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ABSTRACT 

 
 The objective of this study is to estimate the accuracy and/or reliability of alternative 

methods of forecasting property valuations of non-residential real commercial and industrial 

property in El Paso to improve municipal revenue forecasting.  This study seeks to identify and 

evaluate four econometric and statistical alternatives to present forecasting practices for non-

residential property valuation forecasts: (1) a traditional income elasticity method, (2) a regional 

structural econometric model, (3) a statistical ARIMA method, and (4) trend analysis.  In order to 

evaluate the four models, ex ante forecast simulations are created for each modeling approach 

and then compared to random walk and random walk with drift models for both commercial and 

industrial property values.  Results indicate that the random walk with drift model outperformed 

all four models for both commercial and industrial property values.  In addition, results also 

indicate that the random walk model outperformed all four models for industrial property values.   

  

Keywords: Non-residential property valuation forecasts, regional economics, applied econometrics 

 

INTRODUCTION 

 

Approximately 64.2 percent of the taxes for the City of El Paso’s 2008 budget come from 
property taxes (City of El Paso FY2008 Budget).  The adopted 2008 budget includes an $8.03 
million increase in revenue, $7.7 million of which results from projected increases in property 
tax collections.  Because property taxation represents the primary revenue source for the City of 
El Paso, the accuracy of revenue forecasting is ever relevant in municipal budgeting. Many 
cities, including El Paso, struggle with increases in health care costs, and growing worker 
pensions. Responses have included personnel cuts, curtailed infrastructure investment, and 
higher user fees.  At present, property tax forecasts are based on historical trend analyses under 
the assumption that the assessed valuation will continue to grow. Relatively few cities have 
compared forecasting methods for property tax revenues (Sexton, 1987).  Time and personnel 
constraints often force local governments to rely on judgmental methods or simple trend revenue 
projections.   

The objective of this study is to estimate the accuracy and reliability of alternative 
methods of forecasting property values for non-residential commercial and industrial property in 
El Paso.  This study seeks to identify and evaluate four econometric and statistical alternatives to 
present forecasting practices for non-residential property valuation forecasts: (1) a traditional 
income elasticity method, (2) a regional structural econometric model, (3) a statistical ARIMA 
method, and (4) trend analysis.  Ex ante forecast simulations are utilized to calculate root-mean-
squared-error values for each methodology in order to generate modified Theil inequality 
coefficients for each of the four models relative to the random walk and random walk with drift 
models.   
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LITERATURE REVIEW 

 
When researching revenue forecasting the majority of the studies examine the degree to 

which cities and counties use forecasting techniques (Frank, 1990) and ask the question of 
whether these techniques prove to be helpful in budget preparation.  Three issues affect the 
choice of revenue forecasting technique: relative accuracy of forecasting methods, conservatism 
in forecasting, and public management (Wong, 1995).  For instance, Forrester (1991) examines a 
wide cross-section of U. S. municipal governments, to determine the extent to which 
governments use forecasting and whether it is a tool government can use in the budget process to 
reflect their long-term objectives. Through a survey of 431 municipal governments with 
populations 50,000 or greater, only 3.7% of respondents used econometric forecasting techniques 
when projecting property taxes (Forrester, 1991). 
 One analysis of non-tax general fund revenue concludes that exponential smoothing 
models are generally the most accurate (Cirincione, Gurrieri, & Van De Sande, 1999).  Past 
research, however, has shown that municipalities generally know little about revenue forecasting 
techniques, especially times series analysis (Bahl & Schroeder, 1984; Frank, 1990) and that their 
lack of knowledge has led them to rely heavily on expert judgment to forecast revenues 
(Reddick, 2004).  Bretschneider, Bunch and Gorr (1992) examine revenue forecasting errors in 
2,572 Pennsylvania local government budgets.  A substantial number of the 209 finance officers 
surveyed rely on trend and judgmental techniques.  In spite of that, Frank and McCollough 
(1992) find that empirical comparison of quantitative and judgmental forecasting generally show 
the former to be more accurate then the latter.  

MacManus and Grothe (1989) study revenue forecasting techniques and accuracy in 
fifteen U.S. counties with populations over 100,000 in 1980. Results in that effort indicate that 
fiscal stress leads to the adoption of more sophisticated revenue forecasting techniques. This shift 
from the “best guess” short-term revenue forecast methods to multi-year projections are seen as a 
necessary way to avoid being overly myopic on the consequences of decisions (Bahl & 
Schroeder, 1984; Schroeder, 1982; Beckett-Camarata, 2006).  

Many prior studies conducted with respect to property valuation have analyzed changing 
tax rates or estimating the market value of property (Janssen, 1999). Edelstein (1974) shows that 
property taxes are capitalized in housing values and that accessibility to the center of a city is a 
determinant of market value as are housing attributes. The analysis examines attributes that yield 
services over the capital lives of housing structures. A market value-tax model is developed by 
hypothesizing that the changes in supply factors are relatively inelastic in the short run as 
compared to changes in market demand factors for residential structures.  

Several subsequent efforts have examined the predictability of municipal revenues. 
Approaches to forecasting municipal revenues have differed depending on the category of 
revenue studied (Cirincione, Guerrieri, & Van De Sande, 1999). The use of econometric and 
statistical methods has been largely limited to the income elasticity approach in which tax 
revenue or tax base changes are forecast as the product of the tax’s estimated income elasticity 
and exogenously provided projections of personal income growth (Sexton, 1986). The income 
elasticity approach has proven useful for income, sales, use and other taxes that are closely 
related to income. Property taxes are still the dominant source of revenue for municipalities and 
the applicability of the income elasticity method to them may be more tenuous. However, 
structural models of property valuation explicitly recognize the importance of both demand and 
supply side factors in property valuation (Sexton, 1986). 
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Univariate time series approach can also be useful, especially when information is limited 
(Granger & Newbold, 1977). Along those lines, Netzer (1961) recommends that various property 
use classes be analyzed separately.  In some cases, regional revenue models built using different 
methodologies may yield revenue forecasts that contain complementary information (Fullerton, 
1989). 

