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Abstract: As shown by Euler an odd perfect number   must be of the form        where                                and   is called the special prime. In this work we show that      and if         and     then either    (       )    or    (       )     
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1. INTRODUCTION: In 1975 G. G. Dandapat, J. L. Hunsucker and Carl Pomerance showed that if   

is a is a multiply perfect number                             , then they asked if there is a 

prime   with                                          They proved that the only 

multiply perfect numbers with this property are the even perfect numbers and 672. Hence they 

settled a problem raised by Suryanarayana who asked if odd perfect numbers necessarily had 

such a prime factor. This result yields immediately that if        is an o.p.n then                       . Using                       we obtain the results outlined in the 

abstract above.  

 

2. PRELIMINARY RESULTS:  

 

Theorem (Little Fermat Theorem): If   is a prime number and   is a natural number then,              
Furthermore, if    , then there exists some smallest exponent   such that                 
and         therefore,                  
 

Proof: We use induction on   for a proof. Assume that             . Consider the expression         from the binomial theorem one gets,           (  )      (  )         (     )     

Rewritten in another form,             (  )     (  )        (     )             
Thus,                                                      
And the theorem is proved.  
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3. MORE POPERTIES ABOUT O.P.N: 

 

Proposition 3.1: Let          ∏           be an o.p.n. If for some   [   ]      , and           then     (     ) for      Furthermore all such    are greater or equal to 7 or 13 for all                           and              respectively. 

 

Proof: Since                       then it follows that there exists some   [   ]such that                and     (     ). Therefore, (             )                                   
By Little Fermat Theorem                   and since       then either                
or (     )       . However one observes that                  thus               . 
We are left with the only case  (     )         (     )                            

At this point, if                                       (     )        . 

And if                                       (     )          . 

 

Proposition 3.2: Let        with               be an o.p.n then     . 

 

Proof:                                            therefore there exists some 

prime      such that  (   )                           . Using again Little Fermat 

Theorem yields that              

Since                                 . 

 

Proposition 3.3: Let   is an o.p.n and if         and     then either    (       )    or    (       )     
 

Proof: It is almost immediate from proposition 3.1 that all prime that divide both       and       
must be greater or equal to 7 or 13. Therefore if this prime is 3 or 5 then it must divide only       
or      .    
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