Mynbaev, Kairat (2009): Regressions with Asymptotically Collinear Regressor. Published in: Econometrics Journal , Vol. 14, (June 2011): pp. 304-320.
Preview |
PDF
MPRA_paper_31315.pdf Download (289kB) | Preview |
Abstract
We investigate the asymptotic behavior of the OLS estimator for regressions with two slowly varying regressors. It is shown that the asymptotic distribution is normal one-dimensional and may belong to one of four types depending on the relative rates of growth of the regressors. The analysis establishes, in particular, a new link between slow variation and $L_p$-approximability. A revised version of this paper has been published in Econometrics Journal (2011), volume 14, pp. 304--320.
Item Type: | MPRA Paper |
---|---|
Original Title: | Regressions with Asymptotically Collinear Regressor |
Language: | English |
Keywords: | Asymptotically collinear regressors; asymptotic distribution; Lp-approximability; OLS estimator |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics |
Item ID: | 31315 |
Depositing User: | Kairat Mynbaev |
Date Deposited: | 07 Jun 2011 13:04 |
Last Modified: | 08 Oct 2019 04:43 |
References: | Aljan\v{c}i\'c, S., Bojani\'c, R. and Tomi\'c, M. (1955) Deux th\'eor\`emes relatifs au comportement asymptotique des s\'eries trigonom\'etriques. Srpska Akad. Nauka. Zb. Rad. Mat. Inst. 43, 15--26. Barro, R.J. and Sala-i-Martin, X. (2003) Economic Growth. MIT Press. 2nd edition. Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1987) Regular variation. Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge: Cambridge University Press. Hurvich, C. M., Deo, R., and Brodsky, J. (1998) The mean squared error of Geweke and Porter-Hudak's estimator of the memory parameter of a long-memory time series. \textit{J. Time Ser. Anal.} 19, 19--46. Mynbaev, K. T. (2001) $L_p$-approximable sequences of vectors and limit distribution of quadratic forms of random variables. \textit{Adv. Appl. Math}. 26, 302--329. Mynbaev, K. T. (2009) Central limit theorems for weighted sums of linear processes: $L_p$-approximability versus Brownian motion. \textit{Econometric Theory} 25, 748--763. Phillips, P. C. B. (1999) Discrete Fourier transforms of fractional processes. Cowles Foundation discussion paper no. 1243, Yale University. Phillips, P. C. B. (2007) Regression with slowly varying regressors and nonlinear trends. \textit{Econometric Theory} 23, 557--614. Robinson, P. M. (1995) Log-periodogram regression of time series with long range dependence. \textit{Ann. Statist}. 23, 1048--1072. Seneta, E. (1985) Pravilno menyayushchiesya funktsii. Moscow: Nauka. Translated from English by I. S. Shiganov, translation edited and with a preface by V. M. Zolotarev, with appendices by I. S. Shiganov and V. M. Zolotarev. Wu, Chien-Fu. (1981) Asymptotic theory of nonlinear least squares estimation. \textit{Ann. Statist}. 9, 501--513. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/31315 |