Chang (1979) analyzes municipal revenue forecasting for Mobile, Alabama, using a 
small annual data sample from 1962 to 1976 for 15 revenue sources. The property tax component 
was estimated as a function of inflation, transactions of taxable properties, net additions to 
taxable property, and the frequency of reassessment for these properties. Also included is a 
dummy variable for the period during which Mobile’s suburbs grew rapidly. The number of 
building permits proxies for additions to taxable property. Inequality coefficients estimated for 
the revenue forecasts indicate acceptable model performance relative to a random walk 
benchmark (Theil, 1975).   
 Several different aspects of the El Paso metropolitan economy have been studied using 
econometric and time series methods (Fullerton, 2001, 2004; Fullerton & Elias, 2004.)  Those 
efforts also include analyses of municipal property tax abatement policies (Fullerton, 2002; 
Fullerton & Aragonès, 2006).  As with many other municipalities, however, residential and 
commercial property valuation predictability in El Paso has not previously been investigated 
(Forrester, 1991; Frank & McCollough, 1992).  This study attempts to partially fill this gap in the 
literature by completing an analysis of non-residential property valuation predictability.   
 Many aspects of regional economic predictability have been examined in recent years for 
the Borderplex area encompassed by El Paso and Ciudad Juarez.  Fullerton and Barraza de Anda 
(2008) document some of the difficulties associated with modeling demographic trends as a 
consequence of cross border data asymmetries. Those difficulties, plus frequently large historical 
data revisions, pose obstacles for accurate housing sector forecasts in El Paso (Fullerton & 
Kelley, 2008). International manufacturing aggregates for Ciudad Juarez also have a mixed 
record when it comes to econometric forecast accuracy (Fullerton & Novela, 2010). Perhaps 
surprisingly, the regional forecasting track records for the municipal water grids on both sides of 
the border have been found to be relatively accurate (Fullerton & Molina, 2010). Given all of the 
above, it is difficult to anticipate what the results will be for non-residential property valuations 
in El Paso. It is, therefore, an important piece of the regional economic puzzle that merits 
empirical attention. 

 

DATA AND METHODOLOGY 

 
Property taxation is a primary revenue source for the City of El Paso.  Determining the 

accuracy of potential forecasting models for those revenues may help improve budgetary 
processes for municipal government. The County of El Paso personal income data series ranges 
from 1969 to 2006 on an annual basis and are expressed in millions of nominal dollars.  The 
unemployment rate is included in the data set, as are inflation adjusted wages and salaries for the 
County of El Paso. Also included is the annual population estimate for the county. This series is 
available through the Census website (www.census.gov). Other variables employed below as 
well as the forecasted 2007 dataset are from the Border Region Modeling Project at the 
University of Texas at El Paso (Fullerton & Molina, 2007). Published annually, each report 
contains three years worth forecasts.   
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As discussed previously the practice of local government revenue is not very advanced. 
As Bahl and Schroder (1984) document, judgmental or simple trend projections are common 
forecasting techniques even among larger city governments.  Four commonly used comparison 
criteria are employed: traditional income elasticity methods, regional structural econometric 
model, univariate autoregressive integrated moving average models (ARIMA), and trend 
equations. These methods have been used in previous literature (e.g. Sexton, 1987) and are 
typical techniques used by municipalities in revenue forecasting (Forrester, 1991).    
  

TRADITIONAL INCOME ELASTICITY METHOD 

 
The income elasticity forecasting approach is to directly estimate the market value-

income relationship (Sexton, 1987; Sexton & Sexton, 1986).  It uses an equation of the form: 
 
ℓnMVt = a + bℓnY + μt                                                                                                      (1) 
 

where MV is the current value of the property stock, Y is personal income, μ is a random error, 
and t is a time index.  A principal advantage of this approach is that it incorporates variations in 
local economic conditions without extensive data requirements.   

 

REGIONAL STRUCTURAL ECONOMETRIC MODEL 

 
The systems of equations approach to modeling, forecasting, and policy analysis for 

regional and national economies can be traced back to 1936 (Dhane & Barten, 1989).  Its overall 
design flexibility has made it an invaluable tool in corporate planning and public policy analysis.  
These models are especially useful in dynamic forecasting applications.  The University of Texas 
at El Paso border forecasting system contains 208 equations.  Among other variables, it forecasts 
residential real estate trends, population, personal income, wages and salaries, plus labor market 
conditions for El Paso (Fullerton, 2001).  Its structure provides some of the primary inputs for 
the property value system of equations in this study.  

 

UNIVARIATE ARIMA MODEL 

 
Box and Jenkins (1976) provide a broad framework for univariate and multivariate time 

series analysis.  It requires stationary data whose means and variances do not change over time 
(Pindyck & Rubinfeld, 1998).  Although many El Paso time series are non-stationary, they often 
can be transformed into stationary variables by differencing them (Fullerton & Elias, 2004).  
Once stationarity is achieved, a univariate autoregressive integrated moving average (ARIMA) 
equation of the following form can be estimated: 

 
        d(MVt) = θο + ρ1d(MV t-1) + ρ2d(MVt-2) +…+ ρρd(MVt-ρ)+ εt +θ1εt-1 + θ2εt-2 + … + θqεt-q    (2) 
 
where d is a difference operator.  
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TREND ANALYSIS 

 
 The simple trend model that is often used by municipalities will be compared to the other 
three types of analysis.  A linear regression equation of  
 

MVi = ai + cit + εi                                                                                                                                                                      (3) 
 
where t is equal to 1 in 1981 and to increase by 1 in each year after.   

 

FORECAST ASSESSMENT 

 
To further assess model performance, once parameter estimations are made for each of 

the four models, out-of sample or ex ante forecast simulations are utilized.  A series of rolling 
forecasts are created for each modeling approach and then compared to random walk 
benchmarks and random walk with drift benchmarks.  For each set of forecasts, the number of 
periods simulated is three.  That number corresponds to the appraisal cycles historically used by 
the El Paso Central Appraisal District.   

Random walk benchmarks have been used in a variety of studies to test the efficacy of a 
broad range of extrapolation models including structural equation and ARIMA models (Fair & 
Shiller, 1990; Fullerton & Kelley, 2006).  The random walk is an example of a simple stochastic 
time series in which successive change in yt is drawn independently from probability distribution 
with zero mean. Thus, yt is determined by,   

 
 yt  = yt-1 + εt 

 
with E(εt) = 0 and E(εtεs) = 0 for t ≠ s. 
 
 A random walk with drift is a simple extension of the random walk benchmark that 
accounts for a trend (upward or downward) in the series yt and is determined by  
 
 yt = yt-1 + d + εt 

 
so that on average the process will tend to move upward (for d > 0). 

