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This is a comment on Mitchell and Wallis (2011) which in turn is a critical reaction to Gneiting

et al. (2007). The comment discusses the notion of forecast calibration, the advantage of using

scoring rules, the “sharpness” principle and a general approach to testing calibration. The aim is to

show how a more general and explicitly stated framework for evaluation of probabilistic forecasts

can provide further insights.

1 What is “forecast calibration”?

Both Gneiting et al. (2007) (hereafter GBR) and Mitchell and Wallis (2011) (hereafter MW) exam-

ine various important aspects of calibration, but they do not propose a consistent framework and do

not give sufficiently universal definitions of “calibration” and “ideal forecast”. This leads to vague

argumentation subject to confusion. So I start by clearing up the notion of calibration.

The general idea is that a well-calibrated probabilistic forecast must coincide with a suitable

conditional distribution. The classical definition of calibration for dichotomous 0/1 outcomes re-

quires that if π is a forecast of the probability of X = 1 then P(X = 1|π) = π . Predicted frequencies

must coincide with actual frequencies conditionally on the information contained in the forecast

itself.1 More generally, let F be a probabilistic forecast of X stated in the form of a cumulative

distribution function. It is calibrated if

F(x) = G(x|F),

where G(x|F) is the conditional cumulative distribution function of X given F . I call this type of

forecast calibration auto-calibration.

Now suppose that forecasting is based on some available information Ω. Then F is a function of

Ω: F = F(·;Ω). Conditioning on Ω allows to strengthen the definition of calibration. The forecast

F = F(·;Ω) is calibrated with respect to Ω if

F(x) = G(x|Ω).

Such a forecast can be called the ideal one (of all the forecasts based on Ω).

Obviously, if a forecast is calibrated with respect to Ω then it is auto-calibrated while the con-

verse is not true in general. The conditional cumulative distribution function G(x|Ω) need not

coincide with G(x|F), because a non-ideal forecast utilize available information only partially.

1E.g. Lichtenstein et al. (1982), p. 307: “Formally, a judge is calibrated if, over the long run, for all propositions

assigned a given probability, the proportion true equals the probability assigned.”
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Note that these definitions of calibration are made in terms of theoretical moments. GBR give

their definitions of calibration in terms of empirical moments (for a potentially infinite sequence of

forecasts).

2 Can independence and uniformity of PIT values be called

complete calibration?

One point of MW’s criticism is that GBR are concerned with forecasting of white noise instead

of more relevant forecasting of dependent time series. However, what is really important is that

GBR fail to emphasize the conditional nature of calibration.2 MW define “complete calibration”

as independence and uniformity of the probability integral transform (PIT) values of a time series.

Indeed, it is very true that the available history of a time series (including PIT values) is an im-

portant information for judging calibration of forecasts of this series, but in general the view is

unnecessarily narrow. The notion of forecast calibration is not about time series properties, it is

about conditioning.

We first need to connect the definition of calibration given above with PIT. If the conditional

distribution of X given Ω is absolutely continuous then a probabilistic forecast F = F(·;Ω) is

calibrated with respect to Ω if and only if

P|Ω ∼U [0,1],

where P = F(X |Ω) is PIT of X based on the forecast F .

Now consider a sequence Ft(x) of probabilistic forecasts of a univariate time series Xt based on

its history Ωt−1 = X1, . . . ,Xt−1, t = 1,2, . . .. (For t = 1 the forecast is unconditional). Define the

corresponding PIT values as follows:

Pt = Ft(Xt).

This provides for each t a one-to-one transformation between P1, . . . ,Pt and Ωt = X1, . . . ,Xt when-

ever all the distributions are absolutely continuous. The series of forecasts is well-calibrated if and

only if

Pt |Ωt−1 ∼U [0,1]

or equivalently

Pt |P1, . . . ,Pt−1 ∼U [0,1].

MW concentrate on an equivalent property. The series of forecasts is well-calibrated if and

only if all Pt are distributed as U [0,1] and are jointly independent (because under assumption of

calibration what we have here is the Rosenblatt’s transformation Pt = G(xt |Ωt−1); see Rosenblatt

(1952)). The problem with PIT-based approach is that it is insufficiently universal; it does not

generalize to other forecasting situations. Using MW’s own words, it is important “to pay attention

to the information set on which a forecast is based, its content and its timing”.

