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Abstract

We model normal-quadratic social learning with agents who observe a summary statistic over

past actions, rather than complete action histories. Because an agent with a summary statistic

cannot correct for the fact that earlier actions influenced later ones, even a small presence of old

actions in the statistic can introduce very persistent errors. Depending on how fast these old

actions fade from view, social learning can either be as fast as if agents’ private information were

pooled (rate n) or it can slow to a crawl (rate lnn). We also examine extensions to learning

from samples of actions, learning about a moving target, heterogeneous preferences, and biases

toward own information.

1 Introduction

We introduce a model of social learning in which people learn from statistics over other people’s

past actions. In the baseline model, this statistic is an average over a large pool of past actions;

one could think of it as some kind of macroeconomic indicator. In a variation, the statistic is an

average over a small, idiosyncratic sample of actions; one could think of this as word of mouth

learning. The key feature in both cases is that the signal summarizes history: context about the

sequence of individual past actions is lost. This lack of context is costly because it prevents people

from unraveling interdependencies among past actions generated by social learning in the past. Our

main aims in the paper are to show that this typically creates a bias toward old information, and

to study how this bias affects the speed of learning.1

The baseline model PA (for population average) builds on Vives [19]. A new cohort of agents

arrives at each stage (1, 2, ..., n, ... and so on) and must choose an action once and for all in order

to minimize a quadratic loss function. The common optimal action θ is unknown, but each agent

receives a private signal, normally distributed around θ, and an observational signal based on prior

agents’ behavior. After acting the agent passes into an observation pool: this is a collection of agents

1Herding on a sub-optimal action is not a possibility in our model; the continuous action space ensures that learning
always continues and beliefs eventually converge to the truth. However there are natural comparisons between the
mechanisms that cause slow learning in our model and the factors that stop learning in herding models — we touch on
these later in this section.
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whose actions remain visible or on display, in a sense that we clarify momentarily. Agents who are

already in the pool exit from it at some rate; this is a shorthand way to say that their actions

no longer contribute to observations by future agents. The observational signal that an agent sees

before deciding is the mean action in this pool. The only difference in the sample average (SA)

variation of the model is that each agent sees the mean of a random sample of actions drawn from

the observation pool, rather than the average over the whole pool.

For the baseline model, the observation pool can be interpreted as the set of past actors who

contribute to some aggregate measurement. To illustrate, imagine that new cohorts of youths

arrive periodically and make decisions about how much education to acquire. Each of them can

see a statistic on the average educational attainment of adults in the labor force. In this case,

the observation pool — the labor force — reflects the past education choices of people who are still

working. Because older people are more likely to have left the labor force, the observational signal

is (to a first approximation) a recency-weighted average of past choices.2 As a second example,

suppose that most people begin to save seriously for retirement around age forty, make once-and-

for-all decisions about a savings rate, and agree that aiming for a 70% ratio of retirement income

to current income is desirable.3 The savings rate needed to hit this goal is uncertain, but people

can see a government statistic on the average savings rate among 40-50 year olds. In this case, the

observation pool consists largely of decisions that are one to ten years old, but there may be some

older decisions as well. To illustrate a case where the “statistic” is less literal, consider a small

farmer in a developing country whose village has adopted a new crop. In deciding how heavily to

irrigate his field he may look at the level of the local reservoir to get an indication of the average

water use by farmers who planted earlier than him. The observation pool model is well suited to

other situations where people see a blend of recent and older actions; by varying the rate at which

old actions exit out of the pool, one can give the decisionmaker an average of all past actions, or

only the most recent ones, or a recency-weighted blend.

The sample average model describes settings where no comprehensive public statistic is available,

and people collect a few examples to guide their decisions. For example, a new employee organizing

her retirement plan may ask a few of her co-workers about the stock-bond allocations they chose,

or a sprinter interested in optimizing his diet may browse a few web sites to see the protein-to-

carbohydrate ratios that other athletes mention. In each case the observation pool of actions that

are available to sample may be tilted toward recent ones — co-workers of longer tenure at the firm

retire or quit, and older websites may eventually be updated or taken down. To apply model SA

to examples like these, we need two additional criteria to hold. First, the decisionmaker has poor

contextual information about exactly when her samplees acted and what observations they had

access to at the time. This would be true if the employee does not know exactly when her co-

2Of course, other factors besides age can affect the set of predecessors that is available to observe. Selection of the
observational signal along non-age dimensions creates additional interesting issues for social learning, but we will not
tackle those issues here.

3Of course, the savings rate is not really a once-and-for-all decision, but there is considerable evidence (e.g. Duflo
and Saez [9]) that people do not revise their retirement plans very often.
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workers were hired, or if the athlete’s web sites are undated and lack references.4 Loosely, we may

say that the decisionmaker has no way to distinguish one sampled action from another.5 Second,

the way the decisionmaker handles context-free actions is to treat them all equally.6 Under these

assumptions, the best estimate of θ that the decisionmaker can form from her sample will be the

sample average. By assuming that the decisionmaker simply observes this sample average directly,

model SA stylizes the idea of observing individual but context-free actions.

Learning is measured by the precision of agents’ estimates of θ, or inversely by the squared error

in their actions. As a benchmark, if agents’ private signals were simply published as soon as they

arrived, then action precision would grow at rate n (where n is the number of cohorts that have

arrived); we call this the full-information rate of learning, or fast learning. Our main results for

model PA (Proposition 2) and SA (Proposition 6) show that social learning proceeds at the log of the

rate at which old actions exit from the observation pool.7 If old actions exit at least exponentially

— that is, if no more than e−k of a cohort’s actions remain in the pool k periods after that cohort

acted — then learning is fast. If old actions exit only polynomially (e.g., only k−a actions remain k

periods later) then learning slows to the log of the full-information rate. This is exceedingly slow:

not before roughly en cohorts have acted will public information be as good as it would have been

if the first n cohorts had published their signals.

To illustrate the bias that gives rise to slow learning, suppose that old actions never die in model

PA, so each agent observes the equally weighted average of all past actions. Write x1, x2, x3, ... for

the average action of agents in cohorts 1, 2, 3, and so on. Consider all of the channels through which

private information held by the cohort 1 agents becomes impounded in the observational signal seen

at stage n+1. Action x1 appears in its own right, but it also transmits influence indirectly through

its effect on x2, the effect of both x1 and x2 on x3, and so on. In this way, the indirect influence

of an old action can come to dwarf its direct contribution to the summary statistic. Fast social

learning requires old actions to be purged fast enough to counter not just their direct influence, but

also this compounding indirect influence. To measure the bias toward old information, we calculate

the fraction of the squared error in the observational signal that can be attributed to idiosyncratic

4This issue has received considerable scrutiny in the medical community in the context of studies about the quality
of online medical information. In one meta-study covering up to 1300 websites [12], researchers found that 58% to
83% of information sources failed to report even minimal information about how current their content was (such as
when the site was created or last updated).

5 In reality, the employee probably has some inkling about the order of her co-workers’ decisions. But the main
reason that the order of decisions is important for inference is that she must be able to assess who her co-worker could
have relied on for advice, and who might have relied on him. This information may be much murkier to her.

6Two notes. First, since actions will turn out to be normally distributed about θ, an optimal estimate based on
past actions will always be a linear combination with some weights. By “treat equally,” we mean the weights must be
equal, and this leads to the sample average.
Second, demanding that an agent treat unordered actions equally is not an innocuous constraint. A statistically

clever agent should try to find clues to the order of the actions in the way they are grouped (that is, which ones
are most similar or least similar to each other), and treating actions differently based on these clues should improve
the estimate of θ. However, this type of analysis appears terrifically complicated — one must estimate not just when
predecessors acted, but also what they believed about when their own predecessors acted, and so on. Assuming equal
treatment amounts to an assumption that agents are not this clever.

7Propositions 2 and 6 are actually cast in terms of the rate at which the observation pool grows, which is negatively
related to how fast old actions die out. The more intuitive explanation here follows Corollary 1.
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error in each prior private signal (Proposition 3). If the observation pool aggregated information

efficiently, then the share of this error due to any single signal would tend to zero over time. However,

when old agents disappear from the observation pool slowly (sub-exponentially), the idiosyncratic

error they introduce becomes locked in, as a fraction of total error. In one example, the error in the

signals of the very first cohort to act is responsible for at least 82% of the error of every subsequent

agent, no matter how far into the future! An agent in the model understands that she is facing

an echo chamber — from her point of view, her recent predecessors have parroted the same old

information too much and relied on their new private signals too little. But to correct this problem,

she would need to be able to trace the chain of dependencies from one action to the next, and her

information is not rich enough to let her do this. This also helps to account for the similar results in

the population average and sample average models; because errors in actions quickly become highly

correlated (Proposition 5), larger samples are not much more informative than small ones.

In many practical settings, people’s optimal actions will be similar but not necessarily identical.

For example, the optimal level of schooling for a particular student may depend on her aptitude,

finances, and so forth. Thus we extend model PA to allow for heterogeneity: each individual’s

private signal is now centered on her personal best action, which differs from θ by a relative taste

shock (her ‘type’). If agents know their relative types (such as a student who understands how

smart she is relative to her classmates), the prior results still apply; each agent just adjusts her

best estimate of θ by the taste shock. However, if an agent does not know her type, she must rely

relatively heavily on her private signal (since this is her only personalized information). In this case,

heterogeneity induces a bias toward recent information, and so the persistence of old actions in the

observation pool, by creating a countervailing bias, can actually be helpful rather than pernicious

(Proposition 7). The logic of the recency bias begins by noting that an agent now views all of her

predecessors as having over-relied on their private signals, since their taste shocks are not relevant

to her. However, it is her recent predecessors whose over-reliance is most egregious to her, since

these agents saw relatively better observational signals of θ to which (in her view) they should have

deferred much more than they did.

While we have focused on social learning about a fixed parameter θ, in many settings the target

of learning might be changing over time. To study this case, we extend the model to allow θ to drift

according to a random walk. Not surprisingly, this intensifies the harm done by old actions in the

observation pool, as those actions are now not only too influential, but also out of date. In fact, we

show that if old actions do not exit at least exponentially fast, then the observational signal becomes

worthless: its precision tends to zero, and agents rely entirely on their private signals (Proposition

9).

All of our analysis relies on a uniform exit assumption. In effect, this says that while the

contributions of two old cohorts to the observational signal may decline at any rate one likes, their

weights relative to each other do not change over time. Uniform exit buys a great deal of tractability

— it gives the learning dynamics a recursive characterization — but it has no deep justification. In

general under non-uniform exit the state space of the learning dynamics explodes, making analysis
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very difficult, but we provide examples illustrating that a small chance of observing an arbitrarily

old action can suffice to slow down learning. One of these is rather striking: suppose that only

actions in the very first cohort have any persistence, perhaps due to some first-mover prominence;

otherwise the observational signal is focused on the most recent actions. Furthermore, let the weight

on the first-movers in the observational signal tend to zero over time. Unless that weight tends to

zero fast enough, the long run rate of social learning will still be slow.

Much of the existing literature on sequential observational learning, following Banerjee [3] and

Bikchandani, Hirshleifer, and Welch [5], has focused on herding. In this literature, as in our paper,

an agent uses two sources of information to make a decision: first, some private information and

second, her observations about how other agents have acted in similar decision problems.8 It is well

understood that this generates an externality — an agent does not account for the fact that future

agents will tend to be more interested in her exclusive private information than in her observational

information (which they may be able to duplicate), thus she places too little weight on her private

information when she acts. Still, this would not cause a problem for future agents if they were able

to perfectly invert her action, thus recovering her private signal. The central insight of the herding

literature is that if actions are imperfectly invertible, then this externality can slow down learning

or even drive it to a halt. In many of the classic herding papers, this non-invertibility arises because

the action space has lower dimension (often the action is binary) than posterior beliefs. With rare

exceptions, this literature treats the full sequence of actions as observable in order to focus on the

challenge of recovering beliefs from actions.

In a similar vein, Vives [19] assumes that the full sequence of actions is observed, but that each

action is observed with noise, so once again beliefs cannot be perfectly recovered from actions. He

shows that the rate of learning slows to n
1
3 . Our model is very similar, but the only source of noise is

the conflation of early and late actions — we show that this can be an even more severe impediment

to learning.

Our paper is not the first to dispense with the assumption that the sequence of past actions

is perfectly observed. Ellison and Fudenberg [10], [11] and Banerjee and Fudenberg [4] introduce

models in which agents learn from aggregate statistics about samples of past actions (or outcomes).

Because these models all give agents a binary action choice, their focus is necessarily on whether,

rather than how quickly, complete learning is achieved. Like us, Smith and Sorensen [17] show the

desirability of a sampling scheme that favors recent actions, but their results are also on whether

learning is achieved, not its speed. Çelen and Kariv [7] revisit the binary action, sequential model

under the extreme assumption that only the most recent action is observed. They find that while

herding is never permanent (as it would be with perfectly observed histories), longer and longer spells

of herding occur as time goes on. This highlights an important difference between models with and

without an invertible mapping from beliefs to actions — in our model, when everyone observes her

immediate predecessor, that observation is sufficient for the predecessor’s belief, and learning is at
8Actually, one could imagine many decision outcomes that could be observed instead of, or in addition to, actions.

As the informational issues are similar regardless of which outcome variable is observed, we follow most of the literature
in focusing on observable actions.
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the full information rate. In an influential paper, Smith and Sorensen [16] showed among other

results that complete learning is achieved with finite actions if at least some agents have private

signals that are arbitrarily precise. They point out that a contrarian action is extremely influential

for later agents precisely because the contrarian must have been quite sure of herself to have deviated

from the herd. Callander and Hörner [6] demonstrate that this intuition can apply even when an

agent observes only the total number of choices of each type, rather than the full action sequence.

They develop conditions under which later agents optimally tilt toward the minority, rather than

the majority action.

Another branch of the literature, launched by Bala and Goyal [2], assumes that agents observe

each other according to a social network, typically represented by a graph. Bala and Goyal show

that if the network structure makes particular agents too influential, lock-in on the wrong action can

occur. In DeMarzo, Vayanos, and Zwiebel [8], the network represents a channel for agents to share

beliefs (rather than observe actions or outcomes) with each other. With complete information about

the network structure, each agent faces a very challenging inference problem: she must understand

exactly who learned what from whom in order to correct for correlation and redundancy in neighbors’

beliefs. If agents use simpler inference heuristics, then the information of well-connected individuals

tends to accumulate too much weight. Our paper shares with both of these the intuition that

“over-observation” of a particular set of agents impedes learning, but in our case it is early actors

rather than well-connected ones who are observed disproportionately often. Finally, Acemoglu,

Dahleh, Lobel, and Ozdaglar [1] develop very general conditions on the network topology under

which complete learning is attained. Our objective is complementary to all of these papers; in our

model, complete learning occurs in the limit, and our focus is on how long this takes. The question

is a very practical one because rate n and rate lnn learning are very different animals — the latter

may resemble incomplete learning over any reasonable time horizon.

Finally from a technical point of view, assuming the full sequence of past actions to be perfectly

observed has the advantage of permitting a compact, recursive representation of the learning dy-

namics. (This is its main appeal, since it is a heroic assumption for most practical applications.)

The sequence of observations then constitutes a filtration, the most recent observation suffices as a

state variable (since it is sufficient for all public information), and powerful tools like the Martin-

gale Convergence Theorem can be brought into service. Our uniform exit assumption allows us to

retain the tractability of a recursive model without requiring agents to have unrealistically detailed

information about the past. Extensions to the model that preserve this recursive structure and

avoid adding more state variables are relatively easily handled; we have discussed a few, but one

can imagine many others. Extensions that bring in additional state variables are more challenging;

a comparison of the proofs for models PA (one state variable) and SA (two) will give a sense of the

additional complications.

The rest of the paper is laid out as follows. Section 2 introduces our baseline model (PA),

while Section 3 characterizes the speed of learning and the persistence of old information. Section

4 develops the results for model SA. Section 5 develops extensions, including heterogeneous tastes
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and the moving target. Section 6 examines examples that relax the uniform exit assumption, while

Section 7 concludes.

2 The Model

There is an infinite sequence of cohorts, each consisting of a unit measure of agents, that arrive at

stages {1, 2, ..., n, ...}. The agents in each cohort are identical, in the sense that they face the same

decision and share the same utility function, so we focus on the decision problem of a representative

agent from cohort n. To minimize ambiguous pronouns, we usually keep the convention that an

agent whose decision being examined is female while her predecessors are male.9 At stage 0, Nature

chooses once-and-for-all a value for θ ∈ <, the parameter that the agents will try to estimate.
Agents’ priors on θ are diffuse.10 At stage n, agent ni arrives (for i ∈ [0, 1]), observes information
Ini , and then chooses an action xni to minimize the quadratic loss function

E((xni − θ)2 | Ini)

The information set Ini = {sni , oni} contains two elements: an individual signal sni , and an obser-

vation oni about past agents’ actions. The individual signal is given by sni = θ + εn + εni , where

εn ∼ N(0, vc) is i.i.d. across cohorts and εni ∼ N(0, vind) is i.i.d. across individuals and cohorts.

The cohort error captures the possibility that a common factor affects the estimates of all agents

who act at stage n, while the individual error captures idiosyncratic noise across agents within a

cohort. We follow Vives [19] in making the convention that the Strong Law of Large Numbers

applies exactly to the individual errors for a cohort, and also to any measurable subset of a cohort.

That is, we assume that for each cohort,11

Z

A
εni di = 0 for any measurable subset A ⊆ [0, 1] . (1)

This implies that the mean of the individual signals in cohort n is
R 1
0 sni di = θ+ εn; as a matter of

shorthand, we will refer to sn = θ+ εn as the ‘cohort signal.’ Similarly, we refer to xn =
R
[0,1] xni di

as the average action in cohort n, or simply the cohort action. For the most part, the analysis will

only require keeping track of sn and xn, not the individual signals and actions. Let v = vc + vind

be the variance of sni . We require v > 0, but we allow the possibility of individual signals that are

uncorrelated (vc = 0) or perfectly correlated (vind = 0) across agents in a cohort. The structure of

9Of course, this convention makes gender time-inconsistent, but that is immaterial to the results.
10None of the results depend materially on diffuse priors, but by using them we will reduce the notational burden

substantially.
11Although property (1) is often used in the economics literature, integrating over a continuum of i.i.d random

variables presents certain technical complications, as discussed by Judd (1985) and Feldman and Gilles (1985). Green
(1994) shows that (1) can be justified if, instead of the usual Borel sets, one endows the population of the cohort with
an uncountably generated sigma-algebra. For the sake of expositional simplicity, we will just assume that (1) holds.
Note that idiosyncratic shocks will not play any role in the main results. If they are absent (that is, if vind = 0), then
(1) can be dropped, and the main results do not change.

7



the game, and the primitives vc and vind are common knowledge; furthermore, each agent knows

which cohort she belongs to. The observational signal oni of agent ni depends on an observation

pool Pn−1 which contains a measure Pn−1 of the agents who arrived in stages 1 through n − 1.
Throughout most of the paper, we make the following assumption about this observational signal.

Population Average (PA) Agent ni observes the mean action x̄n−1 taken by all of the agents in

Pn−1.

This could represent a situation in which agents have access to a public summary statistic about

past actions. In Section 4, we will consider the following alternative assumption.

Sample Average (SA) Agent ni observes the mean action of S individual agents drawn randomly

from Pn−1, for an integer S ≥ 1. (Agent ni does not observe which cohorts these agents were
drawn from.)