With the out-of-sample or ex-ante forecast simulations, resulting prediction errors are 
then used to calculate root-mean-squared-error (RMSE) values. The RMSEs for each 
methodology are then utilized to generate modified Theil inequality coefficients (Web, 1984).  
The modified Theil inequality coefficients are calculated as the ratios of each of the four model’s 
RMSEs relative to the RMSEs of the random walk and random walk with drift models.  While 
descriptive, modified Theil inequality coefficients have been shown to provide reliable indicators 
for assessing the predicative accuracy of econometric forecasting models (Webb, 1984).   
 The Theil coefficients are decomposed into bias (Um), variance (Us) and covariance (Uc) 
components.  The inequality statistic proportions are useful as means of breaking down forecast 
error patterns.  The bias proportion Um is an indication of systematic error, since it measures the 
extent to which the average values of the simulated and actual series deviate from each other. 
The variance Us indicates the ability of the model to replicate the degree of variability in the 
variable of interest. The covariance proportion Uc is an indication of the unsystematic error or 
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the remaining error after deviations from average values have been calculated.  The ideal values 
for the second moment error proportions are Um = Us = 0 and Uc=1.  Theil inequality coefficients 
will vary between 0 and 1.  If U=0, the predictive performance is considered a perfect fit. If U=1, 
the predictive performance of the model is as “bad” as it can possibly be (Pindyck & Rubinfeld, 
1998).   
 A modified Theil inequality coefficient or U-coefficient greater than one indicates that 
the random walk benchmark or the random walk with drift has smaller absolute forecast errors 
than the competing methodologies.  Alternatively, if a modified Theil coefficient is less than one, 
it will imply that the prediction errors of a model are smaller than those associated with random 
walk benchmarks or random walk with drift. Simply put, if the modified Theil inequality 
coefficient is greater than one, it indicates that the random walk model or the random walk with 
drift model outperforms that particular model.  Conversely, if the U-coefficient is less than one, 
it indicates that the forecasts for that particular model are more accurate than those associated 
with the random walk or random walk with drift.   
 In addition, error differential regression results for both the random walk benchmark and 
the random walk with drift benchmark are compared to the commercial and industrial property 
values for each of the four forecasting models.    
 

EMPIRICAL RESULTS 

 

Traditional Income Elasticity Model Specifications 

 

 Each model is estimated for two major categories of real property: commercial and 
industrial.  All models are estimated using 1981-2007 annual data for El Paso, Texas (MSA). 
Table 1.1 summarizes the variable definitions used for each model.  

 

Table 1.1 

Variable Mnemonics and Equation Statistics 

Series    Description         
Endogenous Variables      
COM   Real Property: Commercial    
INDUST  Real Property: Industrial    
Exogenous Variables      
ELPPOP  El Paso Population     
ELYP   El Paso Personal Income    
EPOCOMSP  El Paso Other Commercial Space Permit Values  
INDSPER  Industrial Permits     
T   Time, years     
Equation Statistics      
SUM SQ  Error Sum of Squares    
STD ERR  Standard Error of Regression    
R SQ   R-Squared Coefficient of Determination   
R BAR SQ  Adjusted R- Square Coefficient of Determination  
F   F Statistic for Joint Slope Coefficient Equality to Zero Hypothesis 
DW   Durbin Watson Serial Correlation Statistic   
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The traditional income elasticity model has an estimated equation for each property 
category and the estimated coefficients satisfy the 5-percent significant criterion. Table 1.2 gives 
the model specifications resulting from the traditional income elasticity method. The t-statistics 
appear in parentheses below each corresponding coefficient. Equations 1-2 have relatively high 
R-squared and low sum-squared residuals. Based on Durbin Watson (DW) and the range of the 
statistic as described in Pindyck and Rubinfeld (1998) allows one to reject the null hypothesis of 
no serial correlation or positive serial correlation present in equations 2.   

Table 1.3 summarizes the out-of-sample or ex-ante forecast accuracy using the traditional 
income elasticity model. Descriptive statistical testing, root-mean-square errors (RMSE) and 
Theil inequality coefficients are used to determine forecast accuracy. The forecast date was 
segregated by step-length and compared with actual valuations estimates for every three year 
from 2001 to 2007. The resulting prediction errors are then used to calculate the root mean 
squared error (RMSE) values for all 7 forecast step-lengths. The Theil coefficients are 
decomposed into bias (Um), variance (Us) and covariance (Uc) components.   

 

Table 1.2 

Traditional Income Elasticity Model (1) - Estimation Results 

Equation 1 Industrial Property, valuation in dollars     
 INDUST = f(ELYP)        
 Ordinary Least Squares, Annual Data for 24 periods 1982 to 2005  
          
 log(INDUST) = -5.36 + 1.09 * log (ELYP)     
  (-2.26)  (10.57)      
          
 Sum Sq 0.6315  Std Err 0.1777  LHS Mean 19.7197  
 R Sq 0.8484  R Bar Sq 0.8408  F (1, 20) 3.5429  
 DW 1.2950        
          
Equation 2 Commercial Property, valuation in dollars     
 COM = f(ELYP)        
 Ordinary Least Squares, Annual Data for 24 periods  1982 to 2005  
          
 log(COM) = 4.8324  +  0.7349 * log(ELYP)      
  (7.38)  (25.68)      
          
 Sum Sq 0.1033  Std Err 0.0656  LHS Mean 21.6442  
 R Sq 0.9649  R Bar Sq 0.9635  F (1,24) 79.15  
 DW 0.9615        
          

 
As previously stated the ideal values for the second moment error proportions are Um = 

Us = 0 and Uc=1.  Overall the results in Table 1.3 reflect very low RMSEs; however, the Theil 
inequality coefficients are less than optimal.  While the Theil inequality coefficient or U-statistic 
in Table 1.3 is near zero for all property categories, the decomposed proportions for bias 
proportions (Um) are high at all step-lengths for each property type.  Consequently, the 
covariance proportion never reaches more than 7.9 percent. 
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Table 1.3 

Traditional Income Elasticity Model (1) Forecast Results 

 