For example, independence and uniformity of a sequence of PIT values is not sufficient for

calibration in the case when forecasts are based on information other than the history of Xt itself. In

particular, consider predicting Xt from X1, . . . ,Xt−1 and the history of some other series Z1, . . . ,Zt−1.

Then calibration with respect to Ωt−1 = (X1, . . . ,Xt−1,Z1, . . . ,Zt−1) is equivalent to

Pt |Ωt−1 ∼U [0,1],

2Clements and Taylor (2003), p. 446: “Evaluating probability forecasts by calibration ignores the conditional as-

pect”.
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where Pt = Ft(Xt). For a sequence of forecasts Ft these conditions imply uniformity and indepen-

dence of Pt , but in general the later is a weaker condition. The fact is fully recognized by MW, but

they do not adjust their definition of “complete calibration” accordingly.

Another example is multi-step forecasting. An h-step-ahead forecast of Xt would be based only

on X1, . . .Xt−h. In such a situation the PIT series would in general be dependent.

3 Testing vs. scoring rules

Suppose that we need to choose between several probabilistic forecasts. When can we state that

one forecast is better than another? This is a situation of decision making under risk. Let u(y,a) be

a utility function depending on an outcome x and an action a. (Equivalently, we can consider a loss

function). Suppose a(F) is the best action given a probabilistic forecast F , that is,

a(F) ∈ argmax
a

E[u(X ,a)] where X ∼ F .

One can say that the forecast F1 is (non-strictly) better than forecast F2 if it provides at least as large

expected utility:

Eu(X ,a(F1))≥ Eu(X ,a(F2)).

This is closely connected with the notion of a proper scoring rule (see Gneiting and Raftery

(2007) for a comprehensive review). Define a scoring rule S as the utility of outcome x under

action a(F):
S(F,x) = u(x,a(F)).

This utility-based scoring rule would be a proper one since

S(F1,F1) = E[u(X ,a(F1)]≥ E[u(X ,a(F2)] = S(F2,F1) for X ∼ F1.

Here

S(F2,F1) = E[S(F2,X)] for X ∼ F1

is the expected score of forecast F2 under the assumption that X is distributed as F1.

Because of the link with utility maximization it is logical to base the theory of evaluating

probabilistic forecasts on proper scoring rules. Then the choice between competing probabilis-

tic forecasts is made on the basis of their expected scores. Expected scores can be estimated by the

corresponding empirical average scores. Thus, all one has to do in order to choose from a set of

competing probabilistic forecasts is to select a forecast with the highest average score according to

a suitable proper scoring rule. For a fixed set of forecasting models there is no convincing reason

to apply statistical testing in order to choose one model and reject others.

MW argue that non-ideal forecasts can be distinguished from the ideal one by means of testing

forecasting models against each other. However, proper scoring rules are no less suitable for the

task of detecting the ideal forecast. It can be shown that the well-calibrated forecast is characterized

by the maximal expected score for any proper scoring rule.3 Indeed, suppose that G = G(·|Ω) is

such a forecast and F is some other forecast based on Ω. Then

E[S(G,X)|Ω] = S(G,G)≥ S(F,G) = E[S(F,X)|Ω]

3Diebold et al. (1998), p. 866: “. . . If a forecast coincides with the true data generating process, then it will be

preferred by all forecast users, regardless of loss function.” See also Granger and Pesaran (2000).
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and

E[S(G,X)]≥ E[S(F,X)].

This gives a reason for calling a forecast coinciding with the conditional distribution G(·|Ω) ideal.

The usefulness of using scoring rules for detecting the ideal forecast is illustrated by Table IV

in MW’s paper. They use the logarithmic scoring rule S(F,x) = log f (x), where f (x) = F ′(x) is

the probability density function corresponding to c.d.f. F . The logarithmic rule is known to be

(strictly) proper. See also Table 5 in GBR’s paper which compare the values of the logarithmic

score and the continuous ranked probability score (another useful strictly proper scoring rule) of

competing forecasts.