After the agents in cohort n choose their actions xni , the observation pool is updated. The new

observation pool Pn is constructed from Pn−1 by the following steps. First, a measure dn−1 ≤ 1 of
(randomly chosen) agents in Pn−1 exit from the observation pool. Then all of the cohort n agents are

added to get Pn, and the game proceeds to stage n+1. Thus the size of the observation pool grows

according to Pn = Pn−1+1−dn−1. It is assumed throughout that the sequence {dn} converges, and
we also impose the following condition on the departure of old actions from the observation pool.12

Uniform Exit Every agent in Pn−1 has the same chance (1−dn−1/Pn−1) to survive and be present
in Pn.

Remark 1 Under these assumptions, the average action in the observation pool at stage n will be

a weighted average of the first n− 1 cohort actions x1 through xn−1, with (weakly) lower weight on
older cohorts.

The first part of the remark follows because for any cohort m < n, the average action among

cohortm agents remaining in Pn−1 is the same as the average action among those who have departed

— both are equal to xm, by (1). Older cohorts have smaller weights because their ranks have been

culled more times. Uniform exit implies that the observational signal preserves the relative weights

on the actions of different past cohorts. That is, for any two past cohortsm andm0, the contributions

of both xm and xm0 to the average action in Pn−1 decline with n, but the ratio those contributions

does not change over time. The appeal of the uniform exit condition is mainly technical; it opens

the door to a recursive treatment of the observational signal without which the analysis would be

much less tractable.13

12Requiring {dn} to converge is mainly for technical and expositional convenience. This rules out persistent, abrupt
changes in the death rate, including cycles such as (d1, d2,d3, ...) = (0, 1, 0, 1, ...). Extending the analysis to handle
such cases would be fairly routine but tedious.
13This assumption plays a similar role to the ‘recursive sampling’ assumption used by Smith and Sørensen [17].

Among other implications, this assumption will impose a degree of smoothness on how the representation of cohorts
in Pn−1 changes with their vintage. For example, the assumption rules out finite moving averages in which agent n’s
observation puts positive weight on all cohorts more recent than n− k and zero weight on earlier cohorts.
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We define several closely related measures of learning: τni =
³
E((xni − θ)2)

´−1
is the precision

of agent ni’s estimate of θ, while κn = E((x̄n − θ)2) is the squared error in the population average

action after cohort n. The events at stage n = 1 differ slightly from the general case. These

agents have no one to observe, so they must act on the basis of their individual signals s1i alone.

Furthermore, since there is no prior sample for the death rate to act upon, we have P1 = 1, where

P1 includes the full complement of cohort 1 actions and nothing else.

The size, composition, and evolution of the observation population depends entirely on our

assumptions about the exit rate dn. For example, if dn = 1 for all n, we say that there is immediate

exit. In this case, Pn = 1, Pn always consists of the most recent cohort, and each agent observes

the mean action of the most recent cohort. Alternatively, if dn = 0 for all n, then Pn = n and the

observation pool puts equal weight on all past actions. In this case, agent n+1 observes an equally

weighted blend of older and more recent actions. More generally, the larger dn is, the smaller the

contribution of older actions will be in the average that an agent observes. To make this a bit

more precise, we define a few terms. Let d̃ = limn→∞ dn
Pn
be the limiting percentage exit rate; the

existence of this limit is straightforward to establish.14 Let #nm be the measure of cohort m actions

that remain in Pn−1, the pool observed at stage n, and let λnm = #
n
m/Pn−1 be their fraction in that

pool.

Def. We say that cohort m actions exit asymptotically exponentially if limn→∞
ln#nm
n−m < 0. Sim-

ilarly, we say their share of the observation pool declines asymptotically exponentially if

limn→∞
lnλnm
n−m < 0. We say that exit (or decline of λnm) is asymptotically slower than expo-

nential if the respective limit is zero.

Def. The observation pool is bounded if Pn → N∗, for some N∗ <∞, and unbounded if Pn →∞.

Except for one special case (dn = 1 for all n), the existence of these limits follows directly from

the existence of d̃. Notice that asymptotically exponential exit implies that the measure of cohort

m agents remaining shrinks roughly as e−r(n−m), for some r > 0. We will say the observation

pool has property EE1 (SE1) if cohort m actions exit asymptotically exponentially (slower than

exponentially) for all m ≥ 1. Define properties EE2 and SE2 analogously for the share of cohort m
actions in the observation pool. Proposition 1 shows that these various measures of the persistence

of old actions are essentially equivalent.

Proposition 1 (Equivalent characterizations of exit) Suppose exit is not immediate. (There is at

least one cohort n0 with dn0 < 1.) Then,

1. d̃ > 0⇔ Pn is bounded ⇔ EE1 ⇔ EE2

2. d̃ = 0⇔ Pn is unbounded ⇔ SE1 ⇔ SE2

Excluding immediate exit is mainly for brevity of presentation — one may think of old actions as

exiting faster than exponentially in this case, since the limits defining EE1 and EE2 diverge. Given
14{Pn}n≥1, as a monotonically increasing sequence, must either converge or tend to infinity. In either case,

limn→∞
dn
Pn

exists.
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Proposition 1, in the sequel we will often refer simply to exponential or slower than exponential

exit of old actions, without specifying #nm or λnm, and with the qualifier “asymptotically” always

implied.

3 Equilibrium

The first cohort is a special case: without predecessors to observe, and given her diffuse priors, the

optimal action for agent 1i is simply her signal: x1i = s1i . For cohorts n ≥ 2, we begin by reviewing
some standard results on normal learning. Suppose that agent ni observes x̄n−1 and sni and believes

that x̄n−1 ∼ N(θ,κn−1), sni ∼ N(θ, v), and that x̄n−1 and sni are independent conditional on θ.

Then she has a unique optimal action given by the precision-weighted average of her two signals:

xni = E(θ | x̄n−1, sni) = (1− αn)x̄n−1 + αnsni

αn =

(
1 if n = 1

κn−1
κn−1+v

if n > 1
, τni = κ−1n−1 +

1

v
(2)

These conditions apply for cohort 2 agents: they can infer how cohort 1 agents must have acted,

and this permits them to infer that x̄1 ∼ N(θ,κ1), with κ1 = vc. By acting optimally, they ensure

that x̄2 is a mixture of normally distributed, mean θ signals. Thus, x̄2 ∼ N(θ,κ2), where κ2 depends
on α2. But then, because cohort 3 agents can deduce how agents in the first two cohorts must have

acted, they can infer κ2, and so they too act according to (2). This logic applies inductively to all

future cohorts.

In order to provide a benchmark for the main results, we briefly discuss the learning path under

full information and under perfect observability of actions. Then we characterize learning in our

model with bounded and unbounded observation pools. Throughout, we will say that the sequence

κn converges to zero at rate g (n), for some increasing function g (n), if the sequence {g (n)κn}

converges to a finite, positive constant. Similarly, τni diverges at rate g (n) if
n

τni
g(n)

o
converges to a

finite, positive constant. Note that these rates are measured with respect to the arrival rate of new

information with new cohorts, not calendar time, which plays no particular role in the model. Of

course, if we were to specify that new cohorts arrive at a certain rate per day or per year, it would

be a simple matter to express the convergence rate of κn or τni in terms of calendar time.

3.1 Benchmarks

We define two alternative versions of our game which will be used as benchmarks. In the full

information version of the game, agent ni’s observational signal oni contains the full sequence of

individual signals for all prior agents. In the perfect observability version, oni contains the full

sequence of actions by all prior agents. In the main model, κn is the variance of the deviation from

θ of the observational signal observed by cohort n+1. By analogy with this, let κFIn be the variance

of the best estimate of θ that can be made from the observational signal available to a cohort n+1

10



agent in the full information game (and similarly for κPOn in the perfect observability version).

In the full information case, agent (n+ 1)i’s observational signal o(n+1)i is essentially equivalent

to (s1, ..., sn), since she can integrate out the individual-specific error terms. Furthermore, since

the prior cohorts’ signals are i.i.d. conditional on θ, a sufficient statistic for them is their mean

s̄n =
1
n

Pn
i=1 si, where s̄n ∼ N(θ, vc/n). The optimal action based on the observational signal alone

is s̄n, so κ
FI
n = vc

n . In other words, if all signals become public upon arrival, then the precision of

the observational signal improves at rate n. Of course, this is just the standard, textbook result

for aggregating normal random variables. Agent (n+ 1)i’s optimal action is a precision-weighted

average of s̄n with her individual signal sni . This is x
FI
(n+1)i

=
vcs(n+1)i+nvs̄n

vc+nv
which delivers precision

τFI(n+1)i
= n

vc
+ 1

v .

Under perfect observability, it becomes quickly evident that even though agents do not observe

the sequence of signals directly, they can deduce the signals from the sequence of actions, and so

learning is as if we were in the full information case. Suppose that xPOmi
= xFImi

for all m ≤ n.

That is, all agents in cohorts 1 through n act as as though they had access to the sequence of

past signals. Then the average action for each such cohort m must be a convex combination of

the signals ~sm = (s1, ..., sm), with strictly positive weight on sm.
15 ,16 It follows that the vector

~xPOn = (xPO1 , ..., xPOn ) can be written ~xPOn = M~sn, where M is a lower triangular matrix with a

strictly positive main diagonal. M is invertible, so a cohort n+ 1 agent can recover ~sn =M
−1~xPOn

by observing past cohort average actions ~xPOn . Consequently, if all earlier agents acted as if they

had access to full information about prior signals, then cohort n + 1 agents do as well. Because

cohort 1 trivially acts on full information, we can conclude inductively that all agents do, and so we

have xPOn = xFIn and κPOn = κFIn = n
vc
for all n. Once again, learning is at rate n.

3.2 The Speed of Learning in Case PA

Now we return to our baseline model PA: an agent observes the average action in a pool that

mixes recent actions and older ones. Define the partial sums of P−1n as Rn =
Pn
m=1

1
Pn
. From

Proposition 1, one can see that more persistent old actions tend to make Pn larger and Rn smaller;

this relationship will be sharpened in Section 3.3. Our main result on the speed of learning is the

following.17

Proposition 2 If If Pn is bounded, learning is at rate n. If Pn is not bounded, learning is at rate

Rn, which is slower than n. (That is,
Rn
n → 0.) In particular, if dn is bounded away from 1, learning

is at rate lnn.

15 In fact, it will be xPOm =
vs1+...+vsm−1+vcsm

vc+(m−1)v , which follows from xFIni above.
16A simpler approach would be to note that if xPOn = s̄n, then agent n+ 1 can compute its full information action

from xPOn alone: xPOn+1 =
1

n+1
sn+1 +

n
n+1

xPOn = s̄n+1. This depends on the fact that with normal signals, s̄n is
sufficient for ~sn. However, we want to emphasize that sufficiency is not critical here because the full vector of signals
can be recovered, hence the more circuitous approach.
17 If Pn is bounded, then Rn grows at rate n. Thus a more concise statement of the proposition is that learning

is at rate Rn, without qualification on Pn. We separate the bounded and unbounded cases only to emphasize when
learning will be slower than the full information rate.
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The proof is in the appendix. In the rest of this section, we develop the equations of motion

that govern the learning process and sketch some intuition for the result. To begin, suppose that

the agents in some cohort n can infer that the signal quality of the average action that they observe

is κn−1. Then how heavily will these agents weight their own signals, and how will their actions

feed into the κn observed by the next cohort? From (2), we have xni = (1− αn) x̄n−1+αnsni , with

αn =
κn−1
v+κn−1

. Thus, using (1), the average action within cohort n is xn = (1− αn) x̄n−1 + αnsn.

Meanwhile, a measure dn−1 of agents exit from the observation population. Because these agents are

selected randomly, the average action among these departers is identical to the average action among

those who remain — both are equal to x̄n−1. Then, the new observation population is composed of a

measure Pn−1−dn−1 of remaining agents and a measure 1 of cohort n agents. The updated average
action is

x̄n =

µ
1− αn

Pn

¶
x̄n−1 +

αn
Pn
sn . (3)

Because the errors in x̄n−1 and sn are independent, we have x̄n ∼ N(θ,κn), where:

κn =

µ
1− αn

Pn

¶2
κn−1 +

µ
αn
Pn

¶2
vc (4)

We can express this difference equation in κn as

κn − κn−1 = −2αn
Pn

κn−1 +
µ
αn
Pn

¶2
(vc + κn−1) (5)

= −Mn
κ2n−1

v + κn−1

where Mn =
³
2− 1

Pn
vc+κn−1
v+κn−1

´
1
Pn
.

To illustrate how the results of Proposition 2 come about, we introduce τ̄n =
1
κn
, the precision

of the observational signal after cohort n. (This is linked to τni , the precision of a cohort n agent’s

action xni , by τni = τ̄n−1 + v, since cohort n observes x̄n−1 and combines it optimally with sni .) If

we express (5) in terms of τ̄n, the equation of motion becomes particularly simple.

τ̄n − τ̄n−1 =Mn
τ̄n−1

vτ̄n−1 + 1−Mn
≈ Mn

v

where the last approximation applies when κn−1 is sufficiently small (so τ̄n−1 is sufficiently large).

If the population size is bounded, thenMn tends toward
¡
2− 1

N∗
vc
v

¢
1
N∗ , and so τ̄n grows roughly as¡¡

2− 1
N∗

vc
v

¢
1
N∗
¢
n. Alternatively, if the population size is unbounded, then for large n we have the

approximation τ̄n − τ̄n−1 ≈ 2
Pn
, so τ̄n eventually grows (and κn shrinks) like 2Rn. However, in this

case, Rn always grows more slowly than n. The worst outcome (as the last point of the proposition

notes) is when the exit rate of old agents never catches up to the entry rate of new ones — that is,

when dn is bounded below 1. In this case, the size of the observation pool grows linearly in n, so

τ̄n is on the order of
Pn
m=1

1
m ≈ lnn.
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A more economic intuition for the slowdown in learning can be gleaned from (5), where the

dominant term can be written (κn − κn−1) /κn−1 ≈ −2αn/Pn. That is, the incremental percentage
improvement in public information depends on how aggressively arriving agents incorporate new

information in their actions (αn) and on how much that new information is diluted by being mixed

into the population average action (P−1n ). Free-riding on the public signal tends to slow learning

because αn declines as κn becomes more precise. This is exacerbated when old actions exit slowly,

because Pn grows and so the dilution of new information worsens over time.

This is a useful time to remark on the tractability purchased by the uniform exit assumption.

Without this assumption, characterizing κn would require keeping track of the action and the

remaining size of each preceding cohort — that is, we would have to monitor a state variable that

increases in dimensionality over time. Under uniform exit, κn−1 is sufficient for κn, so the dynamics

are recursive and relatively simple.

3.3 The Persistence of Old Information in Case PA

To provide more insight about the causes of slow learning, we develop three measures of a cohort’s

influence: the share of its action in the observation pool, the weight of its signal in that pool, and

the fraction of the error in the observational signal that it is responsible for. One of the keys to slow

learning is that the second two types of influence can persist long after most of the actions in that

cohort have departed.

The fraction of cohort n’s observation x̄n−1 composed of cohortm actions was introduced earlier;

it is λnm. Notice that x̄n−1 is a weighted average of cohort actions {x1, x2, ..., xn−1}, so we can write

x̄n−1 =
Pn−1
m=1 λ

n
mxm, with

Pn−1
m=1 λ

n
m = 1. Next, notice that because each xn is a linear combination

of of the average idiosyncratic signal of cohort n and past actions, we can also write x̄n−1 as a

weighted average of the cohort signals {s1, s2, ..., sn−1}: x̄n−1 =
Pn−1
m=1 π

n
msm, where the weights π

n
m

satisfy
Pn−1
m=1 π

n
m = 1. Finally, because the cohort signals are i.i.d. with variance vc, the expected

squared error in the observational signal x̄n−1 can be written κn−1 = vc
Pn−1
m=1 (π

n
m)

2. Each term

in this sum represents the contribution of cohort m information sm = θ + εm to the ‘public error’

observed by the agents acting at stage n. The fraction of that public error that can be attributed

to cohort m can therefore be written χnm ≡ vc(πnm)
2

κn−1
= (πnm)

2 /
Pn−1
m=1 (π

n
m)

2.

Proposition 1 has already begun to characterize how long old actions persist (in terms of the

primitive dn). While this has to do with how fast λ
n
m tends to zero with n, it will be convenient to

focus instead on how fast ln (1/λnm) tends to infinity with n.
18 We will say that old actions exit at log

rate g (n) if {ln (1/λnm)}n>m → ∞ at rate g (n). (So for example, if old actions exit exponentially,

then they exit at log rate n.) For the persistence of old information, we study the rates at which

πnm, and χnm tend to zero with n (if they do); call these the decay rates of cohort m information

and cohort m relative influence, respectively. If the observational signal were to aggregate private

18The reason is technical. It will turn out that λnm → 0 at rate exp (rRn + o (Rn)), for some constant r. The
non-leading o (Rn) terms are unwieldy and of no particular interest, since later results depend only on Rn. Focusing
on ln (λnm) streamlines the analysis, as these non-leading terms vanish relative to Rn.
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information efficiently, then each cohort’s signal would be equally weighted, and both πnm, and χnm

would tend to zero at rate n. To see how action and information persistence actually behave under

social learning, consider how πnm, and χ
n
m evolve from stage n to n+1. In the first stage after cohort

m acts, we have λm+1m = 1/Pm and πm+1m = αm/Pm. Thereafter, the weights evolve recursively

according to:

λn+1m =

µ
1− 1

Pn

¶
λnm and πn+1m =

µ
1− αn

Pn

¶
πnm for n > m

Immediately after cohort m has acted, we have πm+1m < λm+1m : Pm contains every cohort m action,

but those actions put only weight αm < 1 on the new information sm.
19 At each subsequent stage

though, the impact of m’s action shrinks by a percentage 1
Pn
, but the impact of its information

shrinks by the smaller percentage αn
Pn
. This reflects the fact that signal sm becomes impounded in

the actions of later cohorts to the extent that those cohorts free-ride on their observational signal. As

public information improves, αn declines (agents free-ride more on the past), and so old information

vanishes more and more slowly.

Proposition 3 provides a precise characterization of the relationship between old actions and old

information. The proof requires a regularity condition (Poly) for cases in which the observation

pool diverges slowly.

(Poly) If Pn →∞ and Pn/Rn → 0, then there is some b ∈ (0, 1) such that Pn grows at rate nb.

The main substantive effect of this condition is to exclude from analysis certain cases in which

the observation pool grows very slowly (sub-polynomially); in these excluded cases, old actions exit

very slightly slower than exponentially.20 The other effect is to impose a type of smoothness on

slowly growing pools that is useful in proving parts of the next result.

Proposition 3 Suppose (Poly) holds and exit is not immediate. The action, information, and

relative influence of cohort m decay at the following rates.

1. (Actions) lnλnm → −∞ at rate Rn.

2. (Information)21 πnm → 0 at rate (Rn)
η, where η =

¡
2− vc

v limn→∞(1/Pn)
¢−1
.

3. (Relative Influence)

(a) If Pn is bounded with Pn → N∗, then χnm → 0 at rate (Rn)
vc

2vN∗−vc .

(b) If Pn is unbounded, then χnm converges to a strictly positive constant as n→∞.

Immediate exit is excluded, as earlier, for the sake of parsimony. If exit is immediate, then

information is aggregated efficiently: πnm = χnm = 1
n . The following corollary is just a simple

restatement of part (1).

19The first cohort is an exception; we have λ21 = π21 since α1 = 1.
20To be precise, exit in these cases satisfies limn→∞

lnλnm
n

= 0 and limn→∞
lnλnm
n1−b = −∞ for any b > 0.