 1-step 2-step 3-step 4-step 5-step 6-step 7-step 

Commercial 

RMSE 
  

368,989,400  
 

435,457,286 
 

417,909,266 
 

598,233,453 
 

616,216,640  
  

928,501,660 
 

943,814,737 
Theil –U 0.0525 0.0588 0.0538 0.0713 0.0708 0.0984 0.0966

Um 0.9092 0.9669 0.9950 0.8225 0.7968 0.9793 1.0000

Us 0.0907 0.0310 0.0004 0.1558 0.2032 0.0207 0.0000

Uc 0.0001 0.0021 0.0046 0.0217 0.0000 0.0000 0.0000

Industrial 

RMSE 
  

178,678,026  
 

183,436,498 
 

208,128,658 
 

166,866,070 
 

146,529,498  
  

80,169,845 
 

114,421,296 
Theil –U 0.1490 0.1502 0.1684 0.1261 0.1095 0.0533 0.0720

Um 0.9457 0.9629 0.9487 0.9250 0.8529 0.2082 1.0000

Us 0.0135 0.0156 0.0249 0.0243 0.1471 0.7918 0.0000

Uc 0.0408 0.0214 0.0264 0.0506 0.0000 0.0000 0.0000
                

 

Table 1.4 

Random Walk Benchmark Forecast Results 

  1-step 2-step 3-step 4-step 5-step 6-step 7-step 

Commercial 

RMSE 
   

576,102,578  
  

493,348,092 
  

407,865,491 
  

675,463,112 
  

612,659,151  
   

952,860,925 
  

362,711,686 

Theil –U 0.0843 0.0669 0.0523 0.0807 0.0699 0.1012 0.0350 

Um 0.8989 0.8758 0.8784 0.6787 0.6213 0.9638 1.0000 

Us 0.1011 0.1242 0.1216 0.3213 0.3787 0.0362 0.0000 

Uc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Industrial 

RMSE 
   

19,797,104  
  

18,511,637 
  

20,304,700 
  

112,035,722 
  

104,338,623  
   

269,604,145 
  

168,098,291 

Theil –U 0.0190 0.0179 0.0195 0.1039 0.0913 0.2099 0.1094 

Um 0.6120 0.0451 0.2236 0.5450 0.3197 0.9028 1.0000 

Us 0.3880 0.9549 0.7764 0.4550 0.6803 0.0972 0.0000 

Uc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

                

  
Forecast results for the random walk and random walk with drift benchmarks are found in 

Tables 1.4 and 1.5.  The results demonstrate less than an ideal distribution of the three Theil 
inequality proportions across all seven forecasted period lengths.  RMSEs for the random walk 
benchmark are higher than RMSEs for the traditional income elasticity model 4 out of 7 steps for 
commercial property values and 5 out of 7 steps for industrial property values.  This differs from 
the results of the random walk with drift model where the RMSEs were dramatically lower than 
the RMSEs traditional income elasticity model for all 14 steps for both commercial and 
industrial property values.  The distribution of the three Theil inequality proportions continues to 
be less than ideal at all step-lengths.   
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Table 1.5 

Random Walk with Drift Benchmark Forecast Results 

 

  1-step 2-step 3-step 4-step 5-step 6-step 7-step 

Commercial 

RMSE 
       
163,211,334  

         
95,534,644  

             
43,734,784  

  
217,707,550 

  
454,056,375  

   
372,838,314  

  
1,911,550 

Theil –U 0.0217 0.0121 0.0053 0.0246 0.0508 0.0350 0.0002 

Um 0.5218 0.6176 0.0439 0.1017 0.4974 0.5015 1.0000 

Us 0.4529 0.3757 0.3082 0.6405 0.5026 0.4985 0.0000 

Uc 0.0253 0.0067 0.6479 0.2579 0.0000 0.0000 0.0000 

Industrial 

RMSE    
              
53,338,662  

         
22,786,164  

                
57,654,775 

  
50,595,858 

  
119,089,140  

   
43,532,656  

  
168,326 

Theil –U 0.0497 0.0216 0.0585 0.0431 0.1065 0.0276 0.0001 

Um 0.8027 0.4256 0.6657 0.0371 0.4993 0.4980 1.0000 

Us 0.0005 0.2043 0.0052 0.4816 0.5007 0.5020 0.0000 

Uc 0.1968 0.3701 0.3291 0.4813 0.0000 0.0000 0.0000 

                

Modified Theil Inequality Coefficients: Traditional Income Elasticity Model to Random 

Walk and Random Walk with Drift 

 

 Modified Theil inequality coefficients are calculated as the ratios of the traditional 
income elasticity model RMSEs to the RMSEs of a random walk benchmark and random walk 
with drift. Results associated with the random walk are found in Table 1.6.  A modified 
inequality coefficient or U-coefficient less than one indicates that the traditional income 
elasticity model forecasts for that step-length are more accurate than those associated with the 
random walk.  Conversely, if the U-coefficient is greater than one than the random walk method 
out performs the traditional income elasticity.   

Using U< 1.0 as a general guideline, for commercial property values, results indicate that 
the traditional income elasticity forecasts was only slightly more favorable than the random walk 
benchmarks, with 4 out of 7 inequality coefficients being less than 1.0.  For industrial property 
values, the random walk benchmarks outperformed the traditional income model 5 out of 7 
times, with inequality coefficients greater than 1.0.  However, the random walk with drift 
completely out performs the traditional income elasticity model with inequality coefficients 
being greater than 1.00 for 14 of the 14 steps for both commercial and industrial property values. 
  
Differential Error Regression Results: Random Walk and Random Walk with Drift 

Benchmarks vs. Traditional Income Elasticity Model Forecast Errors 

 

 In addition, differential error regression results for both the random walk benchmark and 
the random walk with drift benchmark were compared to the traditional income elasticity model.   
Error differential regression results for the random walk benchmark compared to the traditional 
income elasticity model are found in Table 1.7.  The forecast error means are found in 
parentheses below each variable name.  Unlike the modified Theil inequality coefficients, the 
differential error regression results provide mixed results, with the differential error regression 
results showing the random walk as statistically significant for commercial property values, but 
with inconclusive results regarding industrial property for the random walk benchmark.   
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Table 1.6 
Modified Theil Inequality Coefficients: Traditional Income Elasticity Model RMSEs to Random Walk 

Benchmark & Random Walk with Drift 

    1-step 2-step 3-step 4-step 5-step 6-step 7-step Average 

Commercial           

Random Walk  0.6405 0.8827 1.0246 0.8857 1.0058 0.9744 2.6021 1.1451 

Random Walk w/Drift 2.2608 4.5581 9.5555 13.6787 2.8305 2.4904 493.74 75.5882 

           
Industrial 

Random Walk  9.0255 9.9093 10.2503 1.4894 1.4044 0.2974 0.6807 4.7224 

Random Walk w/Drift 3.3499 8.0503 3.6099 3.2980 1.2304 1.8416 679.7593 100.1628 

           
Average - Random 
Walk 4.8330 25.3960 5.6375 1.18755 1.2051 0.6359 1.6414  
Average - Random 
Walk w/Drift 2.8054 6.3042 6.5827 8.4848 2.0305 2.1660 586.75  
                    

    
 The differential error regression results for random walk with drift also differ from the 
modified Theil inequality coefficients that indicated the random walk with drift model as the 
superior model for both commercial and industrial property values.  As shown in Table 1.8, the 
differential error regression results show the random walk with drift model to be the more 
accurate technique for commercial property values, but indicating inconclusive results regarding 
industrial property for random walk with drift.   
  

