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Abstract: In this paper we apply the methodology proposed by Ioannides and 

Overman (2003) to estimate a local Zipf exponent using data for the entire 

twentieth century of the complete distribution of cities (incorporated places) 

without any size restrictions in the US. First, we run kernel regressions using the 

Nadaraya–Watson estimator, excluding some atypical observations (5.66% of 

the sample). The results reject Zipf’s Law from a long-term perspective, but the 

evidence supports Gibrat’s Law. In the short term, decade by decade, the 

evidence in favour of Zipf’s Law is stronger. Second, to consider the whole 

sample we apply the LOcally WEighted Scatter plot Smoothing (LOWESS) 

algorithm. From a long-term perspective the evidence supporting Zipf’s Law 

increases, but the evidence supporting Gibrat Law’s is weaker, as small cities 

exhibit higher variance than the rest of the cities. Finally, the estimated values by 

decade are again closer to Zipf’s Law. 
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1. Introduction 

City size distribution has been the subject of numerous empirical investigations 

by urban economists, statistical physicists and urban geographers. One of the stylised 

facts in urban economics is that the city size distribution in many countries can be 

approximated by a Pareto distribution whose exponent is equal to one. If this is the case, 

it can be concluded that there is evidence for Zipf’s Law
1
 (Zipf, 1949) and this means 

that, ordered from largest to smallest, the size of the second city is half that of the first, 

the size of the third is a third of the first and so on. Another well-known stylised fact is 

Gibrat’s Law or the Law of Proportionate Growth (Gibrat, 1931), which establishes that 

the growth rate of a variable is independent of its initial size. Both are considered to be 

two sides of the same coin. While Gibrat’s Law has to do with the population growth 

process, Zipf’s Law refers to its resulting population distribution. They are closely 

linked; if the city sizes exhibit random growth rates (Gibrat’s Law) then the city size 

distribution will satisfy Zipf’s Law (Gabaix, 1999). 

These are extensively studied empirical regularities in many countries, 

especially in the United States (US); see Black and Henderson (2003), Ioannides and 

Overman (2003), Eeckhout (2004) and González-Val (2010). Ioannides and Overman 

(2003) propose a nonparametric procedure to estimate Gibrat’s Law for city growth 

processes as a time-varying geometric Brownian motion and to calculate local Zipf 

exponents from the mean and variance of city growth rates. They use data from 

metropolitan areas from 1900 to 1990 (112 to 334 metropolitan areas) and arrive at the 

conclusion that Gibrat’s Law holds in the urban growth processes and that Zipf’s Law is 

also fulfilled approximately for a wide range of city sizes. Nevertheless, Black and 

Henderson (2003) arrive at different conclusions for the same period (probably because 

                                                 
1 Although Auerbach previously observed in 1913 the Pareto pattern of city size distribution. 
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they use different metropolitan areas; their data increase from 194 metropolitan areas in 

1900 to 282 in 1990). Zipf’s Law holds only for cities in the upper third of the 

distribution, while Gibrat’s law would be rejected for any sample size. These results 

highlight the extreme sensitivity of conclusions to the geographical unit chosen and to 

the sample size.  

Finally, Eeckhout (2004) demonstrates the statistical importance of considering 

the whole sample, not only the larger cities.
2
 The estimated Pareto parameter depends 

on the truncation point, so when all the cities are considered for the period 1990 to 

2000, the empirical city size distribution follows a log-normal rather than a Pareto 

distribution, and the value of Zipf’s parameter is not 1, as earlier works concluded, but 

is slightly above 21 ; Gibrat’s Law holds for the entire sample. In a recent work, 

González-Val (2010) generalises this analysis for all of the twentieth century, extracting 

long-term conclusions: Gibrat’s Law holds (weakly; growth is proportionate on average 

but not in variance, as the smallest cities present a clearly higher variance) and Zipf’s 

Law holds only if the sample is sufficiently restricted to the top, not for a larger sample, 

because city size distribution follows a log-normal distribution when we consider all 

cities with no size restriction. 

