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CeRR

Estimating the buyer’s willingness to pay using

Bayesian belief distribution with IFR

Working Paper

Xavier Brusset

Roxane Cattan-Jallet

Boulogne Billancourt, France

July 14, 2011

Corresponding author: Xavier Brusset, xavier.brusset@essca.fr



Estimating the buyer’s willingness to pay using Bayesian belief 2

Abstract

In supply chain management, information about the downstream party’s will-

ingness to pay (wtp) for a service or a good sold by an upstream partymay not

be known to the latter. he seller has to make an educated guess for the price at

which to offer a good or service. If the buyer refuses to buy, the seller can still

turn to a third party and sell at a lower price or hold onto the good. We show

that the seller has one interior profit maximizing price if his Bayesian belief

about the buyer’swtp follows a distributionwhich has an increasing failure rate

(IFR) in the sense of Barlow and Proschan (1965). We prove that the precision

of information available to the supplier influences the rent distribution and

how the downstream partymight opportunisticallymis-inform the upstream

partner. We propose another reading of the single-price newsvendor problem

in Lariviere and Porteus (2001), Ziya et al. (2004a,b), Paul (2006) or Lariviere

(2006). Our approach applies to all types ofmechanism design problemswhere

a profit-maximizing party has to rely on Bayesian belief to palliate information

asymmetry and has alternative sources of income or cost.

Keywords: supply chain management, information asymmetry, Bayesian belief,mech-

anism design, increasing failure rate.

JEL classification:

1 Introduction

Motivation for the present paper can be found in the way that some suppliers have to

price some specialized good or service which they sell to somemanufacturer. Usually,

the supplier can already sell the same good in different markets for different uses

and at different prices. For example, several dozens of chemical or mineral products

have wide ranging applications: calcium carbonate is used in industries like paint,

plastic, rubber, ceramic, cement, glass, steel, oil refining, iron ore purification and

biorock creation for mariculture of sea organisms. Chemical colouring pigments

can variously be used for paint, cosmetic or ink markets. In the garment and apparel

industry, a fashion good can be sold during season in onemarket but can still be

salvaged in another market. In most of the above instances, the exact relationship

between demand in alternativemarkets and pricemay not be known. In fact, the

supplier may have to guess at his potential clients’ wtp building upon his prior

knowledge of the industry, the existing competition, alternative sources of supply,

etc. his lack of information may induce unsatisfactory pricing decisions and either
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unsuccessful offers or less profitable transaction. On the other hand