Scoring rules are straightforward and easy to deal with. Testing of one model against another

is a less trivial operation while rarely providing much beyond the comparison of average scores.

(An example of an understandable use is testing whether the average score of the best model is

significantly greater than the average score of a competing model).

I do not want to say that statistical testing is redundant in the context of probabilistic forecasting.

Most important, various kinds of diagnostic tests can help to develop a forecasting model which

is well enough calibrated by showing directions in which models can be improved in order to

increase expected score. However, discovering mis-calibration by diagnostic testing is not always

a straightforward task. The following example is somewhat artificial and is not related to real

forecasting problems, but it is suggesting.

Consider a series Xt ∼ N(0,1), t = 1,2, . . .. To obtain Xt from Xt−1 (1) transform Xt to U [0,1],
(2) transform U [0,1] to U [0,1] by a highly nonlinear “tangling” transformation, (3) transform

U [0,1] back to N(0,1), and finally (4) add an independent normal error and scale to unit variance.

For example,

µt = Φ
−1({K |2Φ(Xt−1)−1|})

√

1−λ ,

Xt |X1, . . . ,Xt−1 ∼ N(µt ,λ ).

Here Φ(·) is the standard normal c.d.f., {·} is the fractional part function, K is a large enough

integer and λ ∈ (0,1). One can see that Xt is a white noise series and is exactly distributed as

N(0,1) for each t whenever X1 ∼ N(0,1) (though it is dependent and thus could not be strictly

called a Gaussian white noise series). For large values of K ordinary PIT-based tests would not

detect any dependence. Consequently, on the basis of PIT one would choose N(0,1) as a good

forecasting distribution. However, N(µt ,λ ) is a dramatically better forecasting distribution for

a small λ .

It can be concluded from the example that sometimes the direction of mis-calibration is not

obvious. Popular PIT-based diagnostic tests can fail to detect departures from perfect calibration.

At the same time comparison of forecasts by their average scores with proper scoring rules is

feasible and works as expected irrespective of the kind of mis-calibration. (A reservation, however,

should be made here. If there exists an alternative forecasting model then it can be utilized for the

task of testing calibration. An idea of such a test is discussed below.)

Actually MW’s paper is not an exception in its attention to statistical testing of forecasting mod-

els. A “test-test-test” bias is typical for econometric forecasting literature in general. Cf. Corradi

and Swanson (2006) which is a survey of density forecast evaluation almost entirely devoted to

various test procedures.
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4 Maximizing sharpness subject to calibration

MW are critical of the conjecture that the problem of finding a good forecast can be viewed as the

problem of maximizing sharpness subject to calibration which was stated by GBR. However, it can

be shown that the conjecture is actually true.

If F is an auto-calibrated forecast (calibrated with respect to itself), that is, F = G(·|F) and S is

some scoring rule then

E[S(F,X)|F ] = S(F,F).

Taking unconditional expectations of both sides gives

E[S(F,X)] = E[S(F,F)].

For a proper scoring rule S(F,F) can be viewed as a measure of sharpness4 of a probabilistic fore-

cast F . Hence the expected score for an auto-calibrated forecast equals its expected sharpness.

This means that auto-calibrated forecasts can be compared on the basis of the levels of their ex-

pected sharpness. The ideal forecast is the sharpest of all auto-calibrated forecasts, because it is

characterized by the maximal expected score.

This fact is seen from the classical partitioning of the Brier score for dichotomous outcomes

into the sum of sharpness and calibration (“validity”) terms developed in Sanders (1963). For an

auto-calibrated forecast the calibration term is zero. Thus, maximizing the expected sharpness

among auto-calibrated forecasts is equivalent to maximizing the expected score of a proper scoring

rule. Bröcker (2009) extended the decomposition to the case of an arbitrary discrete distribution

and an arbitrary proper scoring rule. It can further be shown that the same decomposition holds

even more generally and applies also to continuous distributions.

Given some proper scoring rule S define the divergence5 between distributions F1 and F2 as

d(F1,F2) = S(F1,F2)−S(F2,F2)

and denote GF = G(·|F). Then for the expected score we have E[S(F,X)] = E[E[S(F,X)|F ]] =
E[S(F,GF)] which can be decomposed as follows:

E[S(F,X)] = E[S(GF ,GF)]−E[d(F,GF)].

