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Abstract. The paper provides a Game Theory model of coopetition which addresses the Project 

Financing problem of supporting the production of energy via sustainable renewable sources. We 

mean sustainable energy sources as including all renewable energy sources. In our analysis we 

consider also the positive impact of technologies that improve energy efficiency. Several solutions of 

our coopetitive game are considered and determined explicitly. 
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1 Introduction 

We consider two banks that may decide to invest in renewable and/or non-renewable 

energy sources. The first bank can choose any investment x within a certain financial 

availability range E, for a non-renewable energy of a particular type; analogously, the 

second bank can choose any possible investments y within a certain financial availability 

range F, again for the non-renewable energy of the same type. The two banks can offer own 

financing for the preceding non-renewable sources, because the initial costs for non-

renewable energy sources are lower than the initial costs of renewable ones. Therefore, the 

two banks are competitors in financing the above type of non-renewable energy production. 

In order to offer an initial financing for a certain renewable energy production, let the initial 

investment z be quite relevant and assume that the banks cannot grant this financing z 

independently. On the other hand, the banks should consider not only the initial costs, but 

also the resource availability and the environmental protection, linked with renewable 

energy productions - the non-renewable energies don’t fulfill these two requirements 

anyway. Besides, the investment in renewable energy production will be more 

advantageous in the long run for many reasons: 

- constructions will be entrust to technologically advanced leader groups; 

- constant index of cover risk; 

- legislative context (government incentives); 

- low technological risk; 

- low market risk (special law favoring the product on the market). 

For the above reasons we shall assume that our banks will decide to contribute 

cooperatively for the financial strategy z. Our model will show how this choice can enlarge 

the pie of possible gains for the two competitors and how to find a reasonable fair division 

of the pie and finally, as a side result, to find the optimal compromise between the two 

alternatives in a coopetitive perspective. 



2 A coopetitive model for a sustainable Project Financing 

General assumptions. Consider two banks: bank 1 and bank 2; each of them has a payoff 

function, denoted by f1 e f2, respectively. We shall specify soon the domains of these two 

functions and their quantitative definitions. Each of the two banks practices an own 

financing activity; we shall indicate the respective sums financed in two analogous non-

sustainable energy productions with x and y, and we shall assume these two possible 

financing belonging to two compact intervals of the real line E and F. The two banks decide 

(on the other hand) to give a common financial support z to an enterprise producing energy 

from a sustainable and renewable source. We assume, for sake of simplicity, the common 

financing z shared equally between them: the partition of z is the pair (0.5z, 0.5z), so that 

we have the elementary expansion z = (1/2)z + (1/2)z. 

2.1 Payoff functions 

Payoff functions are defined as it follows. 

Bank 1. We shall assume the payoff function f1 of the first bank to be defined on a compact 

interval E of the real line by the sum of interests of the two financings minus a term 

depending upon the financial strategy of the other bank 2: 

f1 (x, y, z) = x i1h + (1/2) z i3h – ny, 

for every x in E, y in F and z in C (the interval of possible common financial strategies). 

Where: 

1) the positive factor a:= i1h = a is the h-years interest rate corresponding to the positive 1-

year interest rate i1, in simple interest capitalization, that is the interest rate for h years; 

2) the positive factor c := i3h is the h-years interest rate determined by the 1-year interest 

rate i3, relative to the sustainable source energy production; 

3) the factor n > 0 is an erosion coefficient of the bank 2 versus the bank 1. 

From which we have 

f1 (x,y,z) = ax + (1/2) cz – ny, 

for every x in E (strategy set of the bank 1), y in F (compact, convex strategy set of bank 2) 

and z in C (compact, convex common strategy set of the two banks). 

Bank 2. Analogously we have 

f2 (x, y, z) = y i2h + (1/2) z i3h – m x, 

where: 

1) the positive factor b := i2h is the h-interest rate corresponding to the 1-interest rate i2 > 0, 

in simple capitalization, that is the interest rate for h years; 



2) the positive factor c := i3h is the h-years interest rate determined by the 1-year interest 

rate i3, relative to the sustainable source of energy; 

3) the positive factor m is an erosion coefficient of the bank 1 versus the bank 2. 

From which we have 

f2 (x,y,z) = by + (1/2)cz – mx, 

for every x in E (strategy set of the bank 1), y in F (compact, convex strategy set of bank 2) 

and z in C (compact, convex common strategy set of the two banks). 

2.2 Coopetitive game 

Our coopetitive game is the game G = (f, >) with vector payoff function defined by 

f (x,y,z) = (ax – ny, by – mx) + (1/2) cz (1,1). 

Setting v(z) := (1/2) cz(1,1), for every z in C, we have v(0) = (0,0) and 

v(2) = (1/2) c (2,2) = (c, c), 

and the game G(z) is the translation of the initial game G(0) by the vector v(z). 