21Note that 1/Pn converges regardless of whether Pn is bounded or diverges, so the limit embedded in the definition
of η is well defined.
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Corollary 1 Fix any arbitrary cohort m. If cohort m exits from the observation pool at log rate

g (n), then learning is at rate g (n).

The main results here deserve emphasis. First, learning is tied to the rate at which old actions

exit from the observation pool. If old actions exit at least exponentially (that is, at log rate n), then

learning is at the full-information rate. If old actions disappear more slowly than this, then learning

will be slower than rate n.

Second, the information of a cohort decays more slowly than its action (polynomially rather

than exponentially in Rn). To put this in high relief, notice that we can approximate: ln (1/π
n
m) ≈

η ln (ln (1/λnm)), where higher values of ln (1/π
n
m) and ln (1/λ

n
m) reflect faster departure of cohort m

information and actions respectively. This approximation also suggests two channels through which

cohort m information becomes particularly persistent if Pn is unbounded (rather than bounded).

First, cohort m’s action sticks around longer (that is, ln (1/λnm) is smaller) if Pn is unbounded,

and this has a direct effect on the persistence of its information. The second effect is indirect: the

persistence of cohort m’s information is greater relative to the persistence of its action when Pn is

unbounded, because η is smaller. (If Pn is bounded (unbounded), η > (=)
1
2 .) This reflects a knock-

on effect: the longer that an old action persists, the more time it has to influence later cohorts, and

that influence persists after the original action is gone.

Third, if old actions exit slower than exponentially, then their relative influence never disappears!

An example makes the point rather forcefully. Suppose the observation pool includes all past actions,

so dn = 0 and Pn = n.
22 Then simulations show that χn1 tends to approximately 0.82. That is, as

far into the future as one likes, 82% of the squared error in the public signal x̄n comes from the

signal error of the very first cohort.

Fourth, given the equivalences laid out in Proposition 1, one might wonder whether there are

other simple barometers of whether learning will be fast or slow. A natural candidate has to do

with what we will call the cumulative persistence of old actions. Define cohort m’s cumulative

persistence to be
P∞
n=m+1 λ

n
m; this captures the cumulative direct impact of cohort m actions, or

equivalently (with an additional normalization) the average duration of a cohort m action in the

observation pool. An immediate conjecture is that the boundary between fast and slow learning

could be related to whether cumulative persistence is finite or infinite. Proposition 3 makes it easy

to test this conjecture. To illustrate, consider three different scenarios in which old actions exit fast

(λnm ∝ e−n), slightly slower (λnm ∝ e−
√
n), or quite slowly (λnm ∝ 1/n). In the first two scenarios,

the cumulative persistence of every cohort is finite, while in the third, each cohort’s cumulative

persistence is infinite. However, social learning is at rate n only in the first scenario, and slower in

the second two, so the conjecture cannot hold.23

Finally, a few technical points should be clarified; a reader who wishes to avoid these details

could skip ahead. The fact that none of the decay rates for cohort m depends on m is a consequence

22For this example, we set v = vc = 1.
23Section 6.1 provides further insight about why the exit rate of old actions, rather than their cumulative persistence,

is the most useful barometer for assessing the speed of learning.
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of the uniform exit assumption. The main substantive implication of condition (Poly) is to exclude

cases in which Pn diverges at a very slow, sub-polynomial rate; for example, Pn = lnn. In such

cases, Proposition 2 still applies — old actions exit slower than exponentially, and learning is slower

than rate n — but the other quantities in Proposition 3 are difficult to characterize cleanly.24 Finally,

we note that the motivation for the rather long proof of part (2) is to get to the clean, and somewhat

startling result in (3b). Settling for the convergence rate of lnπnm (similarly to part (1)) would be

much simpler but would not provide enough precision to show that (3b) is true.

3.4 The Importance of Free-riding

At this point, we have seen slow learning can arise when old information is persistent and self-

interested agents put less weight on their own signals than later generations would like them to. We

have also seen (in the bounded Pn case), that the free-riding problem is not sufficient to slow down

learning by itself, if old actions are weeded out relatively quickly. However, we have not yet seen

whether free-riding is necessary to get slow learning. To answer this, consider a contrived situation

in which a social planner has the power to choose the weights αn ∈ [0, 1] that cohorts place on their
own signals. This planner knows the path of Pn but has no other information or instruments at her

disposal; in particular, she cannot control dn and Pn and she cannot help the agents to communicate

about their signals. She chooses a sequence {an}n≥1 with the sole objective of reducing the error in

the public signal as quickly as possible.25

Proposition 4 The social planner can attain rate n learning, regardless of the rate at which old

actions exit.

Proof. Set αn =
Pn
n . This is feasible (since Pn ≤ n). A brief inspection of (4) shows that this

policy attains κn =
vc
n and τ̄n = n/vc for all n ≥ 1.

Proposition 4 makes it clear that both elements — old information that is sufficiently persistent,

and agents who ignore the informational spillover generated by their actions — are required to get

slow social learning.

4 Observing the Average of a Finite Sample (SA)

In this section we develop the sample average (SA) version of the model. The most surprising

results revolve around the fact that there are essentially no benefits from observing larger samples

— learning is no faster, and agents’ utility is no higher. This runs counter to the usual intuition that

larger samples help to average out idiosyncratic mistakes. The usual intuition is not wrong per se,
24The main reason for interest in these intermediate, sub-polynomial Pn cases would be to test the conjecture that

learning is slower than rate n if and only if the relative influence of older cohorts does not decay. This would be true
if (3b) could be extended to all unbounded Pn. However, one can find examples (Pn = lnn is one) for which this
conjecture is false: learning is slower than rate n, but χnm tends to 0 with n. Further details are available on request.
25Since the result below has to do with feasibility rather than optimality, this objective function appears only for

motivational purposes. If we were interested in deriving optimal {αn}n≥1 policies, this objective would need to be
stated with substantially more precision.
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but social learning leads people to make highly correlated mistakes, and it is this common portion

of their errors that comes to dominate the speed of learning. This helps to explain the fact that we

see identical rates of learning in models SA and PA, even though the ‘sample’ in the latter case is

the entire observation pool.

Let the observation pool evolve just as before, and let xPn−1 refer to an arbitrary individual

action belonging to Pn−1. A typical member ni of cohort n receives her idiosyncratic signal sni as

before, plus an observational signal xS(ni). This observational signal is the mean of S ≥ 1 individual
actions xPn−1 drawn randomly from Pn−1. This is all that agent ni knows about her observational

signal; she does not observe the individual actions that comprise xS(ni), nor does she observe the

ages of those individual actions.26 Of course, she will be able to draw certain inferences about the

likely composition of xS(ni) based on her knowledge about how Pn−1 evolves.

Because the members of a cohort will now receive different observational signals, some new nota-

tion will be required. Let κ̂n−1 = E
³¡
xPn−1 − θ

¢2´
be a cohort n agent’s expectation of the squared

error in an individual action drawn randomly from Pn−1, and let ρ̂n−1 = E
³¡
xPn−1 − θ

¢ ³
x0
Pn−1 − θ

´´

be her expectation of the covariance in the errors of two randomly drawn actions. Together, κ̂n−1
and ρ̂n−1 determine the precision of a cohort n agent’s observational signal, and consequently, her

action and expected utility.

Lemma 1 The expected squared error of a cohort n observational signal is

κ̄n−1 ≡ E
³¡
xS(ni) − θ

¢2´
=
1

S
κ̂n−1 +

S − 1
S

ρ̂n−1 .

The optimal action of a cohort n agent ni with observational signal xS(ni) and idiosyncratic signal

sni is xni = α̂nsni + (1− α̂n)xS(ni), where α̂n =
κ̄n−1

κ̄n−1+v
. This agent’s expected utility is −α̂nv.

We will work with κ̂n as our measure of learning, but we shall see that κ̄n and α̂n behave

similarly. Notice that −κ̂n is also the expected utility of an agent drawn randomly from Pn, so

we will sometimes refer to it as the mean utility in the observation pool. The expression for κ̄n−1
makes it clear that an increase in her sample size S only benefits an agent to the extent that the

error covariance ρ̂n−1 among the sampled actions is low.

Also notice that in order to characterize the quantities of interest in the model, it is not necessary

to describe the sampling history — the list specifying the identities of the agents whose actions appear

in each sample. This sampling history is not a part of agents’ information sets, and neither their

expectations κ̂n−1 and ρ̂n−1, nor their choice variables α̂n can condition on it. In contrast with

the common observational signal of model PA, now some agents will be luckier with their sampling

than others. The luckiest will sample recent actors who themselves sampled recent actors, and so

on, while the unluckiest will sample very old actions. But because an agent does not know that she

has been lucky or unlucky, this has no effect on behavior. Luck in sampling does have distributional
26The case of K = 1 is an exception: if agent ni’s sample includes a single action, then of course xS(ni) trivially

reveals that action.
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implications: some people within a cohort will be (unwittingly) better informed than average, and

thus better off than the average utility of −α̂nv, while others will be worse informed and worse off.27
While it would be interesting to pursue these implications, we will not do so here.28

The evolution of κ̂n differs from that of κn in model PA (see (4)) because now we are dealing

with the mean squared error of individual actions in Pn rather than the squared error of the mean

action in that pool. As the observation pool adjusts from Pn−1 to Pn, a measure dn of agents depart

and the full measure 1 of cohort n agents are added. Because the departing agents are determined

randomly, the expected squared error among the remaining Pn−1−dn agents remains equal to κ̂n−1.
The expected squared error for entering agents is α̂nv, so κ̂n is simply:

κ̂n =

µ
1− 1

Pn

¶
κ̂n−1 +

1

Pn
(α̂nv) , n > 1 (6)

The error covariance among sampled actions affects κ̂n through the error α̂nv of the new arrivals:

α̂n depends on squared error in their observational signal κ̄n−1, which in turn depends on ρ̂n−1. In

order to develop a recursive characterization of that covariance, let us call a sampled action xPn

‘new’ if it occurred at the most recent stage n, or ‘old’ if it occurred earlier. Let ρ̂n|new,new be the

conditional error covariance of two sampled actions that happen to be new:

ρ̂n|new,new = E
¡
(xPn − θ)

¡
x0Pn − θ

¢
|xPn and x

0
Pn
are new

¢

and define ρ̂n|new,old and ρ̂n|old,old analogously. An action drawn from Pn is new with probability

1/Pn, so the unconditional error covariance of two action drawn from Pn may be written

ρ̂n =

µ
1− 1

Pn

¶2
ρ̂n|old,old +

2

Pn

µ
1− 1

Pn

¶
ρ̂n|new,old +

1

P 2n
ρ̂n|new,new

Next we address these conditional covariance terms, one by one. The first one, ρ̂n|old,old, is simply

ρ̂n−1, the error covariance from one stage ago. For the second term, suppose that xPn is the new

action drawn from stage n (while x0
Pn
occurred prior to stage n). Then xPn is a weighted average of

a new idiosyncratic signal (with weight α̂n) that is uncorrelated with earlier errors, and S actions

randomly drawn from Pn−1. Call these old actions yold1 , ..., yoldS . Then the covariance of xPn and

x0
Pn
is

E
¡
(xPn − θ)

¡
x0Pn − θ

¢
|xPn is new, x

0
Pn
is old

¢
=
1

S
(1− α̂n)

SX

s=1

E
¡¡
x0Pn − θ

¢
(yolds − θ)

¢
.

27Of course, both here and in model PA, there are also differences in outcomes due simply to idiosyncratic signals.
28 In particular, one might like to know about divergence: do the luckiest (unluckiest) agents learn at a faster (slower)

rate than average? On this question, the answer appears to be a qualified no. The luckiest samplers consistently rely
on their private signals too much (since they do not realize how accurate their observations are). A casual analysis
(details on request) indicates that this limits their precision to around double that of an average agent. The very
worst off agents make no progress over time (since sampling only from cohort 1 is always a possibility). However, no
positive fraction of a cohort can have errors too much worse than average, lest they drag up the average.
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But each expectation in the summation is just ρ̂n|old,old, so we have ρ̂n|new,old = (1− α̂n) ρ̂n|old,old,

or ρ̂n|new,old = (1− α̂n) ρ̂n−1. Finally, for the case of two new actions, note that xPn and x
0
Pn
will

both put weight α̂n on the cohort n error εn, while their observational signals have error covariance

ρ̂n|old,old, so we arrive at ρ̂n|new,new = (1− α̂n)
2 ρ̂n−1 + α̂2nvc. Combining these pieces, we have

ρ̂n =

µ
1− α̂n

Pn

¶2
ρ̂n−1 +

µ
α̂n
Pn

¶2
vc , n > 1 (7)

For completeness, note also that κ̂1 = v and ρ̂1 = vc.
29 Just as κ̂n depends on ρ̂n−1 through the

weight α̂n−1, so does ρ̂n depend on κ̂n−1 through α̂n. Equations (6) and (7), along with α̂n, fully

characterize agents’ behavior, and determine the rate of social learning with finite samples. The

special case in which agents sample single actions (S = 1) is a bit simpler, as the evolution of κ̂n is

characterized by (6) alone.

As a first step, we ask how correlated the errors in sampled actions are. This correlation coeffi-

cient is
ρ̂n
κ̂n
= E

¡
(xPn − θ)

¡
x0Pn − θ

¢¢
,r

E
³
(xPn − θ)2

´
E
³¡
x0
Pn
− θ
¢2´

.

The benefit of observing a larger sample is greatest when ρ̂n
κ̂n
is relatively small. Unfortunately for

agents, the errors in their predecessors’ actions become highly correlated very quickly.

Proposition 5 If S > 1, then the error correlation of two actions drawn from Pn−1 tends to one:
ρ̂n
κ̂n
→ 1.

We postpone discussing this result until after presenting rates of learning. The proof leverages

the fact that the size of decreases κ̂n − κ̂n−1 in average squared error can be shown to be roughly

proportional to κ̂n−1− ρ̂n−1. Meanwhile, decreases ρ̂n− ρ̂n−1 in the covariance are roughly propor-

tional to ρ̂2n−1. The decline that is first order in the variables happens fast, bringing κ̂n close to ρ̂n
before the the latter gets close to zero.

As a consequence of Proposition 5, the speed of social learning is governed by the rate at which

the covariance of action errors is driven to zero. Consulting (7), we see an expression that is almost

identical to (4), but with κn replaced by ρ̂n and αn replaced by α̂n. When we observe that α̂n tends

toward
ρ̂n−1

ρ̂n−1+v
(because of Proposition 5), the resemblance becomes exact, giving us the following

result.

Proposition 6 (Rates of social learning in the sample average model)

i) If S = 1, then κ̂nRn → v.

ii) If S > 1, then κ̂nRn, ρ̂nRn, and vα̂nRn all tend to vη, where η =
³
2− vc

v limn→∞
1
Pn

´−1
.

Thus, social learning is always at rate Rn.

29So in fact, if we were willing to ignore the fact that κ̂0 and ρ̂0 are not defined, equations (6) and (7) actually apply
at n = 1 as well.
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Let us briefly summarize the results for the case (Pn = n) in which old actions never exit from

the pool that later agents sample. If agents sample one predecessor each, without knowing when he

acted or whom he observed, learning is at rate lnn. If instead, each agent sees the average of two

samplees, the rate at which (expected squared) errors disappear remains lnn, but the level of those

errors is cut in half. If the size of the sample increases further, neither the rate of learning nor the

level of errors improves. Furthermore, returning to our baseline model with each agent observing

the average action in the entire population yields no further changes in the rate of learning, or the

level of errors.

Why does the size of an agent’s sample make so little difference? It may be helpful (albeit

slightly imprecise) to think of splitting an agent’s expected error κ̂n into mistakes κ̂n − ρ̂n that are

idiosyncratic to her, and mistakes ρ̂n that are common to other agents. A larger sample does help

to drive the idiosyncratic portion κ̂n − ρ̂n down to zero quickly.
30 However, the errors that remain

are highly correlated across individuals, so larger samples do little to eradicate them.31

5 Extensions

In this section we add several new features to the baseline population average learning model,

including heterogeneous preferences, a self-reliance bias, and drift in the optimal action θ.32 The

first two features will imply, counter to our earlier results, that having older actions linger in the

observation pool can be beneficial for the speed of learning. In both cases, the reason is that an

agent no longer wishes to rely solely on her most recent predecessors for guidance because (from her

point of view) they have over-relied on their idiosyncratic information. In contrast, if θ is a moving

target, the disadvantages of relying on older information become more severe.

5.1 Heterogeneity

We return to the framework of the PA model, but now we assume that different individuals have

different optimal decisions. We model this by assuming that agent ni chooses xni to minimize

E((xni − θni)
2 | Ini), where θni = θ + μni . The new term μni represents a shifter that is specific to

the individual agent. These taste shocks are distributed i.i.d. (across cohorts and individuals) with

μni ∼ N(θ, vta), and their variance vta is common knowledge among agents.
As before, an agent’s information set Ini always contains an observational signal equal to the

average action in Pn−1. We consider two different specifications for the agent’s idiosyncratic in-

formation. In the known private taste version of the model, agent ni observes the pair of signals©
sni ,μni

ª
, where sni = θ + εn + εni as earlier. In other words, she sees a signal about the action

30We do not demonstrate this formally, but expressions for the rate of change of κ̂n − ρ̂n suggest that it declines
faster if S−1

S
is large.

31 It seems plausible that larger samples might have benefits if there were additional sources of idiosyncratic error in
the model. For example, heterogeneous tastes (as developed for model PA in Section 5.1) generate a persistent source
of idiosyncratic variation in actions that an observer could minimize with a large sample.
32These extensions could be applied to model SA as well, but analysis would be a bit more tedious because of the

extra state variable.
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θ that is best for a typical agent, and she also knows which direction (and how much) to adjust

that action to better suit herself. In the shrouded private taste version of the model, agent ni ob-

serves the idiosyncratic signal s̃ni = θni + εn + εni . The terms εn and εni represent cohort and

individual-specific errors as before, with the added proviso that these errors are independent of the

taste shocks.33 Thus, the agent has a noisy signal about her personal optimal action θni , but she

does not observe μni directly, so she does not know how different she is from a ‘typical’ agent. We

include both specifications because both are plausible, and they have quite different implications for

learning. In our years of schooling example, the taste shifter could reflect relative ability — perhaps

the optimal amount of schooling is higher for smarter students. In this case, it may be reasonable

to think that a student knows her taste shock μni — say by comparing herself to her classmates

— but still needs to learn about the average costs and returns to schooling (as summarized by θ)

before making a decision. In this case, the known taste model applies. Alternatively, suppose in our

irrigation example that a farmer has information about the past returns to irrigating his own land

— call this s̃ni — but does not know whether his land is predisposed (for geological reasons, perhaps)

to need more or less water than the average plot. While his idiosyncratic information may suggest

that he should use more or less water than other farmers have done (i.e., if s̃ni − x̄n−1 is positive or
negative), he cannot be certain how much of that difference s̃ni − x̄n−1 represents private value and
how much is just noise. In this case, the shrouded taste model would be appropriate.34

5.1.1 Known Private Tastes

If agents can observe their relative private value shifters directly, the analysis remains very close to

the original PA model. It is straightforward to see that the optimal action for agent ni is to form

her best estimate of θ given signals sni and x̄n−1, and then add μni to get her optimal action. Thus,

xni = αnsni + (1− αn) x̄n−1 + μni , where αn =
κn−1

κn−1 + v

As in the shrouded private values case, the mean action of cohort n is xn = αnsn+(1− αn) x̄n−1 =

αn (θ + εn) + (1− αn) x̄n−1. The evolution of x̄n and κn follow the same equations as in model PA.

