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The stochastic frontier model was first proposed by Aigner et al. (1977) and Meeusen

and van den Broeck (1977) in the context of production function estimation. The model

extends the classical production function estimation by allowing for the presence of technical

inefficiency. The idea is that although the production technology is common knowledge to a

group of producers, the efficiency in using that technology in the production process may vary

by producers, with the degree of efficiency depending possibly on factors such as experience,

management skills, etc.. Given the technology, a fully efficient producer(s) may realize the full

potential of the technology and obtain the maximum possible output for given inputs, while

less efficient producers see their output fall short of the maximum possible level. Therefore,

the underlying technology defines a frontier of production, and actual outputs observed in

the data fall below the frontier because of the presence of technical inefficiency.

A stochastic production frontier model can be specified as

ln yi = ln y∗
i
− ui, ui ≥ 0, (1)

ln y∗
i

= f(xi;β) + vi, (2)

where yi is the observed output of producer i, y∗
i

is the potential output which is subject to a

zero-mean random error vi, xi and β are vectors of inputs and the corresponding coefficients,

respectively, and ui ≥ 0 is the effect of technical inefficiency. Equation (2) defines the

stochastic frontier of the production function; it is stochastic because of vi. Given that

ui ≥ 0, observed log of output (ln yi) is bounded below the frontier. The value of 100 ∗ ui

is the percentage by which output can be increased using the same inputs if production is

fully efficient. The model without ui reduces to the classical specification of a production

function.
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A popular empirical strategy in estimating the above model is to impose distributional

assumptions on ui and vi, from which a likelihood function can be derived and estimated.

For instance, one may assume that

vi ∼ N(0, σ2), (3)

ui ∼ N+(µ, σ2
u
), (4)

where N+(·) indicates the positive truncation of a normal distribution. The positive trun-

cation gives non-negative values of ui and hence ensures that firms are constrained by the

technology frontier. By making µ and/or σ2
u

functions of observables (such as ages and years

of schooling), one can model the determinants of inefficiency.

The distribution assumption of (4) encompasses many of the models in the literature as

special cases. For instance, the half-normal distribution of ui proposed by Aigner et al. (1977)

is obtained by restricting µ = 0 and σ2
u

to be a constant. The half-normal density has a mode

at 0 which implies that the majority of the producers are clustered near full efficiency level.

The assumption may be unnecessarily restrictive particular for industries in which certain

degree of inefficiency is expected for the producers. The assumption is relaxed by having

µ 6= 0 to allow the mode to depart from 0. Since limited theory is available in guiding the

choice of ui’s distribution, various distribution assumptions are explored in the literature for

their flexibility in shaping the distribution (e.g., the Gamma distribution of Greene 1980)

and/or for checking the robustness of estimation results.

It is often of great empirical interest to estimate the degree of inefficiency (ui) for each

producer (observation). The observation-level estimates are obtained using the estimator

E(ui|vi − ui) proposed by Jondrow et al. (1982). The value of 100 × E(ui|vi − ui) gives the

percentage by which output is increased if production is fully efficient. Similarly, an efficiency

index is estimated using E(exp(−ui)|vi − ui) (Battese and Coelli 1988). The estimated value

gives the actual output as a share of potential output, and the value is bounded between 0

and 1. A likelihood ratio test of the null hypothesis that ui equals 0 can be performed

to test for the presence of inefficiency. It amounts to testing the model against its OLS

counterpart (the model without ui). The distribution of the test statistic, however, is non-

standard, because the value of 0 is on the boundary of ui’s support. Alternatively, given

that an obvious difference between vi and vi − ui is the skewness of the latter, Schmidt and

Lin (1984) suggest a simple test based on the sample skewness of the OLS residuals. If vi−ui

is the correct specification, the residuals would skew to the left and the null hypothesis of a

normal error would be rejected.

If panel data is available, the model may be written as (for the ease of illustration, assume
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that the deterministic part of the frontier function is linear):

ln yit = α + x′

it
β + vit − ui, ui ≥ 0, (5)

where α is a constant. One may impose distributional assumptions on vit and ui to derive

the likelihood function of the model. Alternatively, a distribution-free approach suggested by

Schmidt and Sickles (1984) is available. In this approach, one defines αi = α−ui and assumes

that the ui is an individual-specific parameter. With the definition of αi substituted into (5),

the model is estimated by standard fixed-effect panel estimators which yield consistent esti-

mates of αi for a large T . Since αi = α − ui and ui ≥ 0, one then recovers the estimated

values of α and ui using the normalization equations of α̂ = max{α̂i} and ûi = α̂ − α̂i. This

normalization procedure amounts to counting the most efficient firm in the sample as 100%

efficient.