The nonparametric procedure put forward by Ioannides and Overman (2003) is 

especially relevant because it is based on the statistical explanation of Zipf’s Law for 

cities offered by Gabaix (1999). Gabaix presents a model based on local random 

amenity shocks, independent and identically distributed, which through migrations 

between cities generate Zipf’s Law. The main contribution of the work is to justify the 

                                                 
2 In the US, to qualify as a metropolitan area a city needs to have 50,000 or more inhabitants, or the 

presence of an urbanised area of at least 50,000 inhabitants, and a total metropolitan population of at least 

100,000 (75,000 in New England), according to the Office of Management and Budget (OMB) definition. 

Therefore, data from metropolitan areas impose an implicit truncation point. 
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fulfilment of Zipf’s Law in that cities in the upper tail of the distribution follow similar 

growth processes, so that the fulfilment of Gibrat’s Law involves Zipf’s Law. 

 In this paper, the methodology proposed by Ioannides and Overman (2003) to 

estimate a local Zipf exponent is applied to a new data set covering the complete 

distribution of cities in the US (understood as incorporated places) without any size 

restrictions, for the entire twentieth century. Section 2 presents the data set and 

summarises the nonparametric procedure and its statistical foundations. Section 3 offers 

the results and Section 4 concludes. 

2. Data and Methodology 

Following Eeckhout (2004; 2009), Levy (2009), Giesen et al. (2010) and 

González-Val (2010), we identify cities as what the US Census Bureau calls places. 

This generic denomination, since the 2000 census, includes all incorporated and 

unincorporated places. We use the same data set as González-Val (2010). Table 1 

presents the number of cities for each decade and the descriptive statistics. Our base, 

created from the original documents of the annual census published by the US Census 

Bureau, consists of the available data of all incorporated places without any size 

restriction, for each decade of the twentieth century (decennial data from 1900 to 2000). 

The US Census Bureau uses the generic term incorporated place to refer to the 

governmental unit incorporated under state law as a city, town (except in the states of 

New England, New York and Wisconsin), borough (except in Alaska and New York) or 

village, and which has legally established limits, powers and functions.  

Two details should be noted.
3
 First, Alaska, Hawaii and Puerto Rico have not 

been considered due to data limitations. Second, for the same reason, we also exclude 

all the unincorporated places (concentrations of population that do not form part of any 

                                                 
3 More details about data sources and definitions are given by González-Val (2010). 
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incorporated place, but that are locally identified with a name), which began to be taken 

into account after 1950. However, these settlements did exist earlier, so their inclusion 

would again present a problem of inconsistency in the sample. Also, their elimination is 

not quantitatively important; in fact there were 1,430 unincorporated places in 1950, 

representing 2.36% of the total population of the US, which by 2000 would be 5,366 

places and 11.27%. 

The empirical strategy commonly used to test Zipf’s Law consists in the 

estimation of log linear regressions of city size (population, P ) against rank  R : 

  PAPR logloglog  ,    (1) 

where A  and   are parameters. Zipf’s Law is an empirical regularity, which appears 

when the Pareto exponent is equal to unity, 1  (see the surveys of Cheshire, 1999, 

and Gabaix and Ioannides, 2004, for further explanation). The results are usually 

presented in double logarithmic graphs of rank compared to population, named Zipf 

plots, which are used extensively in the specialised literature.  

However, this approach has pitfalls, highlighted in the recent literature, and 

different estimators have been proposed. Gabaix and Ioannides (2004) show that the 

Hill (maximum likelihood) estimator is more efficient if the underlying stochastic 

process is really a Pareto distribution, but when the size distribution of cities does not 

follow a Pareto distribution the Hill estimator may be biased (Soo, 2005). At the same 

time, the OLS estimate has some problems; see Goldstein et al. (2004) and Nishiyama 

et al. (2008). Finally, Gabaix and Ibragimov (2007) propose subtracting 
2

1
 from the 

rank to obtain an unbiased estimation of the Pareto exponent using an OLS regression. 
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In this paper we apply the nonparametric procedure put forward by Ioannides 

and Overman (2003). This is a completely different empirical strategy, relying on the 

statistical foundation of Zipf’s Law offered by Gabaix (1999). The exposition follows 

