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ABSTRACT 
In simple random sampling, the basic assumption at the stage of estimating the standard error 
of the sample mean and constructing the corresponding confidence interval for the population 
mean is that the observations in the sample must be independent. In a number of cases, 
however, the validity of this assumption is under question, and as examples we mention the 
cases of generating dependent quantities in Jackknife estimation, or the evolution through 
time of a social quantitative indicator in longitudinal studies. For the case of covariance 
stationary processes, in this paper we explore the consequences of estimating the standard 
error of the sample mean using however the classical way based on the independence 
assumption. As criteria we use the degree of bias in estimating the standard error, and the 
actual confidence level attained by the confidence interval, that is, the actual probability the 
interval to contain the true mean. These two criteria are computed analytically under different 
sample sizes in the stationary ARMA(1,1) process, which can generate different forms of 
autocorrelation structure between observations at different lags.  
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1. INTRODUCTION 
The independence of observations in a sample of size n constitutes a vital condition 

for ensuring the validity of the produced confidence interval for the mean. Unfortunately, in a 

number of cases this condition does not hold. As representative examples we mention the set 

of generated estimates in Jackknife estimation, or the dynamic evolution of a social 

quantitative indicator in longitudinal studies. Additionally, we can mention the cases of 

constructing confidence intervals for the average delay of customers in service systems, or the 

determination of safety stock in continuous and periodic inventory systems. Accepting 

therefore a certain degree of dependency among observations at different lags, the application 

of the classical confidence interval estimator for the steady-state mean 
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might lead to misleading results from the point of view of (a) the reliability of the standard 

error of the sample mean, and (b) the actual confidence level, that is, the actual probability the 

confidence interval to include the true population mean. 
 

In the current paper, assuming that the data are generated from an ARMA(1,1) 

process, we investigate the consequences of using (1) for constructing confidence intervals. 

The choice of ARMA(1,1) is justified as, under different values of its parameters, alternative 

patterns of autocorrelation structure are observed. To study those consequences, two criteria 

have been used. The first refers to the ratio of the sampling error of (1) over the corresponding 

true sampling error which ensures equality among nominal and actual confidence levels. The 

second criterion concerns the differences between nominal and actual confidence levels, 

where the latter ones are computed analytically using (1) in samples from the ARMA(1,1). 

Unfortunately, the values of the previous two criteria are differentiated considerably between 

alternative form of autocorrelation structures, and on certain cases, the use of (1) in dependent 

series is prohibitive. Besides, the pattern of results in the current paper show a new direction 

of further research in a number of fields from social and business statistics.  

 

2. LITERATURE REVIEW 
 
Looking at the existing literature we may find different methods to overcome the 

problems of autocorrelation in the construction of confidence intervals for steady-state means. 

These methods are classified as, sequential, truncation and fixed sample size. Sequential 

confidence interval methods have as objective to determine the run length (sample size) of 
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realizations of stationary simulation output processes which guarantees both an adequate 

correspondence between actual and nominal confidence levels and a pre-specified absolute or 

relative precision, as these terms are defined by Law (1983). Law and Kelton (1982a) 

distinguish these methods as regenerative and non-regenerative. Fishman’s (1977) and 

Lavenberg and Sauer’s (1977) methods belong to regenerative category while the methods 

developed by Mechanic and McKay (1966), Law and Carson (1978), Adam (1983) and 

Heidelberger and Welch (1981a) have been characterized as non-regenerative.  

For the truncation methods the objective is the elimination of initialization bias effects 

on the estimation of the steady-state mean. These methods provide estimators for the time 

point t* (1 t* n) for which the absolute value of the difference between the expected value 

of the sample mean from the steady-state mean is greater than a pre-specified very small 

positive number e for any t<t*. Generating r replications of a simulation output process {Xt} 

under the same initial conditions, some of the truncation methods estimate t* by applying the 

truncation rule to each replication (Fishman 1971, 1973b; Schriber, 1974; Heidelberger and 

Welch, 1983). Some others, however, estimate t* from a pilot study, which is carried out on a 

number of exploratory replications. Then the estimated value of t* is used as the global 

truncation point in any other replication for which we use the same initial conditions 

(Conway, 1963; Gordon, 1969; Gafarian et al. 1978; Kelton and Law, 1983). 

