restriction does not need to be imposed.
Furthermore, when the “Disjoint Sure-Thing Principle” is imposed on decision func-
tions in previous results (which emulates Bacharach’s (1985) original condition),
the language must be assumed to be “rich” enough to guarantee that information
(or kens) are, in a sense, “disjoint”.9 The implication is that whether or not the
agreement results hold depends on the way in which the states are described! How-

ever, again, Samet’s result requires no such condition.

Alternatively, we can derive an agreement theorem that is similar to Samet’s

but that does not require the assumption of an epistemic dummy.

Definition 13. Condition A: For all ω ∈ Ω and i, j ∈ G, there exists an ω� ∈ ΩG(ω)
such that ν(ω�)i ∼ ν(ω�)j.
Condition B: For all ω ∈ Ω and i, j ∈ G, there exists an ω� ∈ ΩG(ω) such that

ν(ω�)i � ν(ω�)j, or there exists an ω�� ∈ ΩG(ω) such that ν(ω��)j � ν(ω��)i.

Condition A states that in every component there is some state at which i and

j have equally informative kens. Syntactically: the agents must jointly consider

it possible that they have the same information. Condition B states that in every

component, either there is some state in which i is more informed than j or there

is a state in which j is more informed than i.10 Clearly condition A implies

condition B. However, condition A neither implies nor is implied by the existence

of an epistemic dummy.

Theorem 2. Suppose that ISTP and condition B hold, and that the system is
S5. Let G = {i, j}. Then, |= CG(d

x
i ∧ d

y
j ) → (x = y).

8As explained in the paper, this is in response to the criticism (Moses and Nachum (1990))
of the like-mindedness assumption of Bacharach (1985).

9The language in a component ΩG(ω) is said to be rich if and only if for all i ∈ G and any
pair (νi, µi) ∈ {(ν(ω�)i, µ(ω

��)i)|ω
�, ω�� ∈ ΩG(ω)} there is n ∈ {1, ...,m} such that νni = �i and

µn
i = �̂i.
10Note that Condition A is in fact condition (1.b), and condition B is implied by (2.b) in

Tarbush (2011).
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5 Samet’s (2010) result in KD45

We can now analyse the consequences of using a model for belief rather than
knowledge. So we impose a KD45 frame rather than an S5 frame.
Essentially, the only difference between knowledge and belief that we will consider
is that belief is not infallible. In S5, agents cannot know something that is false,
because reflexivity implies that if one knows that p at some state, then p must be
true at that state (Veracity). On the other hand, KD45 allows agents to believe
what is false, and thus to base decision on false information, by dropping reflex-
ivity. In fact, S5 = KD45 + reflexivity.

We can provide a description of the links between states in a KD45 frame:
Some sets of states within Ω are “completely connected”, in the sense that the
accessibility relation over states within such sets in an equivalence relation, so these
sets have the same properties as information cells in S5; and, for each one of these
completely connected sets there exists a (possibly empty) set of “associated” states
that have arrows pointing from them to every state in the completely connected
set, but with no arrow (by the same agent) pointing towards them. The set of
all completely connected sets and their set of associated states exhaust the state
space.
Formally, let Si(ω) = {ω� ∈ Ω|ωEiω

�}, where Ei is an equivalence relation. We
call this set of completely connected states the information sink of state ω for
player i. Note, that this way of defining the sink guarantees that if Si(ω) �= ∅ then
ω ∈ Si(ω). Furthermore, we define ω’s set of associated states as Ai(ω) = {ω�� ∈
Ω|∀ω��� ∈ Si(ω), ω

��Fiω
���}, where Fi is now a simple arrow. So, note that now, for

any agent i, we have that Ri = Ei∪Fi. Finally, we can define Ji(ω) = Si(ω)∪Ai(ω),
and note that Ji = {Ji(ω)|ω ∈ Ω} exhausts the entire state space.

Proposition 1. The above is a complete characterisation of the KD45 state space.

We now use lemmas that are analogous to the ones used in S5.

Lemma 5. For any ω ∈ Ω such that Si(ω) ⊆ Sj(ω), if ω |= νi∧νj then ω |= νi � νj.

Lemma 6. ∀i ∈ G,
�

ω�∈ΩG(ω) Si(ω
�) ⊆ ΩG(ω) ⊆

�
ω�∈ΩG(ω) Ji(ω

�).

Lemma 7. If for some ω� ∈ Ji(ω), ω
� |= νi, then for all ω�� ∈ Ji(ω), ω

�� |= νi.

We now require an assumption that is analogous to the epistemic dummy as-
sumption.