Ioannides and Overman (2003) closely; see also Gabaix (1999) and Gabaix and 

Ioannides (2004) for more details.
4
  

Let iS  denote the normalised size of city i , that is, the population of city i  

divided by the total urban population. Following Gabaix (1999), city sizes are said to 

satisfy Zipf’s Law if the countercumulative distribution function,  SG , of normalised 

city sizes, S , tends to  

  S

a
SG  ,     (2) 

where a  is a positive constant and 1 . If Gibrat’s Law holds for city growth 

processes, cities grow randomly, with the same expected growth rate and the same 

standard deviation; then the limit distribution will converge to  SG , given by Eq. (2).
5
  

Gabaix also considers the case where cities grow randomly with expected 

growth rates and standard deviations that depend on their sizes (a weak Gibrat’s Law). 

That is, the size of city i  at time t  varies according to:  

    ttt
t

t dBSdtS
S

dS
  ,    (3) 

where  S  and  S2  denote, respectively, the instantaneous mean and variance of 

the growth rate of a size S  city, and tB  is a geometric Brownian motion. In this case, 

the limit distribution of city sizes will converge to a law with a local Zipf exponent,  

                                                 
4 Eqs. (3) and (4) replicate, respectively, Eq. (11), p. 756, and Eq. (13), p. 757, in Gabaix (1999).  
5 See Gabaix (1999), p. 744. 
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   
 

dS

Sdp

Sp

S
S  , 

where  Sp  denotes the invariant distribution of S . Starting from the forward 

Kolmogorov equation associated with Eq. (3), the local Zipf exponent, associated with 

the limit distribution, can be derived and is given by 

   
 

   
SS

SS

S

S
S





22

2
21



 ,   (4) 

where  S  is relative to the overall mean for all city sizes.
6
 Eq. (4) identifies two 

possible causes of deviations from Zipf’s Law: the means and the standard deviations. If 

1  then the distribution has neither finite mean nor finite variance, and if 21    it 

has finite mean but not finite variance.  

3. Results 

3.1 Kernel regressions 

First, we use kernel regression techniques that establish a functional form-free 

relationship between the mean and the variance of city growth rates and city size for the 

entire distribution. This allows us to test whether Gibrat’s Law holds. Second, we use 

Eq. (4) to estimate the local Zipf exponents directly. 

                                                 
6 Recently Eq. (4) has been strongly criticized by Malevergne et al. (2010) and Malevergne et al. (2011). 

They claim that some of Gabaix’s (1999) assumptions are crucial. First, “Gabaix (1999) considers that 

firms cannot decline below a minimum size and remain in business at this size until they start growing up 

again”, and second, “all firms (or cities) are supposed to enter at the same time, which is technically 

equivalent to consider that there is only one firm in the economy”. They argue that without these 

assumptions the distribution arising from Eq. (3) is the log-normal distribution. However, one can still 

consider for the log-normal distribution some form of “effective” power exponent: 

  





 


22

ln
2

1

e

x
x  (Eq. (5) in Malevergne et al., 2011), where   and 

2  are, respectively, the 

mean and the variance of the log-normal distribution. Malevergne et al. (2010) criticise the assumption 

that all firms (cities) are born at the same instant; they claim that, once one includes birth and death 

processes, the formula of Gabaix changes significantly. 
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In order to analyse the entire twentieth century, all the growth rates are taken 

between consecutive periods. There are 162,698 population–growth rate pairs in that 

pool. City size is defined as the normalised size of the city  S , that is, the population of 

the city divided by the total urban population,
7
 and the growth rate  S  is defined as 

the difference between each city’s growth rate and the contemporary average growth 

rate, as in Ioannides and Overman (2003). Table 2 shows the number of growth rates 

and descriptive statistics by decade. To calculate the conditional mean and variance on 

city size, we apply the Nadaraya–Watson method,
8
 exactly as it appears in Härdle 

(1990, Chapter 3). The estimator is very sensitive, both in mean and in variance, to 

atypical values. Thus, we decided to eliminate the 5% of the smallest distribution 

observations for each decade because, as Table 2 shows, they are characterised by very 

high dispersion in mean and in variance, and they distort the results. Therefore, the 

sample size is reduced to 154,563 observations. Finally, we also eliminate 1,079 

observations with a growth rate  S  greater than 2. The reason is that we cannot 

control for changes in city boundaries; there are more than twenty thousand different 

cities in the sample, and information on boundaries is only available for the largest 

cities in some decades. Then, we decide to eliminate the cities with the greatest growth 

rates to control for the most extreme cases, relying on the huge sample size to make the 

spurious growth produced by changes in boundaries irrelevant. The final sample size is 