3 Complete study of the coopetitive game 

Set of bi-strategies. We shall consider (for simplicity): a = b = 101%, that is i1= i2= 33,6%, 

and c = 100%, that is i3  = 33,3%; n = 10% and m = 20%; moreover, x in [0,1], with 1 

conventional unit, y in [0,1] and z in [0,2] (all conventional and possibly different unit). So 

the bi-strategy space is the square with the four vertices: A := (0,0), B := (1,0), C := (1,1) 

and D := (0,1). The representation of the bistrategy space is the following one: 

 



3.1 Payoff space of the initial game 

We have the following transformations: 

A’ := F (A,0) = f (0,0,0) = (0,0); 

B’ := F (B,0)= f (1,0,0) = (a, -m) = (1.01, -0.2); 

C’ := F (C,0) = f (1,1,0) = (a-n, b-m) = ( 0.91, 0.81); 

D’ := F (D,0) = f (0,1,0) = (-n, b) = (- 0.1, 1.01). 

So that we obtain: 

 

 

3.2 Payoff space and Pareto sup-boundary of the coopetitive game 

 
To the payoff space of initial game G(0) we have to add all possible vectors v(z), with z in 

the interval [0,2]. We obtain a hexagon with vertices A’, B’, B’’, C’’, D’’, D’, whose Pareto 

maximal boundary is the bi-segment of vertices D’’, C’’, B’’, as it is shown in the 

following figure. 

 



 

 

3.3 Conservative strategies 

Concerning the conservative (or defensive) strategies, we have: 

v1
# 
=supxϵE infyϵF (ax – ny) = supxϵE (ax – n) = a – n = 1.01 – 0.1 = 0.91. 

So that the conservative strategy of the bank 1 is the strategy 1; moreover we have 

v2
#
 = supyϵF infxϵE (by – mx) = supyϵF (by – m) = b – n = 1.01 – 0.2 = 0.81.

 

Hence also the conservative strategy of the bank 1 is the strategy 1.  

The conservative bivalue of the game G(0) is the pair v
# 
= (v1

#
 , v2

#
), i.e. the bi-win 

C’ = (0.91 , 0.81) , 

since this pair C’ belongs to the Pareto maximal boundary, the game G(0) is inessential. By 

translation we obtain the conservative bi-value of the game G(z), for every z in C. 



3.4 Nash equilibrium 

We study the best reply multifunction of Bank 1. We have to find, for every strategy y of 

Bank 2, the strategies of Bank 1 which maximize the partial gain function f1(·, y). Since the 

derivative f1,1 (x,y,z) = a is positive, we obtain B1 (y) = 1, for every y in F. Analogously, the 

best reply multifunction of Bank 2 - obtained by maximizing the partial function f2 (x, ·) 

and considered that the derivative f2,2 (x,y,z) = b is positive – is defined by B2 (x) = 1, for 

every x in E. 

The unique Nash equilibrium (of any game G(z)) is the point common to both the best 

reply graphs: the point C = (1, 1). The Nash equilibrium bi-win of G(0) is the point 

C’ = (0.91 , 0.81). 

Consequently, the conservative bi-value of any G(z) coincides with the payoff of the Nash 

equilibrium: the point C’ + v(z). 

 

 4. Coopetitive solutions 

 

At this point we draw in the payoff universe the line of fairness R(1,1) and the line of 

maximum collective gain C’ + R(-1,1). 

1) The equity best compromise solution is the unique point of the Pareto boundary of 

the payoff space of G belonging to the equity line: the point K’. 

2) we can also represent the natural competitive solution: we consider the interval 

having its inf at the point C’ and its sup at the sup of the intersection between the 

cone of upper bounds of C’ itself with the maximum collective gain line: its 

diagonal C’ + R(1,1) determines univocally the Pareto payoff C’’ . 

We have so many possible solutions: 

1) K: equity transferable utility best compromise (maximum collective benefit: intersection 

of the equity line with the maximum collective gain line); 

2) K’: equity best compromise (intersection of the equity line with the Pareto usual 

boundary); 

3) C’’: properly coopetitive solution (Nash equilibrium of the game G(2)); 

4) C’: disagreement point of the coopetitive game G; 



5) K’’: natural coopetitive solution, which coincides with C’’. 

 

 

5 Conclusions 

 

Among all, however, the most suitable and reachable payoff solution, for the coopetitive 

game G, is the bi-gain C’’, which: 

1) is the properly coopetitive solution;  

2) it belongs to the Pareto boundary of the coopetitive game G; 

3) it is the natural coopetitive solution when the two banks are cooperating; 

4) it belongs to the Transferable Utility Pareto boundary of the coopetitive game G; 

5) it is the higher Nash equilibrium of the game G and higher conservative cross. 

 

Strategy solution. The payoff C’’ can be reached by proper coopetition: first choosing the 

cooperative strategy z = 2 and then by competing a la Nash. 
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