The first term can be interpreted as the expected sharpness of GF , which is the “recalibrated”

version of forecast F , while the second term relates to the divergence between F and GF (that is, it

is a measure of mis-calibration of F with respect to information contained in itself).

Although the sharpness conjecture proves to be correct, MW are right in pointing out that

the criterion of sharpness per se seems somewhat excessive. First, obviously a proper scoring

rule already combines sharpness and calibration in a balanced manner. Second, the principle of

maximizing sharpness subject to calibration is difficult to apply in practice, because achieving

perfect auto-calibration of a forecast can be a difficult (and even infeasible) task. However, the

sharpness principle provides a useful insight into the essence of probabilistic forecasting.

4For a proper scoring rule S(F,F) is a convex function of F . Thus, according to DeGroot (1962) a concave function

−S(F,F) can be viewed as a measure of uncertainty of probability distribution F . For the logarithmic scoring rule

−S(F,F) is the familiar Shannon’s entropy measure.
5The divergence d(F1,F2) is non-negative as long as S is proper and it is zero when the two distributions coincide.
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5 A broader approach to calibration testing

MW rightly note that calibration can be evaluated by testing orthogonality conditions analogous to

those known from point forecasting. It is important that their idea can be further generalized. This

broader approach allows to design various kinds of diagnostic tests for forecast calibration. Most of

the tests and criteria of calibration/efficiency developed in the literature can be shown to fall within

this approach.

Consider a function m = m(x,Ω) depending on an outcome x and forecasting information Ω.

Define

µ = µ(Ω) = E[m(X ,Ω)] for X ∼ F = F(·;Ω).

Conditional calibration of F with respect to Ω is equivalent to the following unconditional orthog-

onality:

E[(m(X ,Ω)−µ(Ω))h(Ω)] = 0

for any m and any function h. That is, µ is an unbiased point forecast for m and the forecast error

is uncorrelated with any function h of the available information Ω.

Let me provide just a few illustrations.

When

m = 1(F(x)≤ p), µ = p,

we obtain an extended version of the “probabilistic calibration” of GBR. The orthogonality condi-

tion E[(m− p)h] = 0 for each p ∈ [0,1] and any function h is another equivalent characterization of

perfect calibration with respect to Ω. Note that unlike the formulation by GBR this one does not

make a direct use of the ideal forecast G(·;Ω) and thus is more suitable for construction of tests.

Similarly, an extended version of the “marginal calibration” of GBR is produced by setting

m = 1(x ≤ x0), µ = F(x0).

“Tests of efficiency” proposed by MW are also a special case of this approach with m =
Φ

−1(F(x)) and µ = 0.

One more example parallels KLIC-based tests discussed by MW. The idea is to test calibration

of one model against another one. Suppose that we want to test whether F1 = F1(·;Ω) is well

calibrated and F2 = F2(·;Ω) is an alternative forecast. Let m = S(F2,X)−S(F1,X) for some proper

scoring rule S. For a forecast F1 which is calibrated with respect to Ω

µ = E[m|Ω] = S(F2,F1)−S(F1,F1).

So we can test calibration of F1 by testing that

E[(S(F2,X)−S(F1,X))− (S(F2,F1)−S(F1,F1))] = 0.

The test based on this moment condition would have power against an alternative that F2 is cali-

brated with respect to Ω, because then

E[m−µ] = E[(S(F2,F2)−S(F1,F2)]+E[(S(F1,F1)−S(F2,F1)]> 0,

if the scoring rule is strictly proper.

For the case of the logarithmic score and two normal distributions N(µ1,σ
2
1 ) and N(µ2,σ

2
2 ) the

moment condition reduces to

E

[ 1

2σ2
2

(

σ2
1 +(µ1 −µ2)

2 − (X −µ2)
2
)

−
1

2σ2
1

(

σ2
1 − (X −µ1)

2
)

]

= 0.

A pair of reciprocal tests (F1 against F2 and F2 against F1) can help to judge possible gains from

combining two forecasts.
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