153,484 observations (94.34% of the total sample).
9
 

Figure 1 shows the nonparametric estimates for the entire twentieth century of 

the mean growth rate and variance of growth rate conditional on city size, and the local 

Zipf exponent calculated applying Eq. (4). Figures 1c to 1e also display bootstrapped 

                                                 
7 The US urban population data from 1900 to 1990 come from Table 1 in Overman and Ioannides (2001). 

The data for the year 2000 is taken from the US Census Bureau (http://www.census.gov). 
8 We use an Epanechnikov kernel and Silverman’s kernel bandwidth. 
9 In the next section we will carry out an analysis using all the observations. 
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95% confidence bands, calculated using 500 random samples with replacement. The 

results are shown until city sizes of 0.01, the reason is that there is one technical 

problem with this procedure: the sparsity of data at the upper tail of the distribution, 

which produces extreme values of the estimations. This means that, as Ioannides and 

Overman (2003), we must exclude the 77 observations corresponding to the largest 

cities with shares greater than 0.01 (0.05% of the total sample; see Table 2).  

Figures 1a and 1b show the estimates of growth and variance with the 

experimental points. The estimates seem to be straight lines both for growth and for 

variance, indicating that growth and variance are independent of the initial city size and 

supporting Gibrat’s Law. Although some of the smallest cities deviate and exhibit 

higher growth rates and variances, the bulk of the 153,484 observations are close to the 

estimates. Part of this high variation at the lower tail could be explained by the 

appearance of new cities that enter with small sizes.
10

 To be able to observe some kind 

of increasing or decreasing pattern in the estimates it is necessary to reduce the x-axis 

scale; this is shown in Figures 1c and 1d. The results show a very slight increasing 

behaviour of city growth (observe the very small scale of the growth graph), as well as a 

slight negative relationship between variance and city size. Thus, small cities exhibit 

lower growth rates and higher variances than larger cities. However, these differences 

are not significant for most of the city sizes in growth rates, and for any city size in the 

case of variance. Therefore, the evidence against Gibrat’s Law is weak. Regarding 

Zipf’s Law, one would expect a lower Zipf exponent at the upper-tail distribution for 

two reasons. First, in Eq. (4) the subtracting term depends on the quotient between the 

growth rate and the variance (
 
 S

S
2


); Figures 1c and 1d show that both  S  and 

                                                 
10 See González-Val (2010) for an analysis of new entrants. 
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 S2  are positive, ensuring that 
 
  02

2


S

S




, and as larger cities exhibit higher 

estimated growth rates and lower variances the expected Zipf exponent must be lower at 

the upper-tail distribution. Second, the term 
   

SS

SS


 22 

 in Eq. (4) will also be 

negative (as long as the variance is decreasing with size 
 
  0

2

2




S

S




; see Figure 1d) 

and decreasing with city size. Thus, all points to a lower Zipf exponent at the upper-tail 

distribution. Figure 1e shows that this is the case, as the local estimate of the Zipf 

exponent is decreasing with city size. The results reject Zipf’s Law from this long-term 

perspective, as the estimated values are close to zero.  

Some papers propose theoretical models that give an economic explanation for 

deviations from Zipf’s Law. Rossi-Hansberg and Wright (2007) identify the standard 

deviation of industrial productivity shocks as the key parameter determining the 

dispersion in the city size distribution, Eeckhout (2004) presents a model that also 

relates the migration of individuals between cities with productive shocks, obtaining as 

a result a log-normal and non-Pareto distribution of cities, and Duranton (2007) offers a 

model of urban economics with detailed microeconomic foundations for technology 

shocks, which are the fundamental drivers of the distribution of city sizes in the steady 

state. 