Fixed sample size confidence intervals methods propose different, asymptotically 

unbiased, estimators for the variance of the sample mean and these estimators may be used in 

the construction of confidence intervals. A number of confidence interval methods have been 

developed in the last decades in order to handle the problem.  

The simplest fixed sample size confidence interval method is based on generating, for 

the process under consideration, k>1 independent replications of size m using independent 

steams of random numbers. When k is large enough, the variance of the k sample means is 

defined and used in the construction of confidence intervals, as these means are considered as 

independent, identical and normal random variables. But this method has practical difficulties, 

as it requires enormous systems and many hours of working time for the generation of just a 

single estimate.  

Alternatively we may use single replication methods like the non-overlapping batch 

means (NOBM). This method (Law and Kelton, 1991; Fishman, 1999) divides a single long 

run into consecutive non-overlapping batches of size m, and from each batch an estimate of 

the performance measure is obtained. As it becomes obvious, these estimates are considered 

as equivalent to the corresponding ones, which are taken using independent replications. 
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Specifically, if {Xt} is a covariance stationary output process, the non-overlapping batch 

means method is based on generating a single long replication of {Xt}. Then, this replication 

is partitioned into k>1 contiguous and non-overlapping batches of size m. Provided that m is 

large enough and 





s

s , Law and Garson (1978) showed that the non-overlapping batch 

means can be considered approximately uncorrelated and normal random variables. But as 

Song (1996) claims, the approximation of the correct batch size is possible but not trivial. At 

the same time, the construction of a confidence interval for a steady-state mean requires the 

satisfaction of normality and independency of the batch means. 

Song and Schmeiser (1995) established the overlapping batch means method (OBM), 

which has smaller mean squared error in the estimation of the sample mean variance. 

Specifically, if n is the run length (sample size) of a single long replication of a covariance 

stationary output process {Xt}, the jth overlapping batch mean of size m [Xj(m)] may be 

defined and in this context Welsh (1987) proposed for large m and n/m the following sample 

mean variance estimator 
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claim that NOBM is preferable to OBM when we construct confidence intervals relying on 

small samples and probably equivalent in the case of using large samples. 

Next, let us consider the standardized time series methods. If {Xt} is strictly stationary 

(the joint distribution of 
n21 ttt X ..., ,X  ,X  is the same as the joint distribution of 

ststst n21
X ..., ,X  ,X   for every t1, t2,…, tn and s) and assuming also that this process is phi-

mixing (for large s the correlation of Xt and Xt+s becomes negligible; see Law, 1983), the 

standardized time series methods use a functional central limit theorem to transform the 

sample X1, X2,…, Xn into a process which is asymptotically distributed as a Brownian Bridge 

process. Dividing a single long replication into k>1 contiguous and non-overlapping batches 

of size m, for m large and by using Brownian Bridge properties, Schruben (1983) derived four 

methods for estimating the variance of the sample mean. The area method, the maximum 

method, the combined area non-overlapping batch means method and the combined 

maximum non-overlapping batch means method. The standardized time series methods are 

easy to use and asymptotically have advantages over NOBM, but require long runs.  

In these lines and as a parametric time series modeling of simulation output data, we 

consider the autoregressive method of Fishman (1978). This method assumes that {Xt} is 

covariance stationary and can be represented by a pth order autoregressive process, AR(p). 
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Voss et al. (1996) derived good estimates of the steady state average queue delay using data 

from the transient phase of the simulation using a high-order AR(p) model. But such an 

autoregressive method is improper for widespread use as general ARIMA models are 

complex and assumptions for ARIMA modeling may be invalid for some particular 

simulation models.  

The regenerative method was developed for the case in which the simulated process is 

characterized by the regenerative property and by enough regeneration cycles. This method 

was developed by Crane and Iglehart (1974a,b,c; 1975). Its principle is based on the 

identification of random points, where the process probabilistically starts over again. These 

points are called regeneration points. For instance, studying the delay in queue in the M/M/1 

model, the indices of customers who find the system empty can be considered as regeneration 

points. The amount of data between two regeneration points is called the regeneration cycle. 