By duality, technical inefficiency in the production also leads to a higher cost of produc-

tion. Estimating the cost associated with technical inefficiency is often of important policy

values, and it can be done using a stochastic cost frontier model in a cost minimization

framework. The model specification is:

lnCi = lnC∗

i
+ u′

i
, u′

i
≥ 0, (6)

lnC∗

i
= g(wi, yi; γ) + v′

i
, (7)

where Ci is the observed cost of producer i, C∗

i
is the efficient level of cost which is subject to

a zero-mean random error v′
i
, wi is the vector of input prices, γ is the vector of coefficients,

and u′

i
≥ 0 is the effect of inefficiency on the cost of production. Equation (7) defines the

stochastic cost frontier, and the observed cost lies above the frontier. The value of 100 ∗ u′

i

measures the extra cost as a percentage of the minimum cost. Econometric analysis of (6)

and (7) is similar to that of the production function model. A notable difference is that the

cost model’s OLS residuals skew to the right if inefficiency presents in the data.

An advantage of a cost function approach over a production function approach is that

the issue of allocative inefficiency can be addressed in addition to the technical inefficiency.

Allocative inefficiency refers to the use of improper input combinations, i.e. the marginal rate

of technical substitution between inputs departs from the input price ratio. The improper

input mix increases the cost of production, and the effect is not the same as technical inef-

ficiency. Because the analysis of allocative inefficiency requires information of input prices,

it is usually carried out in a cost minimization framework. To jointly estimating both of the

technical and allocative inefficiency, Schmidt and Lovell (1979) provide the solution technique

for a cost system in which the production technology is Cobb-Douglas. Kumbhakar (1997)
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presents a theoretical solution for a model with a translog cost function, and the difficulty

in the empirical implementation of this model is discussed and resolved in Kumbhakar and

Wang (2005b) and Kumbhakar and Tsionas (2005).

Although the stochastic frontier model is most often applied to the estimation of pro-

duction and cost functions, an increasing body of research has adopted the methodology to

other fields of study. Hofler and Murphy (1992) apply this estimation approach to labor

market search models. Due to the costs of search, observed wages tend to fall below the

maximum offers that are available in the market; this shortfall is analogous to a technical

inefficiency. Another application is found in the study of financing constraints on investment,

where Wang (2003) models the frictionless level of investment as the frontier, and actual in-

vestment falls below the frontier because of financing constraints. This approach allows Wang

to quantify the effect of financing constraints on investment (represent by ui), which is infea-

sible with the conventional linear-regression approach. In an application to economic growth,

Kumbhakar and Wang (2005a) employ the stochastic frontier approach and model growth

convergence as countries’ movements toward the world production frontier. A country may

fall short of producing the maximum possible output because of technical inefficiency, and

the phenomenon of technological catch-up is observed if the country moves toward the world

production frontier over time. By making ui a function of time and other macro variables,

Kumbhakar and Wang test and confirm the convergence hypothesis.

The stochastic frontier model also finds applications in finance. For example, a long-

standing issue in the finance literature is whether the IPO underpricing —an phenomenon

that the initial offer price of an IPO is below the closing day’s bid price— is deliberate on

the firm’s part or not. Hunt-McCool et al. (1996) adopt the stochastic frontier model to

investigate the issue, in which ui measures the difference between the maximum predicted

offer price and the actual offer price. The advantage of the stochastic frontier model in

this application is that it can be used to measure the level of deliberate underpricing in the

premarket without using aftermarket information.

Kumbhakar and Lovell (2000) offer an excellent review of the existing models in the

stochastic frontier literature. The more recent developments in the literature aim at making

the model more flexible. For instance, correlations between vi and ui are made possible

through copula functions. If time series or panel data are available, then it is possible to

make ut or uit serially correlated. Semi-parametric and non-parametric estimation methods

are also adopted to estimate the frontier of the production function (e.g., f(xi;β)) and the

frontier of the cost function (e.g., g(wi, yi;γ)) so that they are not restricted to specific

functional forms.
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