   The variation in the estimates is very small, maybe as a consequence of the 

huge sample size of the pool. Moreover, most of the observations are concentrated at the 

lower end of the distribution. So, we repeat the exercise for each decade, with lower 

sample sizes. One advantage is that the influence of new entrant cities is lower from one 

decade to another than in the whole twentieth century. Also, short-term estimations 

could reveal interesting behaviours.   
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Figure 2 shows the estimates
11

 of the Zipf exponent for almost all the decades, 

only excluding the decades 1940–1950 and 1990–2000. The reason is that in these 

decades the estimated values of the Zipf exponent are negative (in 1940–1950 for all the 

city sizes and in 1990–2000 for only the largest cities), and therefore we cannot 

interpret those coefficients. The explanation is that, in 1940–1950, both  S  and 

 S2  are positive and growth is much greater than variance; thus, the sign of  S  

becomes negative (see Eq. (4)).  

We can observe in Figure 2 that, except for 1980–1990 when the estimated 

values are similar to those of the pool for the whole century, decade by decade the 

estimates of the Zipf exponent are greater than when considering all the twentieth 

century. We find evidence in favour of Zipf’s Law as the estimates by decade are close 

to one. In fact, value one falls within the confidence bands (not shown for clarity 

purposes) for most of the distribution in most of the decades. The exception in most of 

the decades is the upper-tail distribution. We can also see how periods in which the Zipf 

exponent grows with city size (the decades from 1930 to 1980) are interspersed with 

others in which the relationship between the exponent and the city shares is negative 

(the decades from 1900 to 1930 and from 1980 to 2000). As the growth rates and 

variance show similar patterns for almost all the decades,
12

 the differentiated behaviours 

of local exponents must be a consequence of interactions between the terms 
 
 S

S
2

2



  

and 
   

SS

SS


 22 

 in Eq. (4). The growth estimates are always negative (except in 

1940–1950), which implies that, by decade, 
 
 S

S
2

2



  is positive (and increasing with 

                                                 
11 Again, we exclude the observations with shares greater than 0.01; the maximum number of these 

observations is 12 in 1920. See Table 2.  
12 Growth and variance estimates by decade, not shown, are available from the author on request.  
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size, given the patterns of growth and variance). This helps to explain why decade-by-

decade estimates are, in general, higher than when considering the entire twentieth 

century; the estimated growth for the pool of the whole century is positive, and thus, as 

noted above, 
 
  02

2


S

S




 in that case. Regarding Gibrat’s Law, in general growth 

rates by decade show an increasing behaviour with city size in all the decades except 

1930–1940 and 1970–1980, while the only exception to the decreasing pattern of 

variance with city size is 1940–1950. However, the differences in growth rates and 

variance are not significant, finding evidence supporting Gibrat’s Law even in the short 

term.  

However,    SS 22   is negative as variance is decreasing with size in all the 

decades (except in 1940–1950 again), so 
   

0
22





SS

SS 
 and decreasing with city 

size. Therefore, the resulting Zipf exponent by decade is the difference between 

 
  021

2


S

S




 and 
   

0
22





SS

SS 
 (see Eq. (4)), and both terms vary with city 

size. An increasing Zipf exponent means that in that decade the term 
 
 S

S
2

21



  is 

dominant, while a decreasing coefficient implies that 
   

SS

SS


 22 

 is the relevant 

term. 

3.2 A resistant smoothing approach 

Kernel estimation of regression functions has been receiving much attention in 

the recent literature examining Gibrat’s Law (Ioannides and Overman, 2003; Eeckhout, 

2004; González-Val, 2010; González-Val and Sanso-Navarro, 2010; Giesen and 

Südekum, 2011) and the most widely used estimator is the Nadaraya–Watson estimator. 
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Therefore, the results in the previous section can be compared with those of other 

studies. However, the Nadaraya–Watson estimator is known to be highly sensitive to 

the presence of outliers in the data, and that is the reason why we exclude some 

observations. Nevertheless, Eeckhout (2004) demonstrates the importance of 

considering the whole sample. 