Then, the regeneration points are used to obtain independent random variables to which 

inferential methods can be applied. In this context, two methods have been developed for 

estimating the steady state mean and producing confidence intervals, the classical and the 

Jacknife. A very good description of these methods is provided in Law and Kelton (1982b). It 

is worth mentioning here that the main disadvantage of these methods is the identification of 

regeneration points, especially for complicated simulation models. Specifically, the problem 

with this method exists when either there are no regeneration points for the output process or 

when the simulation cannot produce enough cycles.  

A new and more recent approach to simulation output analysis relies on resampling 

methods, such as the Jackknife and the Bootstrap (Quenouille, 1949; Tuckey, 1958; Efron, 

1979; Efron and Tibshirani, 1993), which provide non-parametric estimates of bias and 

standard error. The Bootstrap method relies on pseudo-data created by re-sampling the actual 

data, but it requires independency, which is not always the case in simulation outputs. The 

application of this method to time series data may work by re-sampling sets of consecutive 

observations in order to capture the autocorrelation structure. Various forms of the Bootstrap 

method appear in the literature. First, the Moving Blocks Bootstrap (MBB), which relies on 

random re-sampling of fixed size overlapping blocks with replacement (Künsch, 1989; Liu 

and Singh, 1992; Hall et al., 1995). However, this method requires subjective inputs from the 

researcher and its estimates vary considerably.  

Second, for stationary time series the Stationary Bootstrap (SB) was developed, where 

the data are re-sampled by contaminated blocks, which have a randomly chosen starting point 

and with their length geometrically distributed according to some chosen mean (Politis and 
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Romano,1994). Under the same principle, Kim et al. (1993a) developed the Binary Bootstrap 

(BB) to analyze autocorrelated binary data.  Kim et al. (1993b) introduced the Threshold 

Bootstrap (TB) extending the BB, and Park and Willemain (1999) modified the TB 

introducing the Threshold Jackknife (TJ). They claim that for various ARMA models, the TB 

has a better performance compared to MBB and SB in terms of estimating the standard error 

of the sample mean, if we optimize each re-sampling scheme with respect to the size of the re-

sampling unit. They also show that the MBB has generally a poor performance.  

Park et al. (2001) test the TB as a non-parametric method of output analysis and show 

that the TB is an effective alternative to the batch means and relatively easy. They also show 

that the TB is more effective in the construction of confidence intervals for the steady state 

mean and median delay in the M/M/1 model, and establish the asymptotic unbiasedness and 

consistency of the TB estimators when we refer to the sample mean.  

Finally, we have the spectral method where the process {Xt} is assumed to be 

covariance stationary. At zero frequency, the power spectrum f(0) is estimated either by using 

the Tukey spectral window (Fishman (1973 a,b; Duket and Pritsker, 1978; Law and Kelton, 

1984) or by using the periodogram coordinates as presented in Heidelberger and Welch 

(1981a,b).  

 

3. AUTOCCORELATION STRUCTURES IN ARMA(1,1) 
 

ARMA(1,1) is defined by 11   tttt XX  , where εt’s are uncorrelated and 

normal random variables with mean zero and common variance 2
 . The model is stationary 

when 1 . Additionally, to overcome the invertibility problem regarding the MA 

component (the model produces the same ρ1 for θ and 1 ), the values of θ are restricted in 

the interval (-1,1).  Under the previous specifications, the autocorrelation function of 

ARMA(1,1) is given from 1
1  s

s , where 

   
21 21
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  (2) 

For any 1  and 1 , the denominator of (2) is always positive. Thus the sign of ρ1 

depends only upon the sign of the numerator. Writing the numerator as a quadratic equation 

of the form   01 22   , and treating   as the variable, the roots of the equation 

are  1  και  12  . Rejecting the second root due to invertibility condition, the form 
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of autocorrelation function of the ARMA(1,1) is specified as follows in the following 

intervals of   and θ: 

Case 1: 10    and     

In this case the autocorrelation function converges exponentially to zero with 10  s , for 

any 0s . Given  , and increasing θ, the degree of autocorrelation between observations at 

different lags becomes greater. The same holds of we keep θ fixed and we increase  . 