Because αn is also chosen just as in model PA, the following corollary is immediate.

Corollary 2 In the model with known private values, social learning about θ takes place at the same

rate that applies in the baseline model PA.

5.1.2 Shrouded Private Tastes

Other than the stated changes, the model is identical to our baseline model PA. Notice that there is

no prospect for complete learning about individual targets, in the sense of E
³
(xni − θni)

2
´
tending

to zero over time, because an agent’s only information about her taste shock comes from her private

33Also, we extend assumption (1) to the taste shocks.
34One can easily imagine intermediate cases that we will not pursue here. For example, rather than observe μni

separately and perfectly, an agent could observe it separately but with noise.
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signal. Instead, we focus on how quickly the true value of θ, the common part of the optimal

action, is revealed. As earlier, let x̄n be the average action in the observation pool Pn−1. We retain

κn = E((x̄n − θ)2) as our measure of learning.

We begin by observing that the average action x̄n−1 is a less precise signal about agent ni’s

personal optimal action when tastes are very heterogeneous; the larger vta, the more weight she will

want to shift onto her private signal in forming her action. To derive her optimal action, consider

the errors in her two signals: x̄n−1 − θni = (x̄n−1 − θ)− μni and s̃ni − θni = εn + εni . These errors

are independent of each other, and moreover, the two components of the observational signal error

— the deviation of x̄n−1 from θ, and the deviation of θ from θni — are also independent. Thus the

errors in x̄n−1 and s̃ni have variances of κn−1+ vta and v respectively. As before, agent ni’s optimal

action is a precision-weighted average of these two signals:35

xni = αns̃ni + (1− αn) x̄n−1, where αn =
κn−1 + vta

κn−1 + vta + v

Notice that the own signal weight is bounded away from zero, αn > vta/ (vta + v), regardless of how

accurately observational information reveals θ. Of course, this simply reflects the wedge created by

the taste shock.

Let s̃n be the mean of the cohort n private signals. The taste shocks wash out of this mean

by assumption (1), so we have s̃n = θ + εn, and the mean action over cohort n is still given by

xn = αns̃n + (1− αn) x̄n−1. The recursive expression (3) still characterizes the updated average

action x̄n, and so the evolution of κn is still governed by

κn =

µ
1− αn

Pn

¶2
κn−1 +

µ
αn
Pn

¶2
vc (8)

Thus any differences in the speed of learning with shrouded private tastes (relative to model PA) can

be attributed the fact that agents’ “self-reliance” is bounded away from zero. Define ᾱ = vta
vta+v

, the

limiting weight placed on one’s own signal under the assumption that κn → 0, and d̄ = limn→∞ dn.

It is useful to define a quantity β = 2ᾱ
1−d̄ which is small when old actions are very persistent and

tastes are similar, and large when tastes are quite different and old actions exit quickly.

Proposition 7 Rates of social learning in the model with shrouded private tastes are as summarized

in Table 1.

The awkward statement of the final case — roughly, learning is neither faster nor slower than rate

nβ — could be tightened at the cost of additional technical assumptions.36 To summarize informally,

greater persistence of old actions in the observation pool has a non-monotonic effect on the rate of

learning. Learning is fastest (rate n) if the mass of departing old actions is smaller than the mass

35As earlier, we write αn rather than αni because the optimal weight is the same for all cohort n agents.
36An examination of the proof suggests that sufficiently quick convergence of dn to d̄ (rate na for any a > 0 should

do) suffices for the convergence of nβκn.
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Growth of Pn Learning

(1) Bounded Incomplete: κn converges to a strictly positive constant

(2) Unbounded, with Pn
n → 0 κn → 0 at rate Pn

(3) Unbounded, with Pn
n → 1− d̄ ∈ (0, 2ᾱ) κn → 0 at rate n ( = rate Pn)

(4) Unbounded, with Pn
n → 1− d̄ > 2ᾱ κn → 0 faster than rate nβ−² and slower than nβ+²

(for any ² > 0)

Table 1: Rates of learning in the shrouded private taste model. Reading from top to bottom, each
case represents progressively slower exit of old actions. Case (4) may be read as: nβ−²κn → 0 and
nβ+²κn →∞, for any ² > 0.

of new actions (d̄ < 1), but not too much smaller (d̄ > 1 − 2ᾱ). If old actions are more or less
persistent than this, then learning slows down.

The reason for the change in results (relative to Proposition 2) is that private values induce

agents to put more weight on their own information. As we saw in Proposition 4, increasing αn can

counteract the tendency of old actions to retard learning, but if αn rises too much, a new problem

arises — the observation pool can tilt too far toward the most recent information. If β is small, then

excessive weight on old information remains the bottleneck in learning, while if β = ∞ (because

dn → 1), excess weight on recent information becomes the bottleneck. When the persistence of old

actions is just balanced by the ‘self reliance’ induced by heterogeneity, learning is fast.

Thus the speed of learning with heterogeneity depends critically on whether agents are able

to separate information that pertains to them specifically (μni) from information about θ that is

relevant to all agents. If this separation is possible, then they will respond to the individual-specific

information while continuing to underweight (from a social point of view) their information about

θ. If they cannot separate individual-specific from general information about the decision, then in

their desire to respond to the former, their actions will as a side-effect bring more new information

about θ along for the ride. Because there is underlying bias toward old information (for the reasons

discussed in earlier sections), either private value scenario could lead to faster learning than the

other, depending on how severe that underlying bias toward old information is.37

5.2 Self Reliance Bias

Informally, one could interpret the weight αn that an agent places on her idiosyncratic signal as “self

reliance.” In the standard version of the model, self-reliance tends to zero as the public signal grows

more precise, whereas in the shrouded private taste model, self-reliance is (rationally) bounded

away from zero no matter how precise public information becomes. Experimental studies of herding

and social learning often find that subjects are more self reliant than theory would predict; .we

will refer to this as “self reliance bias.” The clearest evidence for this bias comes from models of

37Munshi [15] tests for a very similar issue in agricultural data from India, and finds results that are roughly
consistent with ours. He finds weaker social learning about a crop (rice) with yields that are sensitive to farmer
characteristics (like the soil type in a field) that are hard for other farmers to observe. Conversely, social learning is
stronger for wheat, where individual heterogeneity is less important. In his setting, learning is largely from recent
planting decisions (as well as yield outcomes), so the confounding effect of old actions seems likely to be small.
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herding with binary actions and signals; in a meta-study pooling data from 13 different experiments,

Weizsäcker [20] finds that when subjects’ private and observational signals conflict, they act on their

private signals unless the posterior odds are at least 2:1 against being correct.38 In the setting of

our model, one can imagine a number of plausible reasons that people might exhibit a self reliance

bias, including the following: (1) Subjects might overestimate the precision of their own private

information. (2) Subjects might have doubts about the competence of their predecessors. (3) A

subject might suspect that her predecessors’ actions reflect a different objective than her own. (4)

Properly evaluating observational data requires a chain of relatively sophisticated inferences, while

evaluating one’s private information is straightforward. Subjects may have more confidence in their

own ability to handle the latter task without making mistakes.

To illustrate the implications of a self reliance bias as transparently as possible, we introduce

the following assumption in our baseline PA model.39

SRB For all n > 1, every agent places the same weight α > 0 on her own signal.

While the main attraction of SRB is simplicity, it could be motivated as something akin to a

stationarity requirement on strategies. In some situations it may be realistic to assume that an

agent does not have a clear sense of how long learning has been going on prior to her arrival; in this

case, her strategy should not condition on her cohort number. Under assumption SRB, the squared

error in the population average action κn still evolves according to (4), but individual actions do

not converge to θ. Agent ni’s action never gets closer to θ than an expected squared error of

α2v, regardless of n, due to the persistent introduction of new idiosyncratic error. When we frame

learning in terms of κn below, the interpretation should be that this reflects how accurately an agent

could predict θ after stage n if she were willing to rely on x̄n exclusively. Define β =
2α
1−d̄ similarly

to the previous section.

Proposition 8 Under assumption SRB, the rate of learning is essentially the same as in the

shrouded private taste model. That is, if Pn is bounded, κn tends to a constant. If Pn is unbounded,

then κn → 0 at the rate specified for β in Proposition 7.

The proof is omitted. It follows exactly the same lines as the proof of Proposition 7 but is

simpler because in this case, αn reaches its limiting value immediately. The logic is essentially the

same as well — because a self reliance bias tilts the observation pool toward recent information, it

can partially correct (or overcorrect) the underlying bias toward old information. Thus, this bias

can be socially useful, even though from an individual’s point of view it represents a mistake.
38Because the likelihood ratio for a single private signal was also 2:1 (that is,

Pr (correct signal) /Pr (incorrect signal) = 2) in most of these studies, one interpretation is that subjects acted
as though they had a second independent private signal confirming the first one. One of the constituent studies,
Goeree et al. [13], also finds that subjects roughly double-count their own signals in the context of a structural
quantal response model of behavior.
39A natural alternative would be to assume that an agent overestimates the precision of her private signal. If each

agent acts as though her signal has precision kv−1 instead of v−1, with k > 1, then self-reliance will be roughly k
times as large as it should be, for large n, but it will still tend to zero over time. It is straightforward to see that
this will not change the analysis in Section 3 appreciably. The level of error in the public signal will be lower than if
agents behaved rationally, but the rate of learning will be the same.

24



5.3 Moving Target

In this section, we start from the baseline PA model, but now we assume that the optimal action

drifts over time. Instead of a static target θ, suppose that a cohort n agent ni tries to minimize

E((xni − θn)
2 | Ini), where θn follows a random walk: θn = θn−1 + υn, where the increments are

i.i.d υn ˜N (0, vmt). (Let θn take initial value θ1.) If the environment changes quickly relative to

the rate at which agents act, this model may be more apt than our standard model. As one might

expect, a moving target makes the persistence of older actions in the observation pool even more

disadvantageous for learning than in our baseline model.

Agent ni’s idiosyncratic signal is now sni = θn+ εn+ εni (with εn and εni distributed as earlier)

— thus cohort n’s signals embed information (not replicated in any earlier actions) about the most

recent change in the target υn. As earlier, x̄n−1 is the average action in the observation pool. It

is somewhat arbitrary whether to define the error in x̄n−1 with respect to θn−1, its contemporary

optimal action, or with respect to θn, the target that x̄n−1 will be used to predict. We choose the

former, defining κmtn−1 = E
³
(x̄n−1 − θn−1)

2
´
. Because x̄n−1 − θn = (x̄n−1 − θn−1) − υn, it follows

that the squared error of x̄n−1 with respect to θn is E
³
(x̄n−1 − θn)

2
´
= κmtn−1 + vmt. For an agent

in cohort n, the errors (sni − θn) and (x̄n−1 − θn) are independent, so her optimal estimate of θn

puts weight αn =
κmtn−1+vmt

κmtn−1+vmt+v
on her idiosyncratic signal. As before, the mean action of cohort n

agents is xn = αnsn + (1− αn) x̄n−1 (with sn = θn + εn), and the mean action in the observation

pool updates according to x̄n = (1− αn/Pn) x̄n−1+(αn/Pn) sn. Together these imply that the error

in the observation pool updates according to

κmtn =

µ
1− αn

Pn

¶2
(κn−1 + vmt) +

µ
αn
Pn

¶2
vc , or equivalently,

γn =

µ
1− αn

Pn

¶2
γn−1 +

µ
αn
Pn

¶2
vc + vmt , with αn =

γn
γn + v

where we define γn = κn + vmt = E
³
(x̄n−1 − θn)

2
´
.

Clearly, there is no hope of complete learning in this setting; given the persistent change in the

target, observing past actions x̄n−1 can never shed light on the most recent change υn in the optimal

action. At best, γn could converge to vmt, in which case the value of observing past actions (to

newly arriving agents) is eventually stationary. At worst, γn could diverge, in which case newly

arriving agents will eventually give up on observational information entirely and rely exclusively on

their private signals (αn → 1).

Proposition 9 If Pn → N∗ > 1, then γn → γ∗N∗ > vmt. If Pn is unbounded, then γn diverges.

As expected, stale information in the observation pool makes it substantially harder to learn

about a moving target. If old actions die off at least exponentially (that is, lnλnm ∝ −n as in the
bounded population case), then paying attention to past actions is always worthwhile: in the long

run, agents put a weight of v
γ∗
N∗+v

on ‘precedent,’ and their expected utility tends toward − γ∗
N∗

γ∗
N
+vv.
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If old actions die off more slowly that this (Pn unbounded) then the current target drifts away

from the observation pool over time, and in the long run, agents ignore precedent, use only their

idiosyncratic information, and earn payoffs tending toward −v. The rate at which the environment
is changing, as summarized by vmt, also affects learning, but it plays a secondary role. The limit

γ∗N∗ is increasing in vmt, so if old actions are purged sufficiently fast, then slower drift in the target

implies that agents can put more weight on precedent and earn higher long run utility than they

would if vmt were larger. However, if old actions are more persistent, any drift in the target drives

their long run payoffs down to −v.40
One could interpret the heterogeneity and moving target extensions in this section as represent-

ing, respectively, transient and persistent shocks to the optimal decision. One natural intermediate

case, which we will not treat, arises when the optimal decision varies according to an autoregressive

process. The challenge in this case (and the reason that we do not pursue it) is that there does not

appear to be a way to avoid representing the equations of motion with a set of state variables that

grows with n.

6 Non-uniform Exit of Old Actions

While our uniform exit condition has proven to be convenient, there is no compelling reason that the

persistence of old actions could not take some other form. In this section, we drop this condition in

two examples and show that the principle of slow learning is robust. Without uniform exit, a curse

of dimensionality arises: one must keep track of the composition of all past observation pools, and

in general this would require a state variable whose size grows with n.41 Our examples focus on the

situation in which an agent observes mainly the preceding cohort’s action, tainted by some earlier

actions. We avoid the curse of dimensionality by looking at cases in which almost all past cohorts

are treated identically, which allows learning to be described by only two or three state variables of

fixed size. In the first example, the first ‘founding’ cohort’s action is the only confounder; other old

actions are not persistent. In the second example, almost all old actions disappear immediately, but

a small fraction of them remain observable indefinitely. The examples make it clearer that it is not

uniform exit that drives slow learning — a vanishing but non-zero chance that an action is observed

indefinitely far into the future can suffice.

6.1 Example: Only One Action Persists

In some settings, the very first decisions made may enjoy a special prominence. For example, early

adopters of a new medical technique may receive a burst of media attention simply for being first.

Then an agent facing the same decision later on may be disproportionately exposed to these first

40We also have γ∗N∗ → ∞ as N∗ → ∞, so there is a smooth transition between the bounded and unbounded
population cases. Both of these comparative static conclusions are derived implicitly from the cubic equation that
defines γ∗N∗ . (See the proof of Proposition 9). A closed form for γ∗N∗ is available, but unilluminating.
41At stage n, one would need the composition of Pn−1 (an n−1 element vector), of Pn−2 (an n−2 element vector),

and so forth.
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actions if (for example) she carries out an internet search. In this section we model this idea by

assuming that only the action of cohort 1 persists, while other old actions disappear immediately.

Specifically, we assume that cohort n’s observational signal blends the most recent action xn−1 and

the first action x1:

x̄n−1 = (1− wn−1)xn−1 + wn−1x1

where {wn} is an exogenous sequence of weights (with wn ∈ [0, 1]). As usual, the fact that agents
observe an average of recent and ‘original’ actions may be interpreted either literally, or as shorthand

for an assumption that agents are exposed to many (undated) individual actions but store only a

mental summary statistic as a way to cope with data overload.

A second purpose of studying this extreme case is to understand whether it is possible for a single

cohort’s persistent influence to slow down learning. With this in mind, let us define the cumulative

persistence of a cohort 1 actions to be
P∞
n=1wn. (This is the natural extension of the definition

introduced in Section 3.3.) In the interest of brevity, the results here are informal, and we focus on

two illustrative cases.

Case 1: After a finite time, the first actors’ choices are never observed.

More precisely, suppose that wn is equal to one for all n ≤ K−1 and zero for all n ≥ K, for some
finite K > 1. Thus, agents in cohorts 2 through K observe only x1, but not more recent actions.

From cohort K + 1 on, an agent observes the most recent action, unmuddled by any confounding

effect from x1. In this case, it is not hard to see that learning must be at rate n, regardless of how

large K is. Suppose that we set aside the actions of cohorts 2 through K − 1, and relabel cohort K
as 2̃, cohort K + 1 as 3̃, and so on. Then we have cohort 2̃ observing action x1, cohort 3̃ observing

x2̃, cohort 4̃ observing x3̃, and so on, with cohort ]n+ 1 observing xñ, where ñ = n −K + 1. But

this is just the case in which every cohort observes its immediate predecessor, and so we know that

learning is at rate ñ. In this case, the only effect of cohort 1’s persistence is to stall learning for K

stages. As long as K is finite, this has no lasting effect on the speed of learning.

Case 2: The first actors’ choices exit gradually.

For convenience, we consider weight sequences of the form wn = 1/n
a, for a > 0. As usual, we

define κn−1 as the expected squared error in x̄n−1. Recalling that the expected squared error in x1
is vc, we can write κn−1 recursively as:

κn−1 = (1− wn−1)2 var (xn−1) + 2wn−1 (1−wn−1) ρn−1 + w2n−1vc .

In this expression, the second term with ρn−1 ≡ E ((x1 − θ) (xn−1 − θ)) represents the persistent

influence of the first-movers’ signal error on the most recent action. The third term represents

the direct effect of first-mover error on learning. Although this direct effect does limit learning in

principle (κn cannot shrink faster than w
2
n), as usual it is the indirect effect that really applies the

brakes. The full equations of motion for this model (including ρn) are derived in the appendix.

Result 1 If first-mover influence disappears fast enough (a ≥ 3
2), then learning is fast (κn → 0 at
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rate n). If first-mover influence disappears more slowly (a < 3
2), then learning is at rate

³
1
wn

´ 2
3
=

n
2
3
a.

We designate this a “result” on the basis of (i) a persuasive but semi-rigorous analysis of the

equations of motion (also in the appendix) and (ii) compelling computational evidence.42 Figure

1(a) shows log plots of lnκn versus lnn for the first 100,000 cohorts, for a range of values of a (from

0.3 to 1.8, in increments of 0.3). The curves are clearly close to linear for n large enough. For

each curve, if its slope tends to a constant, then that constant must be the rate of learning (as a

power of n).43 Figure 1(b) plots these slopes rn ≡
¯̄
∆ lnκn
∆ lnn

¯̄
(where ∆ lnκn = lnκn − lnκn−1 and

∆ lnn = lnn−ln (n− 1)). Consistent with Result 1, these slopes appear to converge tomin
¡
2
3a, 1

¢
.44

To put this result in context, recall Corollary 1. In loose terms, Corollary 1 says that if cohort

1 actions exit out of the observation pool à la {wn} — and (this is the uniform exit condition) all

subsequent cohorts also disappear at a similar rate — then learning slows to rate ln (1/wn). Result

1 suggests that if only one cohort persists in this way, learning still slows down, but not as much

(rate (1/wn)
2/3).