Assumption 3 (Doxastic dummy). ∃h ∈ G, ∃ω� ∈ ΩG(ω),
�

i∈G

�
ω��∈ΩG(ω) Si(ω

��) ⊆

Sh(ω
�) and Jh(ω

�) = ΩG(ω) ∪ {ω}.
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This assumption requires that some agent’s (the dummy’s) unique information
sink be a superset of the union of the information sinks of every other agent in the
component.

Theorem 3. Suppose that there exists a doxastic dummy, ISTP holds, and that
the system is KD45. Let G = {i, j, h} with h the doxastic dummy. Then, |=
CG(d

x
i ∧ d

y
j ∧ dzh) → (x = y = z).

5.1 Discussion

The only substantial difference between theorem in S5 and the one is KD45 is the
assumption made about the dummy. Note that the epistemic dummy assumption
in S5 could have been stated as follows: ∃h ∈ G, ∪i∈G ∪ω�∈ΩG(ω) Ii(ω) ⊆ Ih(ω) and
Ih(ω) = ΩG(ω).

11 This provides a sense of how the doxastic dummy assumption is
more general: Since the kens of any agent anywhere in the component essentially
only depend on the kens in the sinks of that agent, it is enough for the dummy’s
sink to be a superset of the union of the sink of all other agents for the dummy to
become the least informed agent.
Note that a different assumption could have been: ∃h ∈ G, Sh(ω) = ΩG(ω)∪ {ω}.
One can verify that this implies the doxastic dummy assumption. However, we
see it as being unreasonably strong: It implies that if the “actual” state ω is not
in the sink of any of the agents other than the dummy’s, then it must at least be
in the dummy’s sink. In such a case, the dummy would be somewhat of a “wise
fool” in the sense that all other agents would be deeming ω impossible, whereas
the dummy does not rule out any possibility, including ω itself. This implication
does not necessarily hold when the doxastic dummy assumption is taken as it is
originally stated.

One rather worrying feature of Theorem 3, however, can be illustrated by the
following example. Consider model M in Figure 1 with ω |= p and ω� |= ¬p. At
every state of this model, i believes that ¬p and at every state, j believes that p.
In this model, the condition of “heterogeneity” fails, so all the agreement theorems
mentioned in the introduction would concede that i and j can agree to disagree (see
Tarbush (2011)).12 Now, consider adding an epistemic dummy h to this model, to
obtain model M�. Heterogeneity would again fail, so the agents can again agree
to disagree according to all the agreement theorems other than Samet’s. However,
according to Theorem 3, the agents cannot agree to disagree. But what drives the
result in this case?

Agent i must surely perform his action as though he were certain that ¬p is

11Of course, by Lemma 3, this is equivalent to ∃h ∈ G, Ih(ω) = ΩG(ω).
12Here, if G = {i, j, h}, heterogeneity can be stated as: |= CG(νi∧νj∧νh) → CG(νi ∼ νj ∼ νh).
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ωi ��

i
��

ω� j
��

j

��
⇒ ωi,h ��

i
��

�� h �� ω� j,h
��

j

��

M M�

Figure 1: M� = M plus dummy h

the case, since ¬p is the only proposition that i believes, regardless of the state.
Similarly, agent j must surely perform her action as though she were certain that
p is the case. However, by the presence of h, the agents i and j must perform the
same action. So the existence of the dummy must collapse the action that one
would perform when p and when ¬p to the same action.
One can interpret this in one of two ways: (i) The existence of the dummy can be
seen as a constraint on the decision functions, requiring them to be independent of
one’s information regarding p. But this then makes agreement trivial. Or, (ii) the
decision functions do depend on p, but the existence of the dummy implies that
the more informed agents must nevertheless perform the same action. However,
this must be the action that the agents would perform when they do not “know”
whether p is true, even though, in this example, the more informed agents are
effectively certain of their information regarding p.

As before, we can provide a further theorem without a doxastic dummy.

Definition 14. Condition C: For all ω ∈ Ω, there exists ω� ∈ ΩG(ω) such that
Si(ω) = Sj(ω).
Condition D: For all ω ∈ Ω, there exists i ∈ G such that for some ω� ∈ ΩG(ω),
Si(ω

�) ⊆ Sj(ω
�).

One can see that conditions C and D are effectively the semantic counterparts
of conditions A and B respectively.13 Note that C implies D, and that by Lemma
5, C implies A while D implies B.

Theorem 4. Suppose that ISTP and condition D hold, and that the system is
KD45. Let G = {i, j}. Then, |= CG(d

x
i ∧ d

y
j ) → (x = y).