Table 1.7 
Differential Error Regression Results: Random Walk Benchmark vs. Traditional Income Elasticity Model 

Forecast Errors 

β1 β2 Joint F-test

(t-statistic) (t-statistic) (probability)

Commercial 3,600,377 0.09 1.36 Random Walk

(Both error means neg.) (0.077749) (1.167477) (0.260122)

Industrial -64,971,737 1.26 10.31 Inconclusive

(RWE neg.; Tradt'l Income Elasticity Pos.) (-2.174923) (3.210359) (0.005458)

Most AccurateVariable 

 
 

Table 1.8 
Differential Error Regression Results: Random Walk Benchmark with Drift vs. Traditional Income Elasticity 

Model Forecast Errors 

β1 β2 Joint F-test

(t-statistic) (t-statistic) (probability)

Commercial -386,000,000 -0.051 0.253 Random Walk with Drift

(Both error means neg.) (-7.797202) (-0.502965) (0.621842)

Industrial -95,865,765 0.362 1.315 Inconclusive

(RWE neg.; Tradt'l Income Elasticity Pos.) (-3.54699) (1.146556) (0.268423)

Variable Most Accurate
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Regional Structural Econometric Model Specifications 

 
The empirical summaries for the regional structural econometric model for all property 

value equation parameter estimates are reported in Table 2.1.  The sample period used for the 
estimates is 1981 to 2007.   On average r-squared is 95.1 percent for each equation. However, it 
is important to remember that searching for a high r-squared runs a real danger of finding an 
equation that fits the data, but captures accidental features of the particular data rather than the 
underlying relationship that is sought (Kennedy, 2003).  Table 2.2 shows forecast results for each 
variable.  Of the three proportions, the bias proportion, Um, is relatively large; this means that the 
average predicted change deviates substantially from the average realized change (Theil, 1966).  
However, each U-statistic is relatively low, where if U = 0 there is a perfect fit.  

   

Table 2.1 

Regional Structural Econometric Model (2) Estimation Results 

Equation 1  Industrial Property, valuation in dollars     

  (INDUSTRIAL) = f(ELYP, ELPPOP, INDSPER)     

  Ordinary Least Squares, Annual Data for 24 periods 1982 to 2005  
           

  (INDUSTRIAL) = - 984,667,083.90 + 0.0075 *(ELYP) + 1,990.96 * (ELPPOP)  

   (0.133)   (0.652)  (-0.022)   

  + 1.945 * (INDSPER)         

  (1.75)         
           

  Sum Sq 3.77E+16  Std Err 4.58E+07  LHS Mean 3.98E+08  

  R Sq 0.9179  R Bar Sq 0.9042  F (1,18) 6.310  

  DW 2.2713        

Equation 2  Commercial Property, valuation in dollars     

  (COM) = f(ELYP, ELPPOP, OCOMSP)     

  Ordinary Least Squares, Annual Data for 24 periods  1982 to 2005  
           

  (COM) = 2,853,655,471 +  0.288284 * (ELYP) - 5004.393 * (ELPPOP) +1.307*(EPOCOMSP) 

   (4.51)  (11.09)  (-3.702) (1.56)  
        

  Sum Sq 3.34E+17  Std Err 1.23E+08  LHS Mean 2.66E+09  
  R Sq 0.9849  R Bar Sq 0.9829  F (1,22) 20.330  

  DW 1.3097        

  
The regional structural econometric model (RSEM) is also benchmarked against random 

walk and random walk with drift benchmarks using the modified Theil inequality coefficients 
and error differential results. The modified Theil inequality coefficients are calculated as the 
ratios of the RSEM’s root-mean-square-errors to those associated with the random walk and 
random walk with drift. Again, a modified inequality coefficient of less than one indicates that 
the RSEM forecasts are more accurate than those of the random walk or random walk with drift.  
Conversely, a U-coefficient greater than one implies that the random walk or random walk with 
drift model generates smaller absolute forecast errors and is a more accurate forecast method.   
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Table 2.2 
Regional Structural Econometric Model (2) Forecast Results 

  1-step 2-step 3-step 4-step 5-step 6-step 7-step 

Commercial 

RMSE 
   

271,786,969  
  

252,826,354 
  

160,246,683 
  

356,738,728 
  

437,982,903  
   

624,733,161 
 

591,105,681   

Theil –U 0.0381 0.0333 0.0199 0.0408 0.0486 0.0642 0.0584 

Um 0.8845 0.9701 0.8544 0.3036 0.3114 0.9997 1.0000 

Us 0.1155 0.0238 0.0959 0.4721 0.6886 0.0003 0.0000 

Uc 0.0000 0.0060 0.0497 0.2243 0.0000 0.0000 0.0000 
Industrial 

RMSE 
   

34,679,595  
  

50,713,370 
  

78,708,442 
  

58,455,663 
  

66,513,674  
  

182,061,764 
  

204,902,170 

Theil –U 0.0332 0.0468 0.0711 0.0494 0.0553 0.1325 0.1367 

Um 0.3495 0.7473 0.9076 0.1458 0.0000 0.8373 1.0000 

Us 0.0233 0.0380 0.0148 0.7354 1.0000 0.1627 0.0000 

Uc 0.6272 0.2146 0.0775 0.1187 0.0000 0.0000 0.0000 

                

 
Modified Theil Inequality Coefficients: Regional Structural Econometric Model to 

Random Walk and Random Walk with Drift 

  
 Modified Theil inequality coefficients results between the regional structural econometric 
model (RSEM) and random walk and random walk with drift benchmarks are in Table 2.3.  
Using U< 1.0 as a general guideline, it is apparent that the RSEM compares favorably to the 
random walk benchmarks overall.  In 9 of the 14 inequality coefficients estimated, results of 0.99 
or less are observed.  For commercial property values, the RSEM outperformed the random walk 
benchmarks 6 out of 7 steps.  For industrial property values, the random walk benchmarks 
outperformed the RSEM 4 out of 7 steps. The random walk with drift consistently out performs 
the RSEM with 12 of the 14 modified inequality coefficients greater than one, with 7 out of 7 for 
commercial property values and 5 out of 7 times for industrial property values.  
  