Next consider the cumulative persistence of cohort 1.45 For Case 1, this is finite and simply equal

to K. For Case 2, the cumulative persistence is finite whenever a > 1, and infinite otherwise. Here

as in Section 3.3, finite cumulative persistence does not guarantee fast learning: if a ∈
¡
1, 32

¢
, the

direct impact of the first actions is bounded but the speed of learning is still slow. Furthermore, since

K was arbitrary, one can easily create scenarios in which cumulative persistence is higher in Case 1

than in Case 2, yet the speed of learning is slower in Case 2. The cumulative persistence measure’s

main deficiency is failing to account for the fact that blending an old action into the observational

signal can do more damage in later stages, when the precision of the old action is much worse

than that of the rest of the observational signal. When n is large, an agent correctly expects her

observational signal to be good, and rationally puts high weight on it relative to her idiosyncratic

signal. A small amount of pollution from x1 at this stage will be particularly over-influential, since

it will be treated with a deference that it does not deserve.

42The analysis in the appendix points toward a proof, but there are technicalities that would appear to require
considerable spilling of ink. The plots below are exemplary; computations with other parameters are also consistent
with Result 1.
43To be a bit more precise,

ln (κnn
r) = lnκ1 +

nX

m=2

(r − rn)∆ lnn .

So if κn → 0 at rate nr, for some r, then rn must converge to r.
44For smaller a (specifically a = 0.3 and a = 0.6 here), although the difference 2

3
a − rn is small from the start, it

appears to shrink rather slowly. For a = 1.8, the fact that rn rises briefly above 1 — suggesting that κn shrinks faster
than rate n1 for a time — may seem to violate the constraint that learning cannot be faster than the full information
rate obtained by pooling signals, which is rate n. There is no contradiction — κn is always strictly greater than

vc
n
.

The transient phase when rn > 1 arises because the gap
¡
κn − vc

n

¢
between actual and full information errors ‘burns

off ’ quickly as wn shrinks.
45 I thank a referee for suggesting this possible line of demarcation between fast and slow learning.
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Figure 1: Learning when only cohort 1 actions are persistent. Cohort 1 actions exit as wn = n
−a,

for six different values of a, ranging from 0.3 (lightest curve) to 1.8 (darkest curve), in increments
of 0.3. Parameters v = 2, vc = 1, first 10

5 cohorts computed.

6.2 Example: Hyperbolic Exit

To motivate the example, suppose that before cohort n acts, a government statistical agency pub-

lishes what it intends to be xn−1, the average action in the most recent cohort. However, in the

agency’s database, a small fraction of past actions are entered with a missing “date” field, and due

to a programming error, these actions are included in the published statistic.

Formally, define yn to be the (equally weighted) average of actions x1 through xn. An agent in

cohort n receives the observational signal x̄n−1 = βxn−1 + (1− β) yn−2, where we will think of β as

close to one and 1− β as the error rate. Under these assumptions, the share of action xn−1 in the

observational signal falls from β in cohort n, to 1−β
n−1 in cohort n + 1, then to

1−β
n in cohort n + 2,

and so on. Because an action’s share declines dramatically at first, then more gradually, we refer

to this as hyperbolic exit (by way of analogy with hyperbolic discounting). Notice that if β = 0,

so that x̄n−1 = yn−2, we are almost back to the version of our baseline model in which dn is set

to zero. In that case, each agent observes an unweighted average of her predecessors, and learning

is at rate lnn. One can think of this example as an extension of that case in which the weight on

non-immediate predecessors is dialed down arbitrarily low.

In this case, an analysis of learning requires three state variables: we define νn = var (x̄n),

ωn = var (yn), and ρn = cov (x̄n, yn), where νn takes on the role of our measure of social learning.

Because the expressions involved become lengthy, for this part we make the simplifying assumption

that v = vc = 1. An agent in cohort n then puts weight αn =
νn−1
1+νn−1

on her own signal, and weight

1− αn on x̄n−1. Using this, we can write the following difference equations for the evolution of x̄n
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and yn:

yn =
αn
n
sn +

n− 1
n

yn−1 +
1− αn
n

x̄n−1 (9)

x̄n = αnβsn + (1− β) yn−1 + (1− αn)βx̄n−1 (10)

Learning depends on the evolution of the covariance matrix of x̄n and yn (that is, ωn, νn, and ρn),

which can be derived from (9) and (10). These equations of motion are relegated to the appendix,

but we will make a few remarks about them.

Remark 2 If β = 1, then the model reduces to PA with immediate exit, and social learning is at

rate n. If β = 0, the model is essentially the same as model PA with no exit (dn = 0), and social

learning is at rate lnn.46

One might expect an intermediate rate of learning when β ∈ (0, 1). On the one hand, mixing
old actions into the public signal degrades its precision (relative to the immediate exit case). In

particular, the precision of x̄n cannot grow faster than that of yn.
47 However, the old actions

contained in yn should be more precise (compared to the no exit case) because they will have relied

more heavily on their own recent predecessors. (That is, just as the influence of yn drags down

the rate at which νn improves, the influence of x̄n may pull up the rate at which ωn improves.)

Proposition 10 refutes this compromise intuition: if β < 1, then the influence of old actions dominates

and learning is at rate lnn. To simplify the proof, consider “test sequences” of the form Rn (a) ≡Pn
m=1 rn (a), where rn (a) = n

a−1. For a ∈ (0, 1], Rn (a) grows as na, while Rn (0) grows as lnn.

Proposition 10 In the model with hyperbolic exit, suppose that ωn, νn, and ρn all converge to zero

at common rate Rn (a) for some a ≥ 0. If β = 1, then a = 1. If β < 1, then a = 0. That is,

learning is at rate n if agents can observe only their immediate predecessors but only logarithmic in

n if there is any persistence from earlier actions.

Proposition 10 is couched narrowly and could probably be weakened. In particular, careful study

of the equations of motion suggests that if β < 1, then (lnn)ωn, (lnn) νn, and (lnn) ρn all must

converge to 1−β
2 , but we will not attempt a proof of this. The result provides further confirmation

that the tail behavior of noise from prior actions is critical to the speed of learning. Here, even when

1− β is small, these tails are fat. For example, at stage n, noise from actions more than n/2 stages

old comprises roughly a fraction 1−β
2 of the observation pool, regardless of n. No matter how small

1− β is, eventually the cumulative influence from these fat tails slows down learning.

7 Concluding Remarks

At its heart, social learning asks how effective people can be at pooling their individual information.

The question is most interesting — and most realistic — when there are constraints on learning from
46 In contrast with the dn = 0 case of model PA, xn−1 is omitted from the average that cohort n sees, but this is

inessential.
47Specifically, we have νn ≥ (1− β)2 ωn−1, which follows from the (1− β) yn−1 term in (10).
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others. One such constraint, which inspired the herding literature, is that sometimes people may

observe others’ choices but not the beliefs that led to them. Another constraint, which is the focus

of this paper, is that people may see a summary of others’ choices, such as aggregate sales data,

or a statistic on the news. A summary such as this will often do a poor job of summarizing the

information content of others’ choices. The data that an observer would need to form a better

summary is not just the individual choices, but also their context : when each choice was made,

which prior choices it relied on, and so forth. We show that when people learn from summaries of

past actions, they cannot correct for a type of echo chamber effect (recent actions rely on older ones)

that tends to give the earliest actions too much influence. This inertia can slow learning down so

much that, for practical purposes, it is effectively incomplete. The inertial effect of old actions grows

more pernicious in a changing world (the moving target model), but it can also become beneficial

(e.g., with heterogeneous tastes, or a self reliance bias) when a decisionmaker wishes her samplees

had paid more heed to the past.

Our model can also be applied if people observe others’ actions individually but treat them

equally in forming a mental summary statistic. Equal treatment might arise because contextual

information is missing (as we suggest in our sample average model). Another rationale, not pursued

in this paper, is that people have clues about context but either underestimate the need to correct

for correlation among the actions they sample or find it too difficult. In this case, forming a sample

average could be a cognitively simple rule of thumb.

For savvy learners with partial context on the choices they see, the first order correction would

be to try to discount older choices, since their information is likely to be redundant. In this sense, a

higher (exogenous) frequency of sampling recent versus old choices in our model could be interpreted

as a proxy for better information about context. As expected, social learning is faster when people

are able to collect observations with less redundancy. However, this reduced-form interpretation is

not a substitute for an explicit model of inference from partially ordered data. Further work along

these lines appears challenging, but would be welcome.48

Poor information about the dependencies among people’s choices is a problem for applied mi-

croeconomists as well as for the people they study. Certain aspects of our model (sequences of

cohorts of agents, normally distributed errors) bear a loose similarity to simple econometric models

of repeated cross-section data. While our model is not ready to estimate, it suggests a tractable

way to build modest assumptions about what people know into structural empirical models of social

learning.

Our analysis relies heavily on the tractability of continuous actions paired with normal errors.

Developing a similar model with discrete actions, such as the binary action models that have been

a workhorse of the herding literature, would seem to require substantially different methods. That
48One intermediate approach, developed in an earlier version of this paper, is to retain the observation of a sample

average but to allow the agent to choose the composition of this sample (within certain constraints). This structure
is motivated by a screening story: for example our sprinter from the introduction might be able to screen older blogs
out of her sample based on hairstyles or dated pop culture references, just as she might be able to avoid blogs that
are more focused on distance running. One can show that agents generally prefer to screen for recent actions, but if
the screening technology is imperfect, the slow learning results in the paper still apply.
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said, there is no obvious reason why the factors that contribute to fast or slow learning in our

model would not play a roughly similar role if actions were discrete. Other adaptations are more

direct. For example, in our model, an agent’s action is his (posterior) point estimate of the unknown

parameter. Thus, it could be recast as a model of learning from others’ beliefs rather than from

their actions without changing the mathematics.49 Opportunities to observe summary statistics

about other people’s beliefs — in the form of prediction markets, online product ratings, and so forth

— have proliferated of late, and learning from the “wisdom of crowds” has seized the imagination

of the popular press.50 However, crowds and markets can also make mistakes and propagate stale

information.51 Our model provides a framework for thinking about how the wisdom of crowds may

sometimes be underwhelming due to the inertia of early mistakes.
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8 Proofs

Any omitted proofs appear in the Supplementary Appendix. Many of the proofs use the following standard

result, due to Stolz and Cesàro, which can be thought of as a generalization of L’Hôpital’s rule to discrete

summations.

Theorem 1 Let {An} and {Bn} be two sequences of real numbers, with {Bn} strictly increasing and un-

bounded. If the limit

lim
n→∞

An+1−An
Bn+1−Bn

= K
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exists, then the limit limn→∞
An
Bn

also exists and is equal to K.

Corollary 3 Suppose that {An} and {Bn} satisfy Theorem 1 with limit K. Define an = An+1 − An and
bn = Bn+1 −Bn. Let {Cn} be strictly increasing and unbounded, with increments cn = Cn+1 − Cn. Suppose
that

lim
n→∞

an −Kbn
cn

= L

Then limn→∞
An−KBn

Cn
exists and is equal to L.

Proof. This is a direct application of the theorem.

Proposition 1

Start with d̃ and Pn. Since dn is assumed to converge, let dn → d̄. As the population Pn is weakly

increasing, d̃ > 0 implies d̄ > 0 and Pn converges to a finite limit. Conversely, Pn → N∗ <∞ implies dn 9 0,

so d̃ = d̄
N∗ > 0. For Part 2, d̃ = 0 implies that either Pn → ∞, or d̄ = 0 (which in turn implies Pn → ∞).

Conversely, since dn ∈ [0, 1], we have Pn →∞ implies dn
Pn
→ 0.

Next for arbitrary m, observe that all cohort m agents remain in Pm to be seen by cohort m+1 agents. A

measure dm
Pm

exit after cohort m+1 leaving 1− dm
Pm

in Pm+1. Of these, a fraction
dm+1

Pm+1
leave after cohort m+2

acts, leaving a total of
³
1− dm

Pm

´³
1− dm+1

Pm+1

´
in Pm+2. Thus we have #

m+1
m = 1 and #nm =

Qn−2
k=m

³
1− dk

Pk

´

for n ≥ m+2. For properties EE1 and SE1 it suffices to look at the limit of ln#
n
m

n , since n
n−m → 1 with n. We

have
ln#n

m

n = 1
n

Pn−2
k=m ln

³
1− dk

Pk

´
. Now apply Theorem 1 to get limn→∞

ln#n
m

n = limn→∞ ln
³
1− dn

Pn

´
, if the

latter limit exists. We have dn ∈ [0, 1] and Pn ≥ 1, so d̃ = limn→∞ dn
Pn
∈ [0, 1]. Furthermore, d̃ = 1 is possible

only if dn = 1 for all n, a case that has been ruled out. Thus we have limn→∞
ln#n

m

n = ln
³
1− d̃

´
≤ 0. Notice

that this limit does not depend on m.

Because the fraction of cohort m actions in the observation pool observed by cohort n is λnm = #
n
m/Pn−1,

we have limn→∞
lnλnm
n = ln

³
1− d̃

´
− limn→∞ lnPn

n . But Pn is bounded above by n, so limn→∞
lnPn
n = 0.

Thus limn→∞
ln#n

m

n = limn→∞
lnλnm
n = ln

³
1− d̃

´
for all m, which implies EE1 ⇔ EE2 and SE1 ⇔ SE2.

Finally observe that ln
³
1− d̃

´
< 0⇔ d̃ > 0 and ln

³
1− d̃

´
= 0⇔ d̃ = 0, which completes the proof.

Proposition 2

Part 1: κn→ 0 at rate Rn

Let Rn =
Pn
m=1

1
Pn

and τ̄n =
1
κn

as in the text and define zn =
τ̄n
Rn

= 1
Rnκn

. We will apply the

Stolz—Cesàro Theorem to the increments of τ̄n and Rn. First note that Rn is strictly increasing and un-

bounded. (This follows from the fact that 1 ≤ Pn≤ n, so Rn grows at least as fast as the harmonic series
1
1+

1
2+...+

1
n+...) We can write τ̄1 = 1 and

τ̄n − τ̄n−1 =
Mnτ̄n−1

vτ̄n−1 + 1−Mn
(11)

Let

Kn =
τ̄n−τ̄n−1
Rn−Rn−1

=
PnMnτ̄n−1

vτ̄n−1+1−Mn

=

µ
2− 1

Pn

vc+κn−1
v + κn−1

¶µ
τ̄n−1

vτ̄n−1+1−Mn

¶
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To prove zn → 0 at rate Rn, it will suffice to show thatKn → K for some strictly positiveK, and therefore (by

the Stolz—Cesàro Theorem) that zn → K as well. To show this, first observe that the first term in parentheses

is strictly positive (because Pn≥ 1 and vc≤ v), strictly increasing (because 1
Pn
is weakly decreasing and κn

strictly decreasing implies
vc+κn−1
v+κn−1

strictly decreasing), and bounded above; thus it converges to a strictly

positive limit. This also implies that Mn converges to a weakly positive limit; define M by {Mn}→M . For

the second term in parentheses, note that τ̄n is strictly increasing (because κn is strictly decreasing) and either

bounded (in which case τ̄n converges) or unbounded. In either case, (τ̄n converges or grows without bound),

the second term in parentheses converges. Its limit is strictly positive because τ̄n−1
vτ̄n−1+1−Mn

≥ τ̄n−1
vτ̄n−1+1

≥ 1
v+1

(where the last step uses τ̄n ≥ 1). Thus Kn → K, with K strictly positive. Because this implies that τ̄n

tends to infinity , the limiting constant is K = 2
v − vc

v2 limn→∞ (1/Pn). (The limit of 1/Pn exists regardless

of whether Pn is bounded.)

Part 2: Interpreting rate Rn learning

Let f(n) be an arbitrary function on the natural numbers, and let ∆fn= f(n)− f(n− 1). Apply

Theorem 1 to get limn→∞Rn/f(n)= limn→∞1/(Pn∆fn), if the latter limit exists. Use f(n) = n to get

limn→∞Rn/n= limn→∞1/Pn which is either strictly positive and finite or zero, depending on whether the ob-

servation pool is bounded or unbounded. Next suppose that dn is uniformly bounded away from 1. By assump-

tion, dn converges, so suppose dn→ 1− ḡ, with ḡ > 0. Set f(n) = lnn to get limn→∞lnn/Rn= − limn→∞Pnln(1− 1/n).
Write the expression in the last limit as Pnln(1− 1/n) = (Pn/n)(n ln(1− 1/n)). But by assumption, limn→∞(Pn/n) = ḡ,
while limn→∞(n ln(1− 1/n)) = −1, so limn→∞lnn/Rn= ḡ.

Lemmas 2, 3, 4, 5, and 6 are used in the proof of Proposition 3. Their proofs appear in the Supplementary

Appendix.

Lemma 2 (Second order convergence rates) Suppose τ̄n
Rn
→ K, with η = 1

Kv as in the text. Let Hn =Pn
j=1

1
P2
j

if Pn is unbounded and
Rn
Pn

diverges, or Hn =
Pn
j=1

1
RjPj

otherwise. Then τ̄n−KRn
Hn

→ L, for some

finite L. Furthermore, RnHn
(ηv − κnRn)→ L (ηv)2 and Rn

Hn
(η − αnRn)→ Lη2v.

Lemma 3 RnPn ≥ n for all n ≥ 1.

Lemma 4 (Discrete approximation of lnRn) Define Sn =
Pn
k=1

1
RkPk

. The sequence {Sn − lnRn}n≥1 con-
verges.

Lemma 5 (Linear approximation of ln (1− αn/Pn)) Define ck by ln (1− αk/Pk) = −αk/Pk + ck. For arbi-
trary m > 1, the sum

P∞
k=m+1 ck converges.

Lemma 6 For arbitrary m ≥ 1 and q ∈ (0, 1), the sum P∞
k=m+1

1
R2−q
k

Pk
converges.

Proposition 3

Part 1 Fix any arbitrary m and let λ̃ (n) = lnλn+1m . Following the text, we can write

λ̃ (n) = − lnPm +
nX

k=m+1

ln

µ
1− 1

Pk

¶

Wemust show that
n
λ̃(n)
Rn

o

n>m
→ −L, for some L > 0. By Theorem 1, it suffices to show that

n
λ̃(n)−λ̃(n−1)
Rn−Rn−1

o

n>m+1
=
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n
Pn ln

³
1− 1

Pn

´o

n>m+1
→ −L. If Pn is bounded then it converges to some N∗ > 1, and the result follows

directly. If Pn is unbounded, then the result follows from limx→0 1x ln (1− x) = −1.

Part 2 Define η =
¡
2− vc

v limn→∞(1/Pn)
¢−1

as in the text. Observe from the proof of Proposition 2

that {κnRn}n≥1 → ηv and {αnRn}n≥1 → η. It suffices to show that the sequence {ln (πnm (Rn)
η
)}n>m

converges, or equivalently that {π̃ (n) + η lnRn}n>m converges, where π̃ (n) = lnπn+1m = ln (αm/Pm) +Pn
k=m+1 ln (1− αk/Pk). The strategy is to approximate lnRn by Sn =

Pn
k=1

1
RkPk

and approximate
Pn
k=m+1 ln (1− αk/Pk) by −

Pn
k=m+1 αk/Pk. That is, we have

ln (πnm (Rn)
η
) =

nX

k=m+1

µ
η

RkPk
− αk
Pk

¶
+Error1n +Error

2
n + C

where Error1n = η
³
lnRn −

Pn
k=m+1

1
RkPk

´
, Error2n =

Pn
k=m+1

³
αk
Pk
+ ln

³
1− αk

Pk

´´
, and C is a (bounded)

constant that does not depend on n. The sequences
©
Error1n

ª
n>m

and
©
Error2n

ª
n>m

converge by Lemmas 4

and 5, so to prove Part 2, it suffices to show that the sum
P∞
k=m+1 ak converges, where ak =

1
RkPk

(η − αkRk).