Note that this theorem would still imply agreement in model M� represented
in Figure 1. However, if we had assumed the stronger condition C then such a
case would be ruled out.

13Note that Condition C is condition (1.a) and condition D is implied by condition (2.a) in
Tarbush (2011).
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Appendix

Proof of Lemma 1 (i) Consider an arbitrary i ∈ N and ω ∈ Ω, and suppose that
ω |= ψ, for some formula ψ ∈ Ψr

0. It must be the case that either (i.a) ∀ω� ∈ Ω, if
ωRiω

� then ω� |= ψ, or (i.b) ∀ω� ∈ Ω, if ωRiω
� then ω� |= ¬ψ, or (i.c) ∃ω�, ω�� ∈ Ω,

such that ωRiω
� and ωRiω

��, and ω� |= ψ and ω�� |= ¬ψ (i.e. neither (i.a) nor (i.b)).
If (i.a) is the case, then ω |= �iψ. If (i.b) is the case, then ω |= �̂iψ, and finally,
if (i.c) is the case, then ω |= �̇iψ. Therefore, in all cases, the operator over ψ

belongs to the set Oi, and since this holds for any ψ ∈ Ψr
0, it holds for each entry

of a ken. Furthermore, |= can only generate consistent lists of formulas, so kens
cannot be inconsistent. This implies that a ken must exist that belongs to Vi.
(ii) Consider an arbitrary i ∈ N and ω ∈ Ω. Let νi, µi ∈ Vi, and consider the nth

entry of each ken such that νn
i ψn �= µn

i ψn. Case (ii.a): Suppose ω |= νn
i ψn = �iψn.

So, ∀ω� ∈ Ω, if ωRiω
�, then ω� |= ψn. By definition, this rules out the possibility

that also, ω |= �̂iψn, or ω |= �̇iψn. For cases (ii.b), ω |= νn
i ψn = �̂iψn, and (ii.c),

ω |= νn
i ψn = �̇iψn, proceed analogously to (ii.a).

Proof of Lemma 2 Consider some arbitrary state ω ∈ Ω. Suppose Ii(ω) ⊆
Ij(ω) and ω |= νi ∧ νj. Consider the nth entry of these kens.

(a) Suppose ω |= νn
i ψn = �iψn, and suppose that ω |= νn

j ψn = �̂jψn. Then,
∀ω� ∈ Ij(ω), ω

� |= ¬ψn. But if Ii(ω) ⊆ Ij(ω), then ∀ω� ∈ Ii(ω), ω
� |= ¬ψn, which

contradicts the statement that ω |= �iψn. Therefore, ω |= (νn
j ψn = �jψn∨νn

j ψn =

�̇jψn).

Cases (b), ω |= νn
i ψn = �̂iψn and (c) ω |= νn

i ψn = �̇iψn can dealt with analogously
to case (a).

Proof of Lemma 3 Suppose ω�� ∈
�

ω�∈ΩG(ω) Ii(ω
�). So, ω�� ∈ Ii(ω

�) for some

ω� ∈ ΩG(ω). But, ω�Riω
��, and there exists a sequence of Ri (i ∈ G) steps such that

ω� is reachable from ω. Therefore, there exists a sequence, one step longer, such
that ω�� is reachable from ω. So, ω�� ∈ ΩG(ω). (And, note that Ii(ω

��) ⊆ ΩG(ω)).
Suppose ω�� ∈ ΩG(ω). Reflexivity guarantees that ω�� ∈ Ii(ω

��). So, for some
ω∗ ∈ ΩG(ω), ω

�� ∈ Ii(ω
∗), so ω�� ∈

�
ω�∈ΩG(ω) Ii(ω

�).

Proof of Lemma 4 Suppose ω� |= νi for some ω� ∈ Ii(ω). Consider the nth

entry of the ken, namely, νn
i ψn.

(a) Suppose ω� |= νn
i ψn = �iψn. Then, for all ω�� ∈ Ω, ω�Riω

�� implies ω�� |= ψn.
So, for all ω�� ∈ Ii(ω

�), ω�� |= ψn. But since Ri is an equivalence relation, and
ω� ∈ Ii(ω), it follows that Ii(ω

�) = Ii(ω). So, for all ω�� ∈ Ii(ω), ω
�� |= ψn, from

which it follows that for all ω�� ∈ Ii(ω), ω
�� |= �iψn.