Table 2.3 

Modified Theil Inequality Coefficients: Regional Structural Econometric 
Model RMSEs to Random Walk Model & Random Walk with Drift 

    1-step 2-step 3-step 4-step 5-step 6-Step 7-Step Average 

Commercial           

Random Walk  0.4718 0.5125 0.3929 0.5281 0.7149 0.6556    1.6297 0.7008 

Random Walk w/Drift 1.6652 2.6464 3.6641 8.1569 2.0118 1.6756     309.23 47.0069 

            

Industrial           

Random Walk  1.7518 2.7395 3.8764 0.5218 0.6375 0.6753      1.2189 1.6316 

Random Walk w/Drift 0.6502 2.2256 1.3652 1.1553 0.5585 4.1822 1,217.2922  175.3470 

            

Average - Random Walk 1.1118 1.6260 6.2693 .5250 0.6762 0.6654 1.4243   
Average - Random Walk 
w/Drift 1.1577 2.4358 2.5147 4.6561 1.2852 2.9289 763.2611  
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Differential Error Regression Results: Random Walk and Random Walk with Drift 

Benchmarks vs. Regional Structural Econometric Model Forecast Errors 

 
Differential error regression results for the random walk benchmark compared to the 

regional structural econometric model (RSEM) are found in Tables 2.4 and 2.5.  The differential 
error regression results reflect that the RSEM is the most accurate and superior model for both 
commercial and industrial property values when compared to the random walk and the random 
walk with drift benchmarks.  The differential error regression results are at odds with the 
modified Theil inequality coefficients that indicated that the random walk model was favored 
over the RSEM for industrial property values and the random walk with drift benchmark was 
statistically more accurate for both commercial and industrial property values, outperforming the 
RSEM 12 of the 14 steps.  

 
Table 2.4 

Differential Error Regression Results: Random Walk Benchmark vs. Regional Structural  
Economic Model Forecast Errors 

β1 β2 Joint F-test

(t-statistic) (t-statistic) (probablity)

Commercial 244,000,000 0.238 8.404 RSEM

(Both error means neg.) (5.803551) (2.898948) (0.010464)

Industrial 5,446,736 0.242 9.659 RSEM

(Both error means neg.) (0.426817) (3.107858) (0.006768)

Variable Most Accurate

 
 

Table 2.5 

Differential Error Regression Results: Random Walk with Drift vs. Regional Structural  
Economic Model Forecast Errors 

β1 β2 Joint F-test

(t-statistic) (t-statistic) (probablity)

Commercial -146,000,000 0.108 0.833 RSEM

(Both error means neg.) (-2.932288) (0.912946) (0.374823)

Industrial -25,447,292 0.119 0.571 RSEM

(Both error means neg.) (-1.30864) (0.755742) (0.460786)

Variable Most Accurate

 
 

UNIVARIATE ARIMA MODEL SPECIFICATIONS 

 
 Functional form for univariate ARIMA models depends critically upon the stationarity 
characteristics associated with the series.  Both property valuation series require first-order 
differencing to obtain stationarity.  In both cases, the same univariate ARIMA model framework 
was utilized for each property category for all 14 sample sub-periods.  
 Table 3.2 describes the ARIMA forecast results for each property category at each step 
length from 2001 through 2007.  Each specified property simulates results in a low U-statistic 
and relatively low covariance proportions.  The highest U-statistic occurs in the seventh step-
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length of RSF at 0.20 making it the worst forecast length in the group.  Commercial property 
have low U-statistics, but relatively low covariance proportions as well, making the results less 
than optimal. 

Table 3.2 
Univariate ARIMA Model (3) Forecast Results 

  1-step 2-step 3-step 4-step 5-step 6-step 7-step 

Commercial 

RMSE 
   

280,794,807  
  

307,179,111 
  

277,415,781 
  

259,840,883 
  

386,820,801  
   

649,536,369 
 

707,889,792   

Theil –U 0.0394 0.0407 0.0350 0.0295 0.0407 0.0669 0.0707 

Um 0.7919 0.9271 0.9529 0.2417 0.3852 0.9806 1.0000 

Us 0.2033 0.0721 0.0220 0.4816 0.5996 0.0194 0.0000 

Uc 0.0050 0.0008 0.0251 0.2767 0.0152 0.0000 0.0000 

Industrial 

RMSE 
   

82,690,062  
  

36,213,886 
  

51,819,967 
  

47,388,724 
  

144,231,592  
  

243,349,589 
  

2,866,008 

Theil –U 0.0750 0.0338 0.0526 0.0411 0.1103 0.1845 0.1367 

Um 0.8795 0.6747 0.7794 0.0332 0.2541 0.8305 1.0000 

Us 0.0659 0.0811 0.0079 0.5789 .6288 0.0779 0.0000 

Uc 0.0546 0.2441 0.2127 0.3879 0.1172 0.0916 0.0000 
                

 
Table 3.3 

Modified Theil Inequality Coefficients: Regional Economic Structural Model RMSEs to Random Walk 

Model & Random Walk with Drift 

    1-step 2-step 3-step 4-step 5-step 6-step 7-step Average 

Commercial 

Random Walk 0.4874 0.6226 0.6802 0.3847 0.6314 0.6817 1.9517 0.7771 

Random Walk w/Drift 1.7204 3.2154 6.3431 5.9413 1.7768 1.7421 370.32 55.8659 

            

Industrial           

Random Walk 4.1769 1.9563 2.5521 0.4230 1.3823 0.9026 1.7034 1.8709 

Random Walk w/Drift 1.5503 1.5893 0.8988 0.9366 1.2111 5.5900 1701.1008 244.6967 

            

Average - Random Walk 4.6643 1.2895 1.6162 0.4039 1.0069 0.7922 1.8276   

Average - RW w/Drift 1.6354 2.4024 3.6210 3.4390 1.4940 3.6661 1035.7104   

 

Modified Theil Inequality Coefficients: Univariate ARIMA Model to Random Walk and 

Random Walk with Drift 

 
Modified Theil inequality coefficient results using the standard Box-Jenkins equations 

versus random walk and random walk with drift benchmarks are shown in Table 3.3.  Overall, 
random walk and random walk with drift outperformed the ARIMA in three of the four possible 
events.  The ARIMA model performs favorably compared to the random walk benchmark for 
commercial but not for industrial properties.  As shown in Table 3.3, the ARIMA forecasts for 
commercial property values are favorable to the random walk benchmarks at all steps except the 
seventh step.  For industrial property values, however, the random walk benchmark outperforms 
the ARIMA model 5 out of 7 steps, with modified Theil inequalities greater than 1.0.   However, 
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the random walk with drift model consistently outperforms the ARIMA model for both 
commercial and industrial property, 7 out of 7 steps for commercial and 5 out of 7 steps. 
 