This will depend on second order effects in the speed of learning — namely, whether αkRk tends to η fast

enough. Lemma 2 answers this question; we have Rn
Hn
(η − αnRn) → L̃, for some finite constant L̃ and a

sequence Hn defined by Hn =
Pn
j=1

1
P2
j

if Pn is unbounded and
Rn
Pn

diverges, or Hn =
Pn

j=1
1

RjPj
other-

wise. Let a0k = Hk/
¡
R2kPk

¢
, and observe that limk→∞ ak/a0k = L̃. By the limit comparison test, to prove

P∞
k=m+1 ak convergent (and therefore to prove Part 2), it suffices to show that

P∞
k=m+1 a

0

k converges. There

are two cases to consider, depending on which part of the piecewise definition of Hn applies.

Part 2, Case 1: Pn is either bounded, or Rn/Pn converges. Thus Hn =
Pn
j=1

1
RjPj

.

By Lemma 4, Hn/ lnRn → 1, so by another application of the limit comparison test, it suffices to

show that
P∞
k=m+1

lnRk
R2
k
Pk
converges. Write this sum as

P∞
k=m+1

³
1

R2−q
k

Pk

´³
lnRk
Rq

k

´
for an arbitrary constant

q ∈ (0, 1). We have limk→∞ lnRk
Rq

k

= 0 (since Rk →∞ with k), so it will suffice to show that
P∞

k=m+1
1

R2−q
k

Pk
converges. Lemma 6 shows this, completing this part of the proof. The spirit of Lemma 6 is to note that the

summand may be written (∆Rk)R
q−2
k , which is something like the ‘derivative’ of Rq−1k . Thus we may expect

the summation to behave like the ‘definite integral’ Rq−1m − limk→∞Rq−1k = Rq−1m . Lemma 6 formalizes this

intuition.

Part 2, Case 2: Pn is unbounded and Rn/Pn diverges. Thus Hn =
Pn

j=1
1
P 2
j

.

This is the only case where we must rely on condition (Poly). By (Poly), n−bPn converges to a strictly

positive, finite limit. It is straightforward to use this fact, with applications of Theorem 1, to show that

nb−1Rn and n2b−1Hn also converge to strictly positive finite limits. Together these imply that our summand

a0k tends to zero at rate k
1+b. (That is, k1+ba0k converges to a strictly positive, finite limit.) But then,

convergence of
P∞
k=m+1

Hk

R2
k
Pk
is implied by the fact that the sum

P∞
k=m+1

1
k1+b

converges.

Part 3 This follows more or less immediately from Part 2. By Part 2, for any cohort m, there exists some

Lm > 0 such that {πnm (Rn)
η
}n>m → Lm. By Proposition 2,

1
κn−1Rn−1

converges to K = 1
ηv . Furthermore,

Rn
Rn−1

= Rn
Rn− 1

Pn

→ 1 since Rn →∞ and 1
Pn
≤ 1. Thus we can write

χnm (Rn)
2η−1

=

µ
vc

κn−1Rn−1

¶µ
Rn−1
Rn

¶
(πnm (Rn)

η
)
2
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Each term in parentheses on the righthand side converges to a positive limit, so
n
χnm (Rn)

2η−1
o

n>m
does

as well. Parts 3a and 3b are merely a matter of emphasis. If Pn → N∗ < ∞, then 2η − 1 = 2
2− vc

v
1
N∗
− 1 =

vc
2vN∗−vc > 0. However, if Pn → ∞, then 2η − 1 = 0, so in this case, χnm tends toward a positive limit as

n→∞.

Lemma 1

Label the individual actions that comprise xS(ni) as {y1, y2, ..., yS}, so xS(ni) =
1
S

PK
k=1 yk. The expected

squared error in xS(ni) can be written as

κ̄n−1 =
1

S2
E

⎛
⎝
Ã

SX

s=1

(ys − θ)

!2⎞
⎠

=
1

S2

Ã
SX

s=1

E
³
(ys − θ)

2
´
+ 2

SX

s=1

SX

s0=s+1

E ((ys − θ) (ys0 − θ))

!

=
1

S
κ̂n−1 +

S − 1
S

ρ̂n−1

Agent ni’s optimal weight α̂n solves

α̂n = argmin
a
E
³¡
asni + (1− a)xS(ni) − θ

¢2´

Because sni and xS(ni) are independent, conditional on θ, the minimand can be written as

a2E
³
(sni − θ)

2
´
+ (1− a)2E

³¡
xS(ni) − θ

¢2´
= a2v + (1− a)2 κ̄n−1

from which the optimal weight follows.

Proposition 5

As a preliminary step, we compute the increments of κ̂n and ρ̂n:

∆κ̂n = κ̂n − κ̂n−1 = −
1

Pn
(κ̂n−1 − α̂nv)

∆ρ̂n = ρ̂n − ρ̂n−1 = −
α̂nρ̂n−1
Pn

µ
2− 1

Pn

α̂n
ρ̂n−1

¡
ρ̂n−1 + vc

¢¶

Use the definitions of α̂n and κ̄n to write ∆κ̂n as:

∆κ̂n = − 1

Pn

1

κ̄n−1 + v

µ
κ̂2n−1 +

S − 1
S

¡
κ̂n−1 − ρ̂n−1

¢
(v − κ̂n−1)

¶
or

= − 1

Pn

κ̂n−1
κ̄n−1 + v

µ
1

S
κ̂n−1 +

S − 1
S

µ
v

µ
1− ρ̂n−1

κ̂n−1

¶
+ ρ̂n−1

¶¶

The following three supporting lemmas are proved in the Supplementary Appendix.

Lemma 7 κ̂n
ρ̂n
is bounded. (That is, ρ̂n tends to zero no faster than κ̂n.)

Lemma 8 1
ρ̂nRn

is bounded. (That is, ρ̂n tends to zero no faster than rate Rn.)

Lemma 9 At least one of the following must hold: either κ̂n−ρ̂n
ρ̂n

→ 0 or (κ̂n − ρ̂n)Rn → 0.
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Lemmas 7 and 8 put upper bounds on how fast the error variance vanishes, while Lemma 9 puts a lower

bound on how fast the gap between κ̂n and ρ̂n must shrink. By Lemma 9, we either have
κ̂n−ρ̂n
ρ̂n

→ 0, in

which case the proof is complete, or else (κ̂n − ρ̂n)Rn → 0 holds. In the latter case we can write κ̂n−ρ̂n
ρ̂n

=

((κ̂n − ρ̂n)Rn)
³

1
ρ̂nRn

´
. Because the first term tends to zero and the second is bounded, we have κ̂n−ρ̂n

ρ̂n
→ 0

for this case as well, which completing the proof.

Proposition 6

S > 1

To show that ρ̂nRn tends to a positive constant, we follow the proof of Lemma 8, adding the additional

information (from Proposition 5) that κ̂n−ρ̂n
ρ̂n

→ 0. We have

lim
n→∞

1

ρ̂nRn
= lim

n→∞

∆
³
1
ρ̂n

´

∆Rn
= lim
n→∞

ρ̂n−1
ρ̂n

α̂n
ρ̂n−1

µ
2− 1

Pn

α̂n
ρ̂n−1

¡
ρ̂n−1 + vc

¢¶

On the righthand side, α̂n
ρ̂n−1

= 1
κ̄n−1+v

ρ̂n−1+
1
S (κ̂n−1−ρ̂n−1)
ρ̂n−1

→ 1
v . Furthermore, we have

ρ̂n
ρ̂n−1

=
³
1− α̂n

Pn

´2
+

α̂n
α̂n
ρ̂n−1

vc
P2
n
→ 1 (because α̂n → 0). Thus we have

lim
n→∞

1

ρ̂nRn
= lim
n→∞

∆
³
1
ρ̂n

´

∆Rn
=
1

v

µ
2− vc

v
lim
n→∞

1

Pn

¶
=
1

ηv

Thus ρ̂n → 0 at rate Rn. From this, it follows immediately that κ̂nRn tends to the same limit as ρ̂nRn, while

α̂nRn → 1
v limn→∞ ρ̂nRn.

S = 1

If S = 1, then α̂n =
κ̂n−1

κ̂n−1+v
and so κ̂n is characterized by

∆κ̂n = −
1

Pn
(κ̂n−1 − α̂nv) = −

1

Pn

κ̂2n−1
κ̂n−1 + v

Apply Theorem 1 to 1/κ̂n
Rn

, with ∆ (1/κ̂n) =
∆κ̂n

κ̂nκ̂n−1
to get

lim
n→∞

1
κ̂n

Rn
= lim
n→∞

∆
³
1
κ̂n

´

∆Rn
= lim
n→∞

κ̂n−1
κ̂n

1

κ̂n−1 + v
=
1

v

where the last step uses κ̂n−1
κ̂n
→ 1 (which follows from ∆κ̂n

κ̂n−1
= − 1

Pn

κ̂n−1
κ̂n−1+v

→ 0). Thus, κ̂nRn → v.

For subsequent results, we use the following lemma. While the result is surely not novel, we have not

found this particular formulation in the literature.

Lemma 10 Define a sequence Zn by Z1 = Zinit > 0 and Zn = (1− bn−1)Zn−1 + cn−1 if n > 1. Write

the increments of this sequence as ∆Zn ≡ Zn − Zn−1 = −bn−1
³
Zn−1 − cn−1

bn−1

´
. Suppose that bn and cn are

sequences with 0 < bn < 1 and
P∞

n=1 bn divergent, cn → 0, and cn
bn
→ Z ≥ 0. Then Zn → Z.

Proposition 7
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Case 1 from Table 1: Pn is bounded with Pn → N∗

Let FP : [0, vc]→ [0, vc] be defined by FP (z) =
³
1− α(z)

P

´2
z+
³
α(z)
P

´2
vc, where α (z) =

z+vta
z+vta+v

. Notice

that κn = FPn ◦ FPn−1 ◦ ... ◦ FP2 (κ1). We claim the following, deferring proofs:

Claim (1) FP has a unique, strictly positive fixed point, denoted z̄
P , satisfying

µ
2− α (z)

P

¶
z − α (z)

P
vc

¯̄
¯̄
z=z̄P

= 0 (12)

Claim (2) There is a function bP (z), satisfying
α(0)
P < bP (z) < 1 for all z ∈ [0, vc], such that FP (z)−z̄P =

(1− bP (z))
¡
z − z̄P

¢
.

Claim (3) Define z̄ ≡ z̄N∗ . We have
©
z̄Pn

ª
→ z̄.

A general intuition for the main result is that FPn tends to FN∗ , and iteration of FN∗ tends to z̄, so

κn → z̄. The proof is less direct. Define a variable ωn ≡ κn− z̄Pn+1 , and note that ωn =
¡
FPn (κn−1)− z̄Pn

¢
+

¡
z̄Pn − z̄Pn+1

¢
. Using Claim (2), we have

ωn = (1− bPn (κn−1))ωn−1 +
¡
z̄Pn − z̄Pn+1

¢

= (1− bn−1)ωn−1 + cn−1 , setting bn−1 = bPn (κn−1) and cn−1 = z̄Pn − z̄Pn+1

Now apply Lemma 10. We have cn → 0 by Claim (3),
P∞
n=1 bn divergent by Claim (2) and the fact that

α(0)
Pn
→ α(0)

N∗ > 0, and
cn
bn
→ 0. Thus the lemma applies, and so ωn → 0. Together with z̄Pn → z̄, this implies

that κn → z̄.

Proof of Claim (1) The equation FP (z) − z = 0 can easily be reduced to (12), which is quadratic in z.
FP (z) − z = 0 has one irrelevant negative solution (because FP (0) > 0 and limz→−(vta+v)+ FP (x) = −∞).
The remaining solution lies in (0, vc) (because FP (0) > 0 and FP (z)− z|z=vc < 0).

Proof of Claim (2) Using the definition of FP and some tedious algebra, for arbitrary z and z
0 we can

eventually write:

FP (z)− FP (z0) =
µ
1− α (z)

P

¶2
(z − z0) + α (z)− α (z0)

P

µ
α (z)

P
(z0 + vc) +

α (z0)

P
vc −

µ
2− α (z0)

P

¶
z0
¶

Next observe that α (z)− α (z0) = v
(z0+vta+v)(z+vta+v)

(z − z0) = 1−α(z)
z0+vta+v

(z − z0). Use this to write:

FP (z)−FP (z0) =
Ãµ

1− α (z)

P

¶2
+
1

P

1− α (z)

z0 + vta + v

µ
α (z)

P
(z0 + vc) +

α (z0)

P
vc −

µ
2− α (z0)

P

¶
z0
¶!

(z − z0)

Substitute in z0 = z̄P , and use (12) to cancel righthand side terms, arriving at:

FPn (z)− z̄P =

Ãµ
1− α (z)

P

¶2
+

v + z̄n

z̄n + vta + v

α (z) (1− α (z))

P 2

!
¡
z − z̄P

¢

= (1− bP (z))
¡
z − z̄P

¢

Expand and solve for bP (z) to get:

bP (z) =
α (z)

P

µ
2− α (z)

P
− v + z̄n

z̄n + vta + v

1− α (z)

P

¶
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Observe that bP (z) <
α(z)
P

³
2− α(z)

P

´
≤ 1 (where the strict inequality follows from α (z) < 1). For the lower

bound on bP (z), we have

bP (z) >
α (z)

P

µ
2− 1

P

¶
>

α (0)

P
> 0

Proof of Claim (3) The quadratic equation that defines z̄P is continuous in P .

Cases 2 and 3 from Table 1: Pn is unbounded and limn→∞∆Pn < 2ᾱ

Recall that ∆Pn = 1 − dn converges because (by assumption) dn converges. Let ḡ = limn→∞∆Pn ≥ 0.
Let Zn = Pnκn. We have

Zn =

µ
1 +

∆Pn
Pn−1

¶µ
1− αn

Pn

¶2
Zn−1 +

α2n
Pn
vc

= (1− bn−1)Zn−1 + cn−1

where cn−1 =
α2n
Pn
vc, and

bn−1 =
1

Pn−1

µ
2αn −∆Pn −

α2n
Pn

¶

It is immediate that bn → 0 and cn → 0 because Pn diverges. Furthermore, we have
cn
bn
→ ᾱ2vc

2ᾱ−ḡ which

is strictly positive and finite. Because
α2n
Pn
→ 0, bn−1 is eventually bounded below by (e.g.) 1

2
2ᾱ−ḡ
Pn−1

. But
P∞
n=1

1
Pn
diverges, so

P∞
n=1 bn must diverge as well. Finally, there exists some n̄ such that bn−1 ∈ (0, 1) for

all n ≥ n̄. If we consider the sequence Zn beginning with the n̄th term Zn̄, all of the conditions of Lemma 10

are met, so we have Zn → ᾱ2vc
2ᾱ−ḡ .

Case 4 from Table 1: Pn is unbounded and limn→∞∆Pn > 2ᾱ

Observe that in this case, limn→∞∆Pn = limn→∞
Pn
n = ḡ. Define Zn = P

β
n κn. We have

Zn = P β
n κn−1

µ
1− αn

Pn

¶2
+

α2n

P 2−βn

vc

=

Ã

1 +
∆P β

n

P β
n−1
− 2αn

P 1−βn P β
n−1

+
α2n

P 2−βn P β
n−1

!

Zn−1 +
α2n

P 2−βn

vc

and so

∆Zn =

Ã
∆
¡
P β
n

¢

Pβ
n−1

− 2αn

P 1−βn Pβ
n−1

+
α2n

P 2−βn Pβ
n−1

!

Zn−1 +
α2n

P 2−βn

vc

where ∆
¡
P β
n

¢
= Pβ

n −Pβ
n−1. Expanding P

β
n = (Pn−1 +∆Pn)

β , we have ∆
¡
P β
n

¢
= β ∆Pn

P1−β
n−1

+O

µ³
∆Pn
Pn−1

´2−β¶
.

Since ∆Pn and αn converge, we have

∆Zn =
1

Pn−1

Ã

β∆Pn −
µ
Pn−1
Pn

¶1−β
2αn +O

³
P β−1
n−1

´!

Zn−1 +O
¡
P β−2
n

¢

=
1

Pn−1

µ
β∆Pn − 2αn +O

µ
1

Pn

¶¶
Zn−1 +O

¡
P β−2
n

¢

(where the last step expands
³
Pn−1
Pn

´1−β
=
³
1− ∆PnPn

´1−β
).

For β ∈ (0, 1), the contribution of summedO
¡
P β−2
n

¢
terms to Zn converges becauseO

¡
P β−2
n

¢
= O

¡
nβ−2

¢

with β − 2 < −1. Thus we can concentrate on the term in ∆Zn that is proportional to Zn−1. Suppose that
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βḡ − 2ᾱ > ² > 0. Then for all n sufficiently large, we have β∆Pn − 2αn +O
³
1
Pn

´
> ²

2 and Pn−1 < 2ḡn and

therefore

∆Zn >
²

4ḡ

1

n
Zn−1

Thus if βḡ − 2ᾱ > 0, then Zn →∞.
Alternatively, suppose that βḡ − 2ᾱ < −² < 0. Then for n sufficiently large, we have β∆Pn − 2αn +

O
³
1
Pn

´
< − ²

2 . In this case, applying Lemma 10 implies Zn → 0.

Proposition 9

Pn unbounded

Note that
³
1− αn

Pn

´2
→ 1. Then, for arbitrary L > vmt, there exists some nL such that

³
1− αn

Pn

´2
>

1− vmt

2L for all n ≥ nL. Define a new sequence yn by

yn =

(
γn if n < nL¡

1− vmt

2L

¢
yn−1 + vmt if n ≥ nL

By construction, yn ≤ γn for all n ≥ 1. Furthermore, yn → 2L, so there exists some n0L such that yn > L for

all n ≥ n0L. So a fortiori, γn > L for all n ≥ n0L. Since L was arbitrary, this suffices to show that γn diverges.

Pn bounded

We use the following lemma adapted from Maxim Engers.

Lemma 11 Suppose {Fn}n≥1 is a sequence of functions (on a compact subset Z ⊆ <) that converges uni-
formly to a contraction mapping F . Let z̄ be the unique fixed point of F . For any initial z1 ∈ Z, define a
sequence {zn}n≥1 by zn = Fn (zn−1). Then {zn}n≥1 → z̄.

Suppose that Pn → N∗. Let Z = [vmt,N∗ (vc + vmt)] and define Fn : Z → Z by Fn (z) =
³
1− 1

Pn
z
z+v

´2
z+

³
1
Pn

z
z+v

´2
vc + vmt. Let F = limn→∞ Fn, so we have F (z) =

³
1− 1

N∗
z
z+v

´2
z +

³
1
N∗

z
z+v

´2
vc + vmt. (The

limits on Z are chosen so as to ensure that Fn (Z) ⊆ Z for all n ≥ 1, as well as for F .) It is straightforward
to see that Fn → F uniformly, and furthermore, we have the following.

Lemma 12 The function F , as defined above, is a contraction mapping.

Thus F has a unique fixed point z̄. We have γ1 = vc + vmt ∈ Z, and γn = Fn
¡
γn−1

¢
for n > 1, so by

Lemmas 11 and 12, {γn}n≥1 → z̄. Furthermore, because F (vmt) 6= vmt, we must have z̄ > vmt.