Case (b), ω� |= νn
i ψn = �̂iψn and (c), ω� |= νn

i ψn = �̇iψn are analogous to case (a).
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Proof of Theorem 1 Suppose that there exists an epistemic dummy, ISTP
holds, and that the system is S5. Let ω ∈ Ω, and consider the set ΩG(ω). It
must be the case that at ω, ω |= ν(ω)h. So by Lemma 4 and the existence of an
epistemic dummy, for all ω� ∈ ΩG(ω), ω

� |= ν(ω)h. By Lemma 3, we know that�
ω�∈ΩG(ω) Ii(ω

�) = ΩG(ω). So for each state in each of i’s information cells, and

therefore for each ω�� ∈ ΩG(ω), it must be the case that ω�� |= ν(ω��)i � ν(ω)h
by Lemma 2. It follows that for all ω�� ∈ ΩG(ω), ω

�� |= ν(ω)h → ν(ω��)i � ν(ω)h
and ω�� |= �h(ν(ω)h → ν(ω��)i � ν(ω)h). In particular, ω |= �h(ν(ω)h → ν(ω)i �
ν(ω)h).
Finally, by the assumption that ω |= CG(d

x
i ), it follows that ω |= �h(d

x
i ). By

ISTP , it follows that ω |= dxh.
Reasoning similarly, between the dummy h and agent j, we find that ω |= d

y
h.

Therefore ω |= (x = y).

Proof of Theorem 2 Suppose that ω |= CG(d
x
i ∧ d

y
j ) ∧ (x �= y). If condition

B holds, then without loss of generality, there is some state ω� ∈ ΩG(ω) such that
ω� |= ν(ω�)i � µ(ω�)j. Now by the assumption of common knowledge of actions, it
must be the case that for all ω�� ∈ ΩG(ω), ω

�� |= �id
y
j ∧ dxi . By ISTP , it follows

that ω�� |= ¬�i(ν(ω
��)i → µ(ω��)j � ν(ω��)i). So, for every ω�� ∈ ΩG(ω), there exists

an ω��� ∈ ΩG(ω) with ω��Riω
��� such that ω��� |= ν(ω��)i∧¬(µ(ω��)j � ν(ω��)i). There-

fore, there must exist ω∗ ∈ ΩG(ω) such that ω�Riω
∗ and ω∗ |= ν(ω�)i ∧¬(µ(ω�)j �

ν(ω�)i). But this is a contradiction, because if ω� |= ν(ω�)i � µ(ω�)j then it must
be the case that for any state ω+, ω+ |= ν(ω�)i � µ(ω�)j. Indeed, the order �

simply compares syntactic formulas. So, if it ranks two formulas somewhere, then
it must rank those two same formulas similarly everywhere.

Proof of Proposition 1 Let “i-arrow” refer to an arrow of i’s accessibility
relation. Firstly, we can show that Ri = Ei ∪ Fi. An arbitrary ω ∈ Ω either has
an i-arrow pointing to it or it does not. If it does not, by seriality, it points to
another state. If it does, then there exists a state ω� that points to ω which itself
points to some state ω�� by seriality. Transitivity implies that ω� points to ω�� and
Euclideaness implies that ω�� points to ω. From here it is easy to prove that ω, ω�

and ω�� are in an equivalence class.
Secondly, we show that if Ji(ω

�) �= Ji(ω
��) then Ji(ω

�) ∩ Ji(ω
��) = ∅. Suppose

ω ∈ Ji(ω
�) ∩ Ji(ω

��). If ω ∈ Si(ω
�) ∩ Si(ω

��) then Si(ω
�) and Si(ω

��) are indis-
tinguishable, and one can verify that Ji(ω

�) = Ji(ω
��). If ω ∈ Si(ω

�) ∩ Ai(ω
��)

then ω both does have and does not have an i-arrow pointing to it. Finally, if
ω ∈ Ai(ω

�) ∩ Ai(ω
��) then by Euclideaness, ω� and ω�� are indistinguishable, and

Ji(ω
�) = Ji(ω

��).
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Thirdly, we can show that ∪ω∈ΩJi(ω) = Ω. Suppose ω� ∈ ∪ω∈ΩJi(ω), then by the
definitions of Si and Ai, ω

� ∈ Ω. On the other hand, suppose ω ∈ Ω. Then if there
is an i-arrow pointing to ω, ω ∈ Si(ω) ⊆ Ji(ω). If there is no i-arrow pointing to
it, then by seriality, there is an ω� that ω points to, so ω ∈ Ai(ω

�) ⊆ Ji(ω
�). So,

ω ∈ ∪ω∈ΩJi(ω).

Proof of Lemma 5 Entirely analogous to the proof of Lemma 2.