In this section we try to reduce this sensitivity by using a resistant smoothing 

technique, the LOcally WEighted Scatter plot Smoothing (LOWESS) algorithm. This 

method was proposed by Cleveland (1979), and is based on local polynomial fits; see 

Härdle (1990, Chapter 6). The advantages of LOWESS are that it is a free-functional 

form method
13

 and that it is robust to atypical values. Therefore, it allows us to obtain 

robust nonparametric estimates of growth, variance and Zipf exponent, using all the 

sample including the 5% of the smallest distribution observations and the observations 

with a growth rate greater than 2, which we exclude in the previous section. However, 

their inclusion produces an increase in the estimates of both growth and variance, 

especially at the lower tail of the distribution; this increment is much greater in the case 

of variance, as the dispersion of these observations is very high (see Table 2). Both 

growth and variance estimated by LOWESS are decreasing with city size.
14

 Although 

the differences in growth rates by city size are not significant, the variance of the growth 

rates is clearly greater at the lower tail. Thus, small cities exhibit higher variance than 

the rest of the cities, indicating that Gibrat’s Law does not hold exactly. This possibility 

has already been considered theoretically; Gabaix (1999) examines the case in which 

cities grow randomly with expected growth rates and standard deviations that depend on 

                                                 
13 It does not require the specification of a function to fit a model to all of the data in the sample, 

LOWESS simply carries out a locally weighted regression of the y variable on the x variable, obtaining a 

new smoothed variable. We use the lowess command in STATA with the default options: a smoothing 

parameter equal to 0.8 and a tricube weighting function. 
14 Growth and variance estimates, not shown, are available from the author on request. 
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their sizes, and Córdoba (2008) introduces a parsimonious generalisation of Gibrat’s 

Law that allows size to affect the variance of the growth process but not its mean. 

We will focus on the analysis of the estimates of the Zipf exponent. Figure 3 

shows the estimates of the Zipf exponent using LOWESS and considering all the 

observations. Again, the results are shown until city sizes of 0.01; the problem of the 

sparsity of data at the upper tail of the distribution still remains, so again we must 

exclude the observations corresponding to the largest cities (77 observations). Figure 3a 

displays the results for a pool of 162,698 observations over the whole century. The 

dotted lines are bootstrapped 95% confidence bands, calculated using 500 random 

samples with replacement. The exponent is decreasing with city size, as in the previous 

section (Figure 1e). The difference is that here the estimates are much closer to the 

value one, finding evidence supporting Zipf’s Law except in the upper-tail distribution. 

The explanation is the high variance; both  S  and  S2  are positive, and thus 

 
  02

2


S

S




 (Eq. (4)), but the estimated variance is so high that this term becomes 

very small, especially at the lower tail of the distribution where the variance is higher. 

Therefore, the decreasing pattern with city size of the estimated Zipf exponent is robust 

to the inclusion of all the cities, but the values are closer to Zipf’s Law when all the 

cities are considered. 

Figure 3b shows the estimates of the Zipf exponent by decade. All the decades 

are shown, as all the estimates are positive. The difference from Figure 2 is that now 

there is only one kind of behaviour: all the estimated values are increasing with city 

size. Moreover, the estimates are close to Zipf’s Law (value one) in most of the decades 

(the values range from 0.8 to 1.1), with the exception of 1900–1910 and 1980–1990. 

Again, the cause is the high variance at the lower-tail distribution.  
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4. Conclusions 

In this paper, the methodology proposed by Ioannides and Overman (2003) to 

estimate a local Zipf exponent is applied to a new data set covering the complete 

distribution of cities in the US (understood as incorporated places) without any size 

restrictions for all the twentieth century.  

First, we run kernel regressions using the Nadaraya–Watson estimator. As the 

estimator is very sensitive, both in mean and in variance, to atypical values we must 

exclude some observations, so the final sample size is 153,484 observations (94.34% of 

the total sample). The results reject Zipf’s Law from a long-term perspective, as the 

estimated values are close to zero. However, the evidence supports Gibrat’s Law. In the 

short term, decade by decade, we find evidence in favour of Zipf’s Law for most of the 

distribution in most of the decades. We also observe differentiated behaviours: periods 

in which the Zipf exponent grows with the city size are interspersed with others in 

which the relationship between the exponent and the city shares is negative. 