9 Supplementary Appendix

9.1 Proofs Omitted from the Main Appendix

Lemma 2 Suppose τ̄n
Rn
→ K, with η = 1

Kv as in the text. Let Hn =
Pn
j=1

1
P 2
j

if Pn is unbounded

and Rn
Pn

diverges, or Hn =
Pn

j=1
1

RjPj
otherwise. Then τ̄n−KRn

Hn
→ L, for some finite L. Furthermore,

Rn
Hn
(ηv − κnRn)→ L (ηv)2 and Rn

Hn
(η − αnRn)→ Lη2v.
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Proof. Write ∆τ̄n = τ̄n − τ̄n−1 and ∆Rn = Rn − Rn−1 = 1
Pn
. With an eye toward applying Corollary

3, we recall from the proof of Proposition 2 that ∆τ̄n and ∆Rn satisfy ∆τ̄n = Kn∆Rn =
Kn

Pn
, where

Kn =
τ̄n − τ̄n−1
Rn −Rn−1

=

µ
2− 1

Pn

vc + κn−1
v + κn−1

¶µ
τ̄n−1

vτ̄n−1 + 1−Mn

¶

with Kn → K. Then we can write ∆τ̄n −K∆Rn = (Kn −K)∆Rn = 1
Pn
(Kn −K). For ease of exposition,

separate Kn into K̃n = 2− 1
Pn

vc+κn−1
v+κn−1

and K̂n =
τ̄n−1

vτ̄n−1+1−Mn
, with K̃n → K̃, K̂n → K̂, and K = K̃K̂. We

can write Kn −K = K̃
³
DK̂

´
+ K̂

³
DK̃

´
+
³
DK̃

´³
DK̂

´
, where DK̃ = K̃n − K̃ and DK̂ = K̂n − K̂. Let

hn =
1
P 2
n
if RnPn diverges, or hn =

1
RnPn

otherwise. Consider the limit:

lim
n→∞

∆τ̄n −K∆Rn
hn

= lim
n→∞

K̃
³
DK̂

´
+ K̂

³
DK̃

´
+
³
DK̃

´³
DK̂

´

hnPn

Take the numerator term by term. Regardless of whether Pn is bounded, K̂ = 1
v . Thus, DK̂ = τ̄n−1

vτ̄n−1+1−Mn
−

1
v =

1
v

³
(Mn−1)

vτ̄n−1+(1−Mn)

´
. Both K̃ and Mn are bounded, so the limiting behavior of

K̃(DK̂)
hnPn

is governed by

Pn
τ̄n−1

(if Pn → ∞ and Rn
Pn

diverges) or Rn
τ̄n−1

(otherwise). But τ̄n−1 grows at rate Rn, so
K̃(DK̂)
hnPn

tends to

either zero (in the first case) or a positive constant (otherwise). Next, K̃ equals 2 − 1
N∗

vc
v or 2 depending

on whether or not Pn is bounded. If Pn is bounded, then we have
K̂(DK̃)
hnPn

= K̂Rn

³
DK̃

´
, or, with some

algebra,− 1
Pnv2

Rn

³
vc
N∗−Pn
N∗ + κn−1

v−vc
v+κn−1

´
. We have Rn (N

∗ − Pn) → 0 (N∗ − Pn falls exponentially in
n, while Rn grows linearly in n) and Rnκn−1 tends to a constant, so this term has a finite limit. If Pn is

unbounded, then DK̃ = − 1
Pn

vc+κn−1
v+κn−1

, and so
K̂(DK̃)
hnPn

tends to a nonzero constant if RnPn diverges or tends to

a constant. If RnPn tends to zero, then the dominant term of
K̂(DK̃)
hnPn

is proportional to Rn
Pn
, so

K̂(DK̃)
hnPn

tends to

zero as well. We omit the argument that limn→∞
(DK̃)(DK̂)

hnPn
is finite, as it is very similar to the logic for the

other two terms. Thus limn→∞
∆τ̄n−K∆Rn

hn
exists; call that limit L.

Next, apply Corollary 3. Define the strictly increasing sequence Hn =
Pn
j=1 hn. To show that Hn is

unbounded, first suppose that Rn
Pn

does not diverge. Then Hn =
Pn

j=1
1

RjPj
which diverges at rate lnRn

by Lemma 4. Alternatively, if Pn is unbounded and
Rn
Pn

diverges, then Hn =
Pn
j=1

1
P2
j

=
Pn

j=1
Rj
Pj

1
RjPj

.

In this case, the terms of
Pn
j=1

1
P2
j

eventually dominate the terms of
Pn
j=1

1
RjPj

which we know to diverge.

Thus Hn diverges in the second case as well. Thus, Corollary 3 can be applied to
∆τ̄n−K∆Rn

hn
to arrive at

limn→∞
τ̄n−KRn

Hn
→ L.

The result that RnHn
(ηv − κnRn)→ L (ηv)

2
follows by using κnRn → K−1 = ηv. For the third result, use

the definition of αn to get
Rn
Hn
(η − αnRn) =

1
v
Rn
Hn
(ηv − κnRn) +

1
v
(κn−1Rn)(αnRn)

Hn
− 1

v
∆κnR

2
n

Hn
. The second

term tends to zero (since its numerator converges and its denominator diverges). For the third term, note that

∆κnR
2
n = ∆τn

³
Rn
τn−1

´³
Rn
τn

´
, with the terms in parentheses convergent and ∆τn bounded. Thus,

1
v
∆κnR

2
n

Hn

tends to zero as well. The third result follows.

Lemma 3 RnPn ≥ n for all n ≥ 1.
Proof. R1P1 = 1, so this is satisfied for n = 1. For n > 1 we also have

RnPn −Rn−1Pn−1 = (Rn −Rn−1)Pn +Rn−1 (Pn − Pn−1)
= 1 +Rn−1 (Pn − Pn−1) ≥ 1 ,
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which suffices to prove the claim.

Lemma 4 (Discrete approximation of lnRn) Define Sn =
Pn

k=1
1

RkPk
. The sequence {Sn − lnRn}n≥1

converges.

Proof. Let Tn = Sn − lnRn, and ∆Tn = Tn − Tn−1 for n > 1. We have

∆Tn =
1

RnPn
+ ln

Rn−1
Rn

=
1

RnPn
+ ln

µ
1− 1

RnPn

¶

For n > 1, 1
RnPn

∈ (0, 1), and the function x + ln (1− x) = −
³
x2

2 +
x3

3 +
x4

4 + ...
´
is strictly negative for

x ∈ (0, 1), so we have ∆Tn < 0.
Next, observe that we can equivalently write Tn as Tn =

³
1

RnPn
− lnR1

´
+
Pn−1
k=1

³
1

RkPk
− ln

³
Rk+1
Rk

´´
.

For the summand, we have

1

RkPk
− ln

µ
Rk+1
Rk

¶
=

1

RkPk
− ln

µ
1 +

1

RkPk+1

¶

≥ 1

RkPk
− ln

µ
1 +

1

RkPk

¶

> 0

where the second line uses Pk+1 ≥ Pk and the third line uses the fact that x− ln (1 + x) is strictly positive

for x > 0. Thus we have Tn >
1

RnPn
− lnR1 = 1

RnPn
> 0. But then, since Tn is decreasing and bounded

below, it must converge.

Lemma 5 (Linear approximation of ln (1− αn/Pn)) Define ck by ln (1− αk/Pk) = −αk/Pk + ck. For
arbitrary m > 1, the sum

P∞
k=m+1 ck converges.

Proof. It suffices to show that
P∞
k=m+1 |ck| converges. Write zk = αk/Pk, so ck = zk + ln (1− zk).

Observe that zk < 1 (because αk < 1 and Pk ≥ 1), that zk → 0 with k, and zkRkPk = αkRk → η, where η is

defined in the text. (This last limit follows from αkRk → 1
v limk→∞ κkRk = η.) For all k sufficiently large, we

have zk <
2η

RkPk
≤ 2η

n , by the convergence of zkRkPk and Lemma 3 respectively. Furthermore, the function

|z + ln (1− z)| is increasing on (0, 1), so we have |ck| <
¯̄
2η
k + ln

¡
1− 2η

k

¢¯̄
for k sufficiently large. Thus, to

prove the lemma, it suffices to show that
P∞
k=m+1

¯̄
2η
k + ln

¡
1− 2η

k

¢¯̄
converges. This follows by applying the

Integral Test using the test function f (k) = 2η
k + ln

¡
1− 2η

k

¢
.

Lemma 6 For arbitrary m ≥ 1 and q ∈ (0, 1), the sum P∞
k=m+1

1
R2−q
k

Pk
converges.

Proof. Note that R2−qk Pk →∞ by Lemma 3. Let ck =
1

R2−q
k

Pk
, so the sum of interest is

P∞
k=m+1 ck. For

the purpose of comparison, define c0k = R
q−1
k−1−R

q−1
k . and observe that

P∞
k=m+1 c

0

k = R
q−1
m − limk→∞Rq−1k =

Rq−1m is convergent. Write Rq−1k−1 =
³
Rk − 1

Pk

´q−1
= Rq−1k

³
1− 1

RkPk

´q−1
and take a binomial expansion to

get Rq−1k−1 = R
q−1
k

³
1 + 1−q

RkPk
+ o

³
1

RkPk

´´
. Use this to write c0k as c

0

k =
1−q

R2−q
k

Pk
+ o

³
1

R2−q
k

Pk

´
. Comparing ck

to c0k, we have limk→∞ c
0

k/ck = 1− q, so the convergence of
P∞
k=m+1 ck is implied by the limit ratio test.

The next three lemmas support Proposition 5.

Lemma 7 κ̂n
ρ̂n
is bounded.
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Proof. Write ∆
³
κ̂n
ρ̂n

´
= κ̂n

ρ̂n
− κ̂n−1

ρ̂n−1
= κ̂n−1

ρ̂n

³
∆κ̂n
κ̂n−1

− ∆ρ̂n
ρ̂n−1

´
. We will show (i) that ∆

³
κ̂n
ρ̂n

´
is negative if

κ̂n
ρ̂n
is sufficiently large, and (ii), ∆

³
κ̂n
ρ̂n

´
is bounded. This will suffice to show κ̂n

ρ̂n
has an upper bound. For

(i), use the expressions above to write

∆

µ
κ̂n
ρ̂n

¶
= − κ̂n−1

ρ̂n

1

Pn

⎛
⎝

1
κ̄n−1+v

³
1
S κ̂n−1 +

S−1
S

³
v
³
1− ρ̂n−1

κ̂n−1

´
+ ρ̂n−1

´´

−α̂n
³
2− 1

Pn
α̂n
ρ̂n−1

¡
vc + ρ̂n−1

¢´

⎞
⎠

< − κ̂n−1
ρ̂n

1

Pn

µ
1

κ̄n−1 + v

µ
1

S
κ̂n−1 +

S − 1
S

µ
v

µ
1− ρ̂n−1

κ̂n−1

¶
+ ρ̂n−1

¶¶
− 2α̂n

¶

= − κ̂n−1
ρ̂n

1

Pn

1

κ̄n−1 + v

µ
1

S
κ̂n−1 +

S − 1
S

µ
v

µ
1− ρ̂n−1

κ̂n−1

¶
+ ρ̂n−1

¶
− 2κ̄n−1

¶

= − κ̂n−1
ρ̂n

1

Pn

1

κ̄n−1 + v

µ
S − 1
S

v

µ
1− ρ̂n−1

κ̂n−1

¶
− κ̄n−1

¶

But κ̄n−1 tends to zero with n (since κ̂n−1 and ρ̂n−1 do). Pick any arbitrary L > 1 and εL =
1
2
S−1
S v

¡
1− 1

L

¢
.

There is some n∗ such that κ̄n−1 < εL for all n ≥ n∗. Then, for all n ≥ n∗, if κ̂n−1
ρ̂n−1

> L, then ∆
³
κ̂n
ρ̂n

´
is

negative.

For (ii), note that S−1S v
³
1− ρ̂n−1

κ̂n−1

´
−εL > −S−1S v

ρ̂n−1
κ̂n−1

, so for all n ≥ n∗, we have
³
S−1
S v

³
1− ρ̂n−1

κ̂n−1

´
− κ̄n−1

´
>

−S−1S v
ρ̂n−1
κ̂n−1

and therefore

∆

µ
κ̂n
ρ̂n

¶
<

κ̂n−1
ρ̂n

1

Pn

1

κ̄n−1 + v

µ
S − 1
S

v
ρ̂n−1
κ̂n−1

¶

=
ρ̂n−1
ρ̂n

1

Pn

v

κ̄n−1 + v
S − 1
S

Take n∗∗ ≥ n∗ large enough such that
ρ̂n−1
ρ̂n

< 2 for all n ≥ n∗∗. (We can do this because
ρ̂n−1
ρ̂n

=
ρ̂n−1

(1− α̂n
Pn
)
2
ρ̂n−1+(

α̂n
Pn
)
2
vc
< 1

(1− α̂n
Pn
)
2 which tends to 1 since ân → 0 and Pn ≥ 1.) Then we have ∆

³
κ̂n
ρ̂n

´
< 2S−1S

for all n ≥ n∗∗. Together, (i) and (ii) imply that for all n ≥ n∗, κ̂n−1
ρ̂n−1

cannot exceed L+ 2S−1S . Thus, κ̂n−1
ρ̂n−1

has a finite upper bound.

Lemma 8 1
ρ̂nRn

is bounded. (That is, ρ̂n tends to zero no faster than rate Rn.)

Proof. We proceed as in the proof of Proposition 2. Set up the ratio 1/ρ̂n
Rn

, where the increments of the

numerator and denominator are ∆
³
1
ρ̂n

´
= 1

ρ̂n
− 1

ρ̂n−1
= − ∆ρ̂n

ρ̂nρ̂n−1
and ∆Rn =

1
Pn
. The proof of Theorem

1 can easily be extended to show that if the sequence
∆
³

1
ρ̂n

´

∆Rn
has an upper bound, then 1/ρ̂n

Rn
has an upper

bound as well. The sequence
∆
³

1
ρ̂n

´

∆Rn
is given by

∆
³
1
ρ̂n

´

∆Rn
=

ρ̂n−1
ρ̂n

α̂n
ρ̂n−1

µ
2− 1

Pn

α̂n
ρ̂n−1

¡
ρ̂n−1 + vc

¢¶

We have α̂n < κ̄n−1 = 1
S κ̂n−1 +

S−1
S ρ̂n−1, so

α̂n
ρ̂n−1

< 1
S
κ̂n−1
ρ̂n−1

+ S−1
S . Since κ̂n−1

ρ̂n−1
is bounded by Lemma 7,

α̂n
ρ̂n−1

is as well. But then
ρ̂n−1
ρ̂n

bounded, Pn ≥ 1, and ρ̂n−1 → 0 imply that
∆
³

1
ρ̂n

´

∆Rn
is bounded. Thus, 1

ρ̂nRn

is bounded as claimed, and so ρ̂n >
C
Rn

for some constant C.

Lemma 9 At least one of the following must hold: either κ̂n−ρ̂n
ρ̂n

→ 0 or (κ̂n − ρ̂n)Rn → 0.
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Proof. We consider the limit of (κ̂n − ρ̂n)Rn = Rn
1/(κ̂n−ρ̂n) . By Theorem 1, this limit is equal to

limn→∞
∆Rn

∆
³

1
κ̂n−ρ̂n

´ , where ∆
³

1
κ̂n−ρ̂n

´
= 1

κ̂n−ρ̂n −
1

κ̂n−1−ρ̂n−1 , if the latter limit exists. We have

∆Rn

∆
³

1
κ̂n−ρ̂n

´ = −
¡
κ̂n−1 − ρ̂n−1

¢
(κ̂n − ρ̂n)

Pn (∆κ̂n −∆ρ̂n)

<

¡
κ̂n−1 − ρ̂n−1

¢
(κ̂n − ρ̂n)

κ̂n−1 − α̂nv − 2α̂nρ̂n−1

where the second line drops the term (α̂n/Pn)
2 ¡
ρ̂n−1 + vc

¢
from ∆ρ̂n. Rearranging the denominator, using

the expressions for α̂n and κ̄n−1, we can write

κ̂n−1 − α̂nv − 2α̂nρ̂n−1 =
µ
S − 1
S

+
α̂n
S

¶¡
κ̂n−1 − ρ̂n−1

¢
− α̂nρ̂n−1

Using this in the inequality above, we have

∆Rn

∆
³

1
κ̂n−ρ̂n

´ <
κ̂n − ρ̂n¡

S−1
S + α̂n

S

¢
− α̂nρ̂n−1

κ̂n−1−ρ̂n−1

The numerator on the righthand side tends to zero (because κ̂n and ρ̂n do). In the denominator,
¡
S−1
S + α̂n

S

¢
→

S−1
S . Thus, as long as

α̂nρ̂n−1
κ̂n−1−ρ̂n−1 9

S−1
S , we have ∆Rn

∆
³

1
κ̂n−ρ̂n

´ → 0, which implies (κ̂n − ρ̂n)Rn → 0. Alter-

natively, consider the possibility that we do have
α̂nρ̂n−1

κ̂n−1−ρ̂n−1 →
S−1
S . But together with α̂n → 0, this implies

that κ̂n−ρ̂n
ρ̂n

→ 0.

Lemma 10 Define a sequence Zn by

Z1 = Zinit > 0

Zn = (1− bn−1)Zn−1 + cn−1 if n > 1

Write the increments of this sequence as ∆Zn ≡ Zn − Zn−1 = −bn−1
³
Zn−1 − cn−1

bn−1

´
. Suppose that bn and

cn are sequences with 0 < bn < 1 and
P∞
n=1 bn divergent, cn → 0, and cn

bn
→ Z ≥ 0. Then Zn → Z.

Proof. Define Yn = Zn − Z, so that Yn = (1− bn−1)Yn−1 + γn−1bn−1, where γn−1 =
cn−1
bn−1

− Z → 0.

Iterate forward to get

Yn = Y1

n−1Y

j=1

(1− bj) +
n−2X

j=1

⎛
⎝γjbj

n−1Y

k=j+1

(1− bk)

⎞
⎠+ γn−1bn−1

Define Sn =
Qn
j=1

1
1−bj for n ≥ 1, with S0 = 1. We can write

Yn =
Y1
Sn−1

+
1

Sn−1

n−1X

j=1

γjbjSj

Define ∆Sn = Sn − Sn−1, and observe that ∆Sn = bnSn, so we have

45



Yn =
Y1
Sn−1

+
1

Sn−1

n−1X

j=1

γj∆Sj

We claim, deferring a proof for the moment, that Sn → ∞, so the first term above converges to zero.

Furthermore, we can apply Theorem 1 to the second term, yielding

lim
n→∞

Pn−1
j=1 γj∆Sj

Sn−1
= lim

n→∞
γn−1∆Sn−1
∆Sn−1

= lim
n→∞

γn−1 = 0

Thus, Yn → 0 and so Zn → Z.

Finally, to show that Sn →∞, note that lnSn = −
Pn
j=1 ln (1− bj). Because bj < 1, we have ln (1− bj) <

−bj , so lnSn >
Pn

j=1 bj . But the sum on the righthand side diverges by assumption, so we are done.

Lemma 11 Suppose {Fn}n≥1 is a sequence of functions (on a compact subset Z ⊆ <) that converges

uniformly to a contraction mapping F . Let z̄ be the unique fixed point of F . For any initial z1 ∈ Z, define a
sequence {zn}n≥1 by zn = Fn (zn−1). Then {zn}n≥1 → z̄.

Proof. For n ≥ 1, let ξn = |zn − z̄|. Then,

ξn = |Fn (zn−1)− z̄| ≤ |Fn (zn−1)− F (zn−1)|+ |F (zn−1)− z̄| ≤ εn + cξn−1

where c < 1 is the modulus of contraction and εn = supz∈Z |Fn (z)− F (z)|. Thus ξn ≤ εn + cξn−1, where

εn → 0 by the uniform convergence of {Fn}n≥1. Thus, ξn → 0.