Case 2: 10    and  1   

In this case the autocorrelation function again converges exponentially to zero, but with 

01  s , for any 0s .  Given   and reducing θ, the autocorrelation structure becomes 

stronger. On the contrary, with θ fixed, the increase of   leads in absolute value to smaller ρ1 

but higher ρs’s for any 2s  

Case 3: 01    and    

The autocorrelation function converges to zero oscillating between positive and negative 

values starting from a positive ρ1 ( 10 1   ). Keeping   fixed and reducing θ, the 

autocorrelation structure becomes stronger. On the contrary, for any θ, reducing  , the 

autocorrelation coefficients are getting smaller and smaller in absolute terms only in low lags. 

Case 4: 01    and    

The autocorrelation function converges to zero again oscillating between positive and 

negative values but starting now from a negative ρ1 ( 01 1   ). Either keeping   as fixed 

and reducing θ, or keeping θ fixed and decreasing , we meet stronger autocorrelation 

structures. 
 
Furthermore, when   , the corresponding ARMA(1,1) generates independent random 

variables at different lags. 

 

4. BIAS OF THE CLASSICAL ESTIMATOR FOR THE VARIANCE OF  
THE SAMPLE MEAN 
 
Given a sample of size n from a covariance stationary process, the variance of the sample 

mean is given by 

    s
o

n h
n
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  (3a) 

where 
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and ρs to be the sth lag theoretical autocorrelation coefficient between any two variables of the 

process whose time distance is s. Any process  ,...3,2,1, tX t  is covariance stationary when 

its mean and variance do not change over time, as well as, the covariance between Xt and Xt+s 

depends only on the lag s and not on their actual values at times t and t+s. 

Replacing 1
1  s

s  in (3b), the function  sh   takes the following form for the 

ARMA(1,1): 
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Where         
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Halkos & Kevork(2003) showed that for every 1 ,   ,n  always takes values in the 

interval (0,1). Incorporating this result into (4), the first two findings concerning the bias of 

the sampling error for the classical confidence interval estimator are: 

When the autocorrelation function converges exponentially to zero with 10  s , or 

converges to zero oscillating between positive and negative values starting from a positive ρ1, 

the use of the classical estimator for the variance of the sample mean underestimates the 

sampling error of the confidence intervals. This leads to actual confidence levels lower than 

the desired nominal ones. 

On the contrary, when the autocorrelation function again converges exponentially to zero, but 

with 01  s , or converges to zero again oscillating between positive and negative values 

but starting from a negative ρ1, the use of the classical estimator for the variance of the sample 

mean lead to wider confidence interval than it should be (lower accuracy), with consequence 

the actual confidence levels to be higher than the nominal ones. 
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5. ACTUAL CONFIDENCE LEVELS ATTAINED BY THE CLASSICAL  
ESTIMATOR IN ARMA(1,1) 
 

Given the random variables X1, X2, …, Xn from the ARMA(1,1) process, Halkos & 

Kevork (2003) showed that the actual confidence level attained by the classical confidence 

interval estimator for the steady-state mean is given by: 

    *
2

*
2

*
2 21Pr1

NNN
zzZzA    

where  *
2N

z  is the cumulative distribution function of the standard normal evaluated at 
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for a nominal confidence level N1  . 

Tables 1, 2, 3, and 4 presents the actual confidence levels for each form of the 

autocorrelation function in ARMA(1,1) for 95.01  N . The following important remarks 

are drawn: 

(a) When the autocorrelation function converges to zero with all the autocorrelation 

coefficients to be positive, the actual confidence levels are lower than the nominal at every 

combination of , θ and n. The important element here is that as the sample size is getting 

larger and larger the discrepancies between the actual and the nominal confidence levels 

become greater. And unfortunately with heavy autocorrelation functions even with a sample 

of just twenty observations, the actual confidence levels drop even below of 0.50. 
 
(b) With an autocorrelation function to converge to zero oscillating between positive and 

negative values with ρ1 to be positive, still the actual confidence levels are lower than the 

nominal ones at every combination of , θ and n, but the discrepancies here are not large. 

Observe that with  close to zero and θ close to 1, the differences between the actual and the 

nominal confidence level do not exceed 10%. 
 
(c) On the contrary when the autocorrelation function converges to zero oscillating between 

positive and negative values but with ρ1 to be negative, the actual confidence levels are almost 

one. This indicates that using the classical estimator of the variance of the sample mean, we 

overestimate considerably the half-width of the confidence interval, which for a sample of 50 

observations and with strong autocorrelation patterns might be more than 10 times over the 

true one.  
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(d) Finally, when the autocorrelation function converges to zero with all the autocorrelation 

coefficients to be negative, like the previous case, the actual confidence levels are higher than 

the nominal ones at every combination of , θ and n. As  is approaching 0 and θ reaches1, 

we meet higher sampling errors than it should be, which for small samples are less than 10 

times over the actual ones.  