Differential Error Regression Results: Random Walk and Random Walk with Drift 

Benchmarks vs. ARIMA Model Forecast Errors 

  
The differential error regression results for the ARIMA model compared to the random 

walk and random walk with drift benchmarks can be found in Tables 3.4 and 3.5.  As was the 
case with the modified Theil inequality coefficients, the ARIMA model proved superior to the 
random walk model for commercial property values and, similar to the inequality coefficients, 
the random walk with drift proved statistically more accurate that the ARIMA model.  However, 
the error differential results for random walk for industrial property values and random walk with 
drift for commercial proved to be inconclusive.  

 

Table 3.4 

Differential Error Regression Results: Random Walk Benchmark vs. ARIMA  
Forecast Errors 

β1 β2 Joint F-test

(t-statistic) (t-statistic) (probablity)

Commercial 230,000,000 0.308 9.531 ARIMA

(Both error means neg.) (4.7997) (3.0872) (0.0071)

Industrial -5,362,541 0.081 0.938 Inconclusive

(Both error means neg.) (-0.3477) (0.9684) (0.3473)

Variable Most Accurate

 
 

Table 3.5 

Differential Error Regression Results: Random Walk Benchmark  
with Drift vs. ARIMA Forecast Errors 

β1 β2 Joint F-test

(t-statistic) (t-statistic) (probablity)

Commercial -160,000,000 0.189 1.631 Inconclusive

(Both error means neg.) (-2.8386) (1.2773) (0.2197)

Industrial -36,256,569 -0.101 0.304 Random Walk with Drift

(Both error means neg.) (-1.4408) (-0.5517) (0.5888)

Variable Most Accurate

 
 

TREND MODEL SPECIFICATIONS 

 
 Table 4.1 gives the equation estimation results of the trend analysis. The commonly used 
trend model performed well, with statistically significant coefficients for all property types.  The 
forecast results in Table 4.2 of the trend analysis also struggled with U-statistics. With relatively 
low U-statistics and high bias proportions the trend analysis as with other models is unable to 
explain the large prediction error that occurs in step-length five through seven.   
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Table 4.1 
Trend Analysis (4) Estimation Results 

Equation 1  Industrial Property, valuation in dollars    

  INDUST = f(t)       

  Ordinary Least Squares, Annual Data for 23 periods 1985 to 2007 
          

  INDUST = -4.67E+10 + 23,618,144 * (t)     

   (-11.26)  (11.36)     
          

  Sum Sq 9.18E+16  Std Err 6.61E+07  LHS Mean 4.18E+08 

  R Sq 0.8600  R Bar Sq 0.8534  F (1, 21) 126.79 

  DW 1.3018       

Equation 2  Commercial Property, valuation in dollars    

  COM = f(t)       

  Ordinary Least Squares, Annual Data for 27 periods 1981 to 2007 
          

  COM = -.250E+11  - 1.27E+08 * (t)     

   (-14.98)  (15.15)     
          

  Sum Sq 2.86E+18  Std Err 3.38E+08  LHS Mean 2.76E+09 

  R Sq 0.9017  R Bar Sq 0.8978  F (1,25) 224.44 

  DW 0.2918       

          

Table 4.2 

Trend Model (4) Forecast Results 

  1-step 2-step 3-step 4-step 5-step 6-step 7-step 

Commercial 

RMSE 473,871,397 
   

546,953,320  
  

546,792,885 
  

792,579,327 
  

101,164,871 
   

1,142,941,317  
 

1,107,403,602   

Theil –U 0.0685 0.0750 0.0715 0.0966 0.1160 0.1240 0.1153 

Um 0.9430 0.9663 0.9844 0.8474 0.8605 0.9877 1.0000 

Us 0.0566 0.0335 0.0139 0.1443 0.1379 0.0123 0.0000 

Uc 0.0004 0.0002 0.0017 0.0083 0.0015 0.0000 0.0000 
 
Industrial 

RMSE 
   

82,569,420  
   

85,834,617  
  

101,705,776 
  

73,498,647 
  

132,976,729 
   

165,274,681  
  

208,887,468 

Theil –U 0.0750 0.0764 0.0899 0.0612 0.1004 0.1187 0.1392 

Um 0.8609 0.9307 0.9572 0.2831 0.1696 0.8006 1.0000 

Us 0.0113 0.0007 0.0003 0.6056 .8304 0.1994 0.0000 

Uc 0.1278 0.0686 0.0426 0.1112 0.0000 0.000 0.0000 
        

Modified Theil Inequality Coefficients: Trend Model RMSEs to Random Walk and 

Random Walk with Drift 

 
Modified Theil Inequality Coefficients results between the trend model and random walk 

benchmarks and the random walk with drift are in Table 4.3.  Using U< 1.0 as a general 
guideline, it is apparent that the random walk and the random walk with drift benchmarks out 
performs the trend model for commercial and industrial property values.  
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 The random walk model outperformed the trend model 6 out of 7 steps for commercial 
property values and 5 out of 7 steps for industrial property values, with modified Theil 
inequalities being greater than 1.0.  For the random walk with drift model, the trend model 
outperforms that model 13 of the 14 modified inequality coefficients greater than one, with 7 out 
of 7 steps for commercial property values and 6 out of 7 steps for industrial property values. 
 