Lemma 12 The function F : Z → Z, with Z = [vmt,N (vc + vmt)] and F (z) =
³
1− 1

N
z
z+v

´2
z +

³
1
N

z
z+v

´2
vc + vmt, is a contraction mapping.

Proof. Fix arbitrary y, z ∈ Z with y < z. Write αy = y
y+v , αz =

z
z+v , ᾱ =

1
2 (αy + αz), and δ = N −1 >

0. Set c1 =
δvmt

N2(vmt+v)
< 1 and c2 =

1
2 .

F (z)− F (y) < (1− c1) (z − y)
We can write

F (z)− F (y) =
³
1− ᾱ

N

´2
(z − y) + vc

N2

¡
α2z − α2y

¢

+

µ³
1− αz

N

´2
−
³
1− ᾱ

N

´2¶
z +

µ³
1− ᾱ

N

´2
−
³
1− αy

N

´2¶
y

The last two terms are negative (because αz > ᾱ > αy). For the second term, use αz−αy = v
(y+v)(z+v) (z − y)

to get
vc
N2

¡
α2z − α2y

¢
=
2ᾱ

N2

vcv

(y + v) (z + v)
(z − y) ≤ 2ᾱ

N2
(1− αy) (1− αz) (z − y)

Consolidating, we have

F (z)− F (y) ≤
µ³
1− ᾱ

N

´2
+
2ᾱ

N2
(1− αy) (1− αz)

¶
(z − y)
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Expand the factor multiplying (z − y) on the righthand to get

1− 2 ᾱ
N
+

ᾱ2 + 2ᾱ (1− αy) (1− αz)

N2
= 1− ᾱ

N2
(2N − (ᾱ+ 2 (1− αy) (1− αz)))

= 1− ᾱ

N2

µ
2N − 2 +

¡
3ᾱ− 2ᾱ2

¢
+
1

2
(αz − αy)

2

¶

≤ 1− ᾱ

N2
(2δ)

≤ 1− 2δvmt
N2 (vmt + v)

< 1− c1

F (z)− F (y) > − (1− c2) (z − y)
If we define F̃ (γ) = F (γ) + γ, it suffices to show that F̃ (z) − F̃ (y) > c2 (z − y). For this, it suffices to

have F̃ 0 > c2. Differentiate F̃ to get

dF̃ (γ)

dγ
= 1 +

³
1− α

N

´2
+ 2

³vcα
N2
− γ

N

³
1− α

N

´´ dα
dγ

≥ 1 +
³
1− α

N

´2
− 2 γ

N

³
1− α

N

´ dα
dγ

= 1 +
³
1− α

N

´2
− 2

N

³
1− α

N

´ γv

(γ + v2)

= 1 +
³
1− α

N

´2
− 2

N

³
1− α

N

´
α (1− α)

where α = γ
γ+v . Using α (1− α) ≤ 1

4 and N > 1, the negative term is bounded by −12 . Thus
dF̃ (γ)
dγ ≥

1
2 +

¡
1− α

N

¢2
> 1

2 .

So to summarize, |F (z)− F (y)| < (1−min (c1, c2)) |z − y|, so F (γ) is a contraction mapping.

9.2 Results for the Non-uniform Exit Models in Section 6

9.2.1 Analysis for Section 6.1, Case 2: Gradual exit of the first cohort

The Equations of Motion

Denote the squared error in cohort n’s action by γn ≡ E
³
(xn − θ)2

´
. As in the text, the error in the

observation pool after cohort n acts is κn = E
³
(x̄n − θ)

2
´
. We have γ1 = vc and the covariance of the

errors in x1 and xn is defined to be ρn ≡ E ((x1 − θ) (xn − θ)). By assumption, the observation pool evolves

according to

x̄n−1 = (1− wn−1)xn−1 + wn−1x1

so we have

κn−1 = (1− wn−1)2 γn−1 + 2wn−1 (1− wn−1) ρn−1 + w2n−1vc

An individual agent ni who observes x̄n−1 and sni chooses the optimal action

xni = αnsni + (1− αn) x̄n−1 , where αn =
κn−1

κn−1 + v
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Averaging over cohort n individuals, we have

xn = αnsn + (1− αn) x̄n−1 and γn = α2nvc + (1− αn)
2
κn−1

With algebra, this reduces to

γn = αnv̄n

where v̄n = αnvc + (1− αn) v is a weighted average of the individual and cohort error variances. To charac-

terize the covariance term, write xn recursively as

xn = αnsn + (1− αn) (1− wn−1)xn−1 + (1− αn)wn−1x1

Then we can compute

ρn = E ((x1 − θ) (xn − θ))

= (1− αn) (1− wn−1) ρn−1 + (1− αn)wn−1vc

using the fact that γ1 = vc and sn is uncorrelated with the earlier errors. The equations for κn and ρn, along

with the expressions for γn and αn, and the exogenous sequence wn, characterize the evolution of the model.

We can substitute in to express the equations of motion as52 :

κn =
v̄n

κn−1 + v
(1− wn)2 κn−1 + 2wn (1− wn) ρn + w2nvc (13)

ρn =
v

κn−1 + v

¡
(1− wn−1) ρn−1 + wn−1vc

¢
(14)

An informal derivation of the speed of learning

We focus on the case in which a < 3
2 , so learning is slow. Define sequences Zn = n

rκn and Z̃n = n
r̃ρn.

A full proof of Result 1 would demonstrate that (for the correct exponents r and r̃), Zn and Z̃n converge to

strictly positive constants. In the analysis below, we assume that Zn and Z̃n converge for some (undetermined)

values of r and r̃ ∈ (0, 1). Then we use logic similar to Lemma 10 to derive necessary conditions that r and
r̃ must satisfy. This suffices to pin down their values.

Suppose that r and r̃ are such that Zn → Z > 0 and Z̃n → Z̃ > 0. The first step is to express Zn and

Z̃n in a form (using (13) and (14)) that allows us to appeal to Lemma 10. We have

Zn = (1−Bn−1)Zn−1 + Cn−1 and Z̃n =
³
1− B̃n−1

´
Z̃n−1 + C̃n−1

where

Bn−1 = 1−
µ
1− 1

n

¶−r
v̄n
v
(1− αn) (1− wn)2

Cn−1 = 2nr−r̃wn (1− wn) Z̃n + nrw2nvc

B̃n−1 = 1−
µ
1− 1

n

¶−r̃
(1− αn) (1− wn−1)

C̃n−1 = nr̃wn−1 (1− αn) vc
52For clarity, v̄n (which is bounded between vc and v) is left unsubstituted.
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Next, we claim that Bn−1 and B̃n−1 are bounded below by 1−r
n and 1−r̃

n respectively, so
P∞
n=1Bn andP∞

n=1 B̃n diverge. To show this, note that 1 − αn ≥ n−1
n . (This follows because κn−1 ≥ vc

n−1 , since the

righthand side is the full information variance after n− 1 cohorts. Then use 1− αn =
v

κn−1+v
≥ (n−1)v

vc+(n−1)v ≥
n−1
n (since vc ≤ v).) Then, because v̄n

v ≤ 1, we have

Bn−1 ≥ 1−
µ
1− 1

n

¶1−r
and B̃n−1 ≥ 1−

µ
1− 1

n

¶1−r̃

For r ∈ (0, 1), the function f (x) = 1− (1− x)1−r is convex, so f (x) ≥ f (0)− f 0 (0)x = (1− r)x. Applied
to the expressions above, we have Bn−1 ≥ 1−r

n and B̃n−1 ≥ 1−r̃
n .

Next, we argue that Zn → Z implies that Cn−1/Bn−1 → Z. For this, write ∆Zn = Zn − Zn−1 =
Bn−1

³
Cn−1
Bn−1

− Zn−1
´
. If Cn−1/Bn−1 were to diverge or to tend toward a limit different from Z, then the term

in parentheses would be bounded away from zero. Given the lower bound on Bn−1, this would contradict the

assumption that the partial sums of ∆Zn converge. For the same reason, Z̃n → Z̃ implies that C̃n−1/B̃n−1 →
Z̃.

Now consider the ratios Bn−1/Cn−1 and B̃n−1/C̃n−1. For the latter, we have

B̃n−1
C̃n−1

=
1−

¡
1− 1

n

¢−r̃
(1− αn) (1− wn−1)

nr̃wn−1 (1− αn) vc

=
− r̃
n + αn + wn−1 + [2nd order terms in n−1,αn, and wn−1]

nr̃wn−1 (1− αn) vc
so

lim
n→∞

B̃n−1
C̃n−1

=
1

vc
lim
n→∞

¡
−r̃na−r̃−1 + αnn

a−r̃ + n−r̃
¢

using wn−1 = n−a + o (n−a). Write the middle term as αnn
a−r̃ = αn

κn−1
Zn−1

³
n
n−1

´r
na−r̃−r so we have

lim
n→∞

B̃n−1
C̃n−1

= Z̃−1 = − r̃
vc

lim
n→∞

¡
na−r̃−1

¢
+
Z

vvc
lim
n→∞

na−r̃−r

This relationship can only hold with r, r̃ ∈ (0, 1) and Z̃−1 positive and finite if a − r̃ − r = 0. In this case,
the first term vanishes, and we have Z̃−1 = Z

vvc
. Note that the constraint that r + r̃ = a implies that r̃ < a.

Next turn to Bn−1/Cn−1. Note that
v̄n
v = 1−

¡
1− vc

v

¢
αn, so we have

Bn−1
Cn−1

=
1−

¡
1− 1

n

¢−r v̄n
v (1− αn) (1− wn)2

2nr−r̃wn (1− wn) Z̃n + nrw2nvc

=
− r
n +

¡
2− vc

v

¢
αn + 2wn + [2

nd order terms]

nr−r̃wn
³
2 (1− wn) Z̃n + wnnr̃vc

´

The constraint that r̃ < a gives us wnn
r̃ → 0 (the last term in the denominator), so

lim
n→∞

Bn−1
Cn−1

=
1

2Z̃
lim
n→∞

− r
n +

¡
2− vc

v

¢
αn + 2wn

nr−r̃wn

=
1

2Z̃

³
−r lim

n→∞
na+r̃−r−1 +

³
2− vc

v

´
lim
n→∞

αnn
a+r̃−r + 2 lim

n→∞
nr̃−r

´
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For the middle term, substitute to get αnn
a+r̃−r = αn

κn−1
Zn−1

³
n
n−1

´r
na+r̃−2r. Thus we have

lim
n→∞

Bn−1
Cn−1

= Z−1 =
1

2Z̃

Ã

−r lim
n→∞

na+r̃−r−1 +

¡
2− vc

v

¢
Z

v
lim
n→∞

na+r̃−2r + 2 lim
n→∞

nr̃−r
!

Because r < 1, the exponents in the first two terms satisfy a+ r̃− r− 1 < a+ r̃− 2r. For this relationship to
hold with Z−1 > 0, we must have either [a+ r̃− 2r = 0 and r̃− r ≤ 0], or [a+ r̃− 2r ≤ 0 and r̃− r = 0]. The
second pair of constraints will not work (as it would imply that r = r̃ > a). If the first pair of constraints

holds, then we will have Z−1 =
(2− vc

v )Z
2Z̃v

, or Z =
q

2Z̃v
2− vc

v

.

In summary, convergence of κn and ρn to zero at rates n
r and nr̃ is consistent only if the following

conditions hold

a− r̃ − r = 0

a+ r̃ − 2r = 0

r̃ − r ≤ 0

Solving these conditions yields the following rates:

r =
2

3
a and r̃ =

1

3
a

Notice that r → 1 as a → 3
2 . This suggests that learning is no slower than rate n

1 for a ≥ 3
2 , and

therefore, the second part of Result 1 (because learning cannot be faster than rate n1). The semi-rigorous

approach above could be applied to the a ≥ 3
2 case with a bit more legwork.

9.2.2 Analysis for Section 6.2: Hyperbolic exit

Equations of motion

From the equations for yn and x̄n, it is straightforward to derive the following.

ωn =
³αn
n

´2
+

µ
1− 1

n

¶2
ωn−1 +

µ
1− αn
n

¶2
vn−1 + 2

1

n

µ
1− 1

n

¶
(1− αn) ρn−1 (15)

vn = (αnβ)
2 + (1− β)2 ωn−1 + β2 (1− αn)

2 vn−1 + 2β (1− β) (1− αn) ρn−1 (16)

ρn =
α2nβ

n
+ (1− β)

µ
1− 1

n

¶
ωn−1 +

β

n
(1− αn)

2
vn−1 (17)

+(1− αn)

µµ
1− 1

n

¶
β + (1− β)

1

n

¶
ρn−1

αn =
vn−1

1 + vn−1

Proof of Proposition 10

If β = 1, so that each agent observes her immediate predecessor, then action xn will be the efficient

weighting of the first n signals, as discussed in Section 3.1, and the squared error in yn = xn will be νn =
1
n .

In this case, the population average action x̄n and the covariance ρn are not particularly germane to the
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learning process, but for completeness, we discuss x̄n:

x̄n =
1

n

nX

j=1

nX

m=j

sj
m

, so ωn =
1

n2

nX

j=1

⎛
⎝

nX

m=j

1

m

⎞
⎠
2

By standard approximation methods, we can show that the summation grows as 2n (plus lower order terms),

so ωn also converges to zero at rate n.

If β < 1, then the system of difference equations can be written

∆ωn = − 2
n
ωn−1 +

2

n
ρn−1 −

2

n
ρn−1vn−1 +O

³ωn−1
n2

´
+O

µ
ω3n−1
n

¶

∆vn = (1− β)
2
ωn−1 −

¡
1− β2

¢
vn−1 + 2β (1− β) ρn−1 − β2v2n−1 − 2β (1− β) ρn−1vn−1 +O

¡
ω3n−1

¢

∆ρn = (1− β)

µ
1− 1

n

¶
ωn−1 + β

1

n
vn−1 −

µ
β

n
+ (1− β)

µ
1− 1

n

¶¶
ρn−1

−β v
2
n−1
n
−
µ
β + (1− 2β) 1

n

¶
ρn−1vn−1 + βρn−1v

2
n−1 +O

µ
ω3n−1
n

¶

where we have used the facts that νn ≤ ωn and ρn ≤ ωn in consolidating the “big O” terms. As an overview

of the proof, notice that lowest order terms of ∆ωn can be written as ∆ωn ≈ − 2
n

¡
ωn−1 − ρn−1 + ρn−1νn−1

¢
.

By assumption, ρn−1νn−1 shrinks at rate R
2
n; we will show that ωn−1 − ρn−1 does as well. Then we have

∆ωn ∝ − 1
nR2

n
∝ −ω2n−1

n , which is similar to the standard version of model PA with no exit. As earlier, this

generates a logarithmic rate of decrease in ωn.

Now we proceed with the formal proof. Note that for any a, we have rn(a)
Rn(a)

→ 0. For brevity, we will

drop the argument to rn (a) and Rn (a) in most of what follows; Rn should always be interpreted to be the

rate at which (by hypothesis) ωn, νn, and ρn converge. We define ω̃n = Rnωn → ω̃, ν̃n = Rnνn → ν̃,

and ρ̃n = Rnρn → ρ̃ for some strictly positive ω̃, ν̃, and ρ̃. Next, define zn = ωn − ρn, and observing that

∆ρn = (1− β)
¡
ωn−1 − ρn−1

¢
− βρn−1νn−1 +O

¡ωn−1
n

¢
+O

¡
ω3n−1

¢
, we can write

zn − zn−1 = ∆ωn −∆ρn
= (1− β)

¡
ρn−1 − ωn−1

¢
+ βρn−1νn−1 +O

³ωn−1
n

´
+O

¡
ω3n−1

¢

= − (1− β) zn−1 + βρn−1νn−1 +O
³ωn−1

n

´
+O

¡
ω3n−1

¢

Rearranging and multiplying both sides by R2n−1, we have

R2n−1zn − βR2n−1zn−1 = βR2n−1ρn−1νn−1 +O

µ
R2n−1ωn−1

n

¶
+O

¡
R2n−1ω

3
n−1

¢
, or

R2nzn

Ã

1− 2Rn−1
Rn

rn
Rn
−
µ
rn
Rn

¶2!

− βR2n−1zn−1 = βρ̃n−1ν̃n−1 +O

µ
Rn−1
n

ω̃n−1

¶
+O

¡
ω̃2n−1ωn−1

¢

Taking limits on both sides yields

(1− β) lim
n→∞

R2nzn = βρ̃ν̃ +K

where K is a placeholder for the limit of the O
³
Rn−1
n ω̃n−1

´
terms. If Rn

n → 0, as we will show to be true

shortly, then K must be zero. Notice that this implies that ω̃n − ρ̃n = Rnzn → 0.
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Next turn back to the equation of motion for ω̃n.

∆ω̃n = Rnωn −Rn−1ωn−1
= Rn−1∆ωn + rnωn−1 + rn∆ωn

Since the sum
Pn
m=2

1
m lnm diverges in n, the convergence of ω̃n to ω̃ > 0 implies that if the expression

ω̂n = (n lnn)∆ω̃n converges, it must converge to 0. Using the expression above for ∆ω̃n, we compute the

constituent pieces of ω̂n = An +Bn + Cn as follows:

An ≡ (n lnn)Rn−1∆ωn = −2
lnn

Rn−1

¡
Rn−1

¡
ω̃n−1 − ρ̃n−1

¢
+ ρ̃n−1ṽn−1

¢
+O

µ
lnn

n
ω̃n−1

¶
+O

µ
ω̃3n−1

lnn

R2n−1

¶

Bn ≡ (n lnn) rnωn−1 = (n lnn)
rn
Rn−1

ω̃n−1

Cn ≡ (n lnn) rn∆ωn =
rn
Rn−1

An

Consider the following possibilities for a:

a > 0

Then nrn and
Rn
lnn diverge. For term An,

lnn
Rn
→ 0 and ω̃n−1 → ω̃ imply that the two O () terms converge

to zero. For the first term, recall that Rn−1
¡
ω̃n−1 − ρ̃n−1

¢
= R2n−1zn−1, which was shown to converge, and

ρ̃n−1ṽn−1 → ρ̃ν̃. Thus, lnnRn → 0 implies that limn→∞An = 0 (and therefore, limn→∞Cn = 0). Next consider

Bn. We have
nrn
Rn−1

→ a, so Bn diverges, and therefore ω̂n → ∞, contradicting the convergence of ω̃. Thus,
ωn, νn, and ρn do not converge to zero at any polynomial rate in n.

a = 0

In this case nrn → 1 and Rn
lnn → 1. For term An, as above, the two higher order terms vanish as n→∞,

so we have

lim
n→∞

An = −2
³
lim
n→∞

Rn−1
¡
ω̃n−1 − ρ̃n−1

¢
+ ρ̃ν̃

´
= − 2

1− β
ρ̃ν̃ ,

lim
n→∞

Bn = ω̃ , and

lim
n→∞

Cn = 0

This implies (n lnn)∆ω̃n → ω̃ − 2
1−β ρ̃ν̃. This is consistent with the convergence of ω̃n if ω̃ =

2
1−β ρ̃ν̃, or

equivalently, since we have already shown that ω̃n − ρ̃n → ω̃ − ρ̃ = 0, if ν̃ = 1−β
2 . Thus, if ωn, νn, and ρn all

converge to zero at common rate Rn, it is possible that Rn could grow as lnn.
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