Proof of Lemma 6 Suppose ω�� ∈
�

ω�∈ΩG(ω) Si(ω
�). So, ω�� ∈ Si(ω

�) for some

ω� ∈ ΩG(ω). But, ω�Eiω
��, and there exists a sequence of Ri (i ∈ G) steps such

that ω� is reachable from ω. Therefore, there exists a sequence, one step longer,
such that ω�� is reachable from ω. So, ω�� ∈ ΩG(ω).
Suppose ω�� ∈ ΩG(ω). Either ω�� has an i-arrow pointing towards it, in which
case ω�� ∈ Si(ω

��). So, ω�� ∈ Si(ω
��) ∪ Ai(ω

��) = Ji(ω
��), or, ω�� has no i-arrow

pointing towards it, in which case, by seriality, there exists some ω��� such that
ω�� ∈ Ai(ω

���). Note that ω��� must be in ΩG(ω) since it is reachable from ω��. So,
ω�� ∈ Si(ω

���)∪Ai(ω
���) = Ji(ω

���). In either case, for some ω∗ ∈ ΩG(ω), ω
�� ∈ Ji(ω

∗),
so ω�� ∈

�
ω�∈ΩG(ω) Ji(ω

�).

Proof of Lemma 7 Suppose ω� |= νi for some ω� ∈ Ji(ω). Firstly, suppose
ω� ∈ Si(ω), and consider the nth entry of the ken, namely, νn

i ψn.
(a) Suppose ω� |= νn

i ψn = �iψn. Then, for all ω�� ∈ Ω, ω�Eiω
�� implies ω�� |= ψn.

So, for all ω�� ∈ Si(ω
�), ω�� |= ψn. But since Ei is an equivalence relation, and

ω� ∈ Si(ω), it follows that Si(ω
�) = Si(ω). So, for all ω�� ∈ Si(ω), ω

�� |= ψn, from
which it follows that for all ω�� ∈ Si(ω), ω

�� |= �iψn. Also, each ω��� ∈ Ai(ω) has an
arrow pointing to each state in Si(ω), so for all ω∗ ∈ Si(ω), if ω���Fiω

∗, ω∗ |= ψn.
So, for all ω��� ∈ Ai(ω), ω

��� |= �iψn. It follows that for all ω�� ∈ Ji(ω), ω
�� |= �iψn.

Case (b), ω� |= νn
i ψn = �̂iψn and (c), ω� |= νn

i ψn = �̇iψn are analogous to case
(a).
Now, suppose ω� ∈ Ai(ω), and consider the nth entry of the ken, namely, νn

i ψn.
(d) Suppose ω� |= νn

i ψn = �iψn. Then, for all ω�� ∈ Ω, ω�Fiω
�� implies ω�� |= ψn.

So, for all ω�� ∈ Si(ω
�), ω�� |= ψn. This implies that ω�� |= �iψn for all ω�� ∈ Si(ω),

and ω��� |= �iψn for all other states ω��� ∈ Ai(ω). It follows that for all ω�� ∈ Ji(ω),
ω�� |= �iψn.
Case (e), ω� |= νn

i ψn = �̂iψn and (f), ω� |= νn
i ψn = �̇iψn are analogous to case (d).

Proof of Theorem 3 Suppose that there exists a doxastic dummy, ISTP

holds, and that the system is KD45. Let ω ∈ Ω, and consider the set ΩG(ω). It
must be the case that at ω, ω |= ν(ω)h. So by Lemma 7 and the existence of a
doxastic dummy, for all ω� ∈ ΩG(ω) ∪ {ω}, ω� |= ν(ω)h. By Lemma 6, we know
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that
�

ω�∈ΩG(ω) Si(ω
�) ⊆ ΩG(ω). So for each state ω�� in each of i’s information

sinks, it must be the case that ω�� |= ν(ω��)i � ν(ω)h by Lemma 5. However, this
must also be true at every state ω��� that is in the component but not in any of
i’s sinks (by Lemma 7). So, for all ω�� ∈ ΩG(ω) ∪ {ω}, ω�� |= ν(ω��)i � ν(ω)h. It
follows that for all ω�� ∈ ΩG(ω) ∪ {ω}, ω�� |= ν(ω)h → ν(ω��)i � ν(ω)h and ω�� |=
�h(ν(ω)h → ν(ω��)i � ν(ω)h). In particular, ω |= �h(ν(ω)h → ν(ω)i � ν(ω)h).
Finally, by the assumption that ω |= CG(d

x
i ), it follows that ω |= �h(d

x
i ). By

ISTP , it follows that ω |= dxh.
Reasoning similarly, between the dummy h and agent j, we find that ω |= d

y
h.

Therefore ω |= (x = y).

Proof of Theorem 4 Entirely analogous to the proof of Theorem 2.
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