Second, to consider the whole sample (162,698 observations) we apply the 

LOcally WEighted Scatter plot Smoothing (LOWESS) algorithm. The evidence 

supporting Zipf’s Law increases, as the estimated values are closer to one, but the 

evidence supporting Gibrat Law’s is weaker, as small cities exhibit higher variance than 

the rest of cities. Finally, the estimated values by decade are also closer to Zipf’s Law. 
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Table 1. Number of cities and descriptive statistics 

 

Year Cities Mean 

Standard 

deviation Minimum Maximum 

1900 10,596 3,376.04 42,323.90 7 3,437,202 

1910 14,135 3,560.92 49,351.24 4 4,766,883 

1920 15,481 4,014.81 56,781.65 3 5,620,048 

1930 16,475 4,642.02 67,853.65 1 6,930,446 

1940 16,729 4,975.67 71,299.37 1 7,454,995 

1950 17,113 5,613.42 76,064.40 1 7,891,957 

1960 18,051 6,408.75 74,737.62 1 7,781,984 

1970 18,488 7,094.29 75,319.59 3 7,894,862 

1980 18,923 7,395.64 69,167.91 2 7,071,639 

1990 19,120 7,977.63 71,873.91 2 7,322,564 

2000 19,296 8,968.44 78,014.75 1 8,008,278 
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Table 2. Growth rates  S : descriptive statistics 

 

All cities           

Initial Year Growth rates Mean 

Standard 

deviation Minimum Maximum 

1900 10,502 4.30E-11 0.51 -0.94 9.54 

1910 13,543 -1.29E-11 0.52 -0.90 31.82 

1920 15,085 9.56E-12 0.58 -0.89 22.34 

1930 16,199 3.90E-11 0.44 -1.01 31.67 

1940 16,416 1.40E-11 1.85 -0.95 231.04 

1950 16,943 2.30E-10 1.03 -0.89 92.38 

1960 17,831 1.90E-09 36.93 -1.23 4926.66 

1970 18,321 -4.93E-11 0.83 -0.90 52.07 

1980 18,810 3.70E-11 0.39 -0.84 13.14 

1990 19,048 1.42E-10 0.48 -0.96 30.11 

Total 162,698 2.51E-10 12.25 -1.23 4926.66 

5% smallest cities           

Initial Year Growth rates Mean 

Standard 

deviation Minimum Maximum 

1900 525 0.21 0.85 -0.69 4.98 

1910 677 0.16 1.45 -0.81 31.82 

1920 754 0.11 1.43 -0.87 22.34 

1930 810 0.19 1.56 -0.96 31.67 

1940 821 0.27 8.11 -0.88 231.04 

1950 847 0.02 1.94 -0.86 34.61 

1960 892 5.54 165.08 -1.17 4926.66 

1970 916 0.18 1.96 -0.89 26.93 

1980 941 0.00 1.01 -0.84 12.41 

1990 952 0.12 0.93 -0.94 16.67 

Total 8,135 0.68 54.74 -1.17 4926.66 

Cities greater than 0.01           

Initial Year Growth rates Mean 

Standard 

deviation Minimum Maximum 

1900 11 -0.05 0.08 -0.15 0.12 

1910 11 0.08 0.23 -0.07 0.75 

1920 12 0.09 0.25 -0.08 0.78 

1930 10 -0.06 0.07 -0.12 0.10 

1940 9 -0.05 0.07 -0.10 0.12 

1950 8 -0.17 0.09 -0.25 0.04 

1960 5 -0.43 0.07 -0.50 -0.32 

1970 5 -0.24 0.08 -0.33 -0.11 

1980 3 0.02 0.11 -0.09 0.13 

1990 3 -0.05 0.02 -0.07 -0.03 

Total 77 -0.06 0.20 -0.50 0.78 
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Figure 1. Nonparametric estimates for all the twentieth century (a pool of 153,484 

observations, Nadaraya–Watson estimator) 
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Figure 2. Nonparametric estimates of the Zipf Exponent by decade (Nadaraya–Watson 

estimator) 
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Note: Decades 1940–1950 and 1990–2000 are excluded; see the main text. 
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Figure 3. Nonparametric estimates for all the twentieth century (a pool of 162,698 

observations) using the LOcally WEighted Scatter plot Smoothing (LOWESS) 

algorithm 
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    (b) By decade 

  

 

 