Table 4.3 
Modified Theil Inequality Coefficients: Trend Model RMSEs to Random Walk Model & R Walk with a Drift 

    1-step 2-step 3-step 4-step 5-step 6-step 7-step Average 

Commercial           

Random Walk 0.8225 1.1087 1.3406 1.1734 1.6668 1.1995 3.0531 1.5319 

Random Walk w/Drift 2.9034 5.7252 12.5025 18.1224 4.6905 3.0655 579.32 101.368 

            

Industrial           

Random Walk 4.1708 4.6368 5.0090 0.6560 1.2745 0.6130 1.2387 2.8238 

Random Walk w/Drift 1.5408 0.1681 1.7640 1.4527 1.1166 3.7966 1,237.0 207.57 

            

Average - Random Walk 2.4967 2.8728 3.1748 0.3867 1.4707 0.9063 2.1459   

Average - RW w/Drift 2.2221 2.9467 7.1333 9.7876 2.9035 3.4311 908.16   

 
Differential Error Regression Results: Trend Model Forecasts Errors Compared to 

Random Walk and Random Walk with Drift Benchmarks  

 
The differential error regression results for random walk and random walk with drift vs. 

trend forecast errors, as shown in Tables 4.4 and 4.5, differ somewhat from the results found 
from the modified Theil inequality coefficients. Where random walk and random walk with drift 
benchmarks were found to be superior to the trend model for both commercial and industrial 
property values for the modified Theil inequality coefficients, the error regressions results show 
the trend model is statistically significant for commercial relative to the random walk benchmark 
but the random walk with drift model is shown to be statistically most accurate for industrial 
property values.  However, differential error regression results for industrial property values for 
both random walk and random walk with drift were found to be inconclusive. 

 
Table 4.4 

Differential Error Regression Results: Random Walk Benchmark vs.  

Trend Forecast Errors 

 
β1 β2 Joint F-test

(t-statistic) (t-statistic) (probability)

Commercial -154,000,000 0.0071 0.0087 Trend

(Both Error Means Neg.) (-3.2258) (0.0932) (0.9269)

Industrial -14,989,673 0.0071 13.2269 Inconclusive

(RW neg; Trend pos) (-0.9831) (0.0932) (0.0022)

Variable Most Accurate
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Table 4.5 
Differential Error Regression Results: Random Walk Benchmark with Drift vs. Trend Forecast Errors 

β1 β2 Joint F-test

(t-statistic) (t-statistic) (probability)

Commercial -544,000,000 -0.1401 2.1254 Random Walk with Drift

(Both error means neg.) (-10.5138) (-1.4579) (0.1642)

Industrial -37,762,072 0.2564 2.3879 Inconclusive

(RW neg; Trend pos) (-2.0923) (1.5453) (0.1418)

Variable Most Accurate

 
Modified Theil Inequality Coefficients 

 
Results from the modified Theil inequality coefficients indicate that the random walk 

with drift model outperformed all four models (the traditional income elasticity model, the 
regional structural econometric model, the ARIMA model, and the trend model) for both 
commercial and industrial property values. The modified Theil inequality coefficients results 
also indicate that the random walk model outperformed all four models for industrial property 
values.  In addition, the random walk benchmark is found to be superior to the trend model for 
commercial property values.  Overall, the random walk and random walk with drift models 
outperformed the other four models 13 out of 16 possible events.  
 When comparing the average values of the modified Theil inequality coefficients for both 
random walk and random walk with drift, as shown in Table 5.1, the results show that random 
walk outperformed all four forecasting models 20 out of 28 calculations, while the random walk 
with drift outperformed the other models in 28 out of 28 steps.  
 

Table 5.1 

Average Values of the Modified Theil Inequality Coefficients at each Step Length 

1-step 2-step 3-step 4-step 5-step 6-step 7-step Average

Traditional Income Elasticity

versus Random Walk 4.8330 25.3960 5.6375 1.1876 1.2051 0.6359 1.6414 5.7901

versus Random Walk with a Drift 2.8054 6.3042 6.5827 8.4848 2.0305 2.1660 586.7500 87.8748

Regional Structural Economic

versus Random Walk 1.1118 1.6260 6.2693 0.5250 0.6762 0.6654 1.4243 1.758

versus Random Walk with a Drift 1.1577 2.4358 2.5147 4.6561 1.2852 2.9289 763.2611 111.177

ARIMA 

versus Random Walk 4.6643 1.2895 1.6162 0.4039 1.0069 0.7922 1.8276 1.6572

versus Random Walk with a Drift 1.6354 2.4024 3.6210 3.4390 1.4940 3.6661 1035.7100 150.2810

Trend 

versus Random Walk 2.4967 2.8728 3.1748 0.3867 1.4707 0.9063 2.1459 1.0873

versus Random Walk with a Drift 2.2221 2.9467 7.1333 9.7876 2.9035 3.4311 908.1600 133.7978
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Recommendations for Future Research 

 
These results suggest that further research employing different sample data sets and 

additional techniques may prove to be valuable, especially given the importance of property 
valuation on municipal budgeting. Given the absence of other studies in this area, additional 
verification of these results would be helpful. Because El Paso is a border community it may 
prove valuable to look at other regions that are not adjacent to foreign countries.  There is no 
reason, however, to assume that property valuations for other border municipalities behave the 
same as in El Paso, so further analysis for border area cities is also recommended.  Due to the 
importance of this category as an indication of a healthy economy, more attention and empirical 
research is warranted. 
 

CONCLUSIONS 

 

 This study sought to evaluate the accuracy and reliability of alternative methods of four 
econometric and statistical alternatives used to forecast property values for non-residential 
commercial and industrial property in El Paso.  Although the error differential regression results 
provide mixed results relative to the modified Theil inequality coefficients, the results from the 
error regression do support the findings from the modified Theil inequality coefficients in five 
out of the sixteen possible events.  Specifically, the differential error regression results support 
the modified Theil inequality coefficients results by indicating that the regional structural 
econometric model and the ARIMA models are statistically more accurate than the random walk 
model for commercial property values.   
 Like the modified Theil inequality coefficients, the differential error regression results 
also show the random walk with drift model outperforming both the traditional income elasticity 
model and the trend model for commercial property values, while outperforming the ARIMA 
model for industrial property values.  However, for the traditional income elasticity model, the 
differential error regression results prove to be inconclusive for both commercial and industrial 
property values relative to both random walk and random walk with drift models.  Relative to the 
ARIMA model, the differential error regression results prove to be inconclusive for industrial 
property values relative to random walk and for commercial property values relative to the 
random walk with drift model.  In addition, the differential error regression results were 
inconclusive for the trend model relative to industrial property values for both random walk and 
random walk with drift models.   
 Given the importance of property valuation on municipal budgeting, further research 
employing different sample data sets and additional techniques may prove to be both worthwhile 
and valuable.   
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