 

6. CONCLUSIONS 
The current paper illustrated that the performance of the classical confidence interval 

estimator for the steady-state mean in realisation from the ARMA(1,1) process depends upon 

the patterns of the autocorrelation structure. The first problematic case is met when the 

autocorrelation function converges exponentially to zero with all the autocorrelation 

coefficients to be positive. For such autocorrelation structures, although we believe that the 

reported point estimates are lying quite close to the actual values, in fact, due to the 

underestimation of the sampling error, the true mean might be quite far away from the 

reported estimate. 

 
 
Table 1: Actual confidence levels when the autocorrelation function converges exponentially 
to zero with 10  s  
  = 0.20 =0.50 =0.90 
n θ =0.20 θ =0.50 θ =0.99 θ =0.20 θ =0.50 θ =0.99 θ =-0.20 θ =0.20 θ =0.99 
5 0.87 0.83 0.82 0.78 0.76 0.76 0.67 0.65 0.65 
10 0.85 0.82 0.80 0.74 0.72 0.71 0.54 0.53 0.52 
20 0.85 0.81 0.79 0.72 0.70 0.69 0.46 0.44 0.43 
50 0.84 0.80 0.79 0.71 0.69 0.68 0.39 0.38 0.37 
100 0.84 0.80 0.79 0.71 0.69 0.68 0.37 0.36 0.35 
200 0.84 0.80 0.79 0.71 0.68 0.67 0.37 0.35 0.35 
500 0.84 0.80 0.79 0.71 0.68 0.67 0.36 0.35 0.34 
 

 

Table 2: Actual confidence levels when the autocorrelation function converges exponentially 
to zero oscillating between positive and negative values starting from a positive ρ1 
  = -0.20 = -0.50 = -0.90 
N θ =0.50 θ =0.70 θ =0.99 θ =0.70 θ =0.99 θ =0.95 θ =0.99 
5 0.91 0.89 0.88 0.93 0.92 0.95 0.94 
10 0.90 0.89 0.88 0.93 0.91 0.95 0.94 
20 0.90 0.88 0.87 0.92 0.91 0.95 0.94 
50 0.90 0.88 0.87 0.92 0.91 0.95 0.94 
100 0.90 0.88 0.87 0.92 0.91 0.95 0.94 
200 0.90 0.88 0.87 0.92 0.91 0.95 0.94 
500 0.90 0.88 0.87 0.92 0.91 0.95 0.94 
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Table 3: Actual confidence levels when the autocorrelation function converges to zero again 
oscillating between positive and negative values but starting from a negative ρ1 
  = -0.20 = -0.50 = -0.90 
n θ =-0.99 θ =-0.50 θ =-0.20 θ =-0.99 θ =-0.50 θ =0.20 θ =-0.99 θ =-0.20 θ =0.70 
5 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 
10 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 
20 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 
50 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 
100 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 
200 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 
500 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 
 

Table 4: Actual confidence levels when the autocorrelation function converges exponentially 
to zero, but with 01  s  
  = 0.20 =0.50 =0.90 
n θ=-0.99 θ= -0.70 θ =-0.50 θ=-0.99 θ= -0.70 θ=-0.99 
5 1.00 1.00 0.99 1.00 0.99 0.97 
10 1.00 1.00 1.00 1.00 1.00 0.98 
20 1.00 1.00 1.00 1.00 1.00 1.00 
50 1.00 1.00 1.00 1.00 1.00 1.00 
100 1.00 1.00 1.00 1.00 1.00 1.00 
200 1.00 1.00 1.00 1.00 1.00 1.00 
500 1.00 1.00 1.00 1.00 1.00 1.00 
 

The second interesting case is when the autocorrelation function converges to zero 

oscillating between positive and negative values, with the first autocorrelation coefficient to 

be negative. Here the consequences of using the classical confidence interval estimator are 

moved to the quality of information provided. Although we believe that we attain a low 

accuracy, in fact this is not true. The point estimate lies much closer to the true value than we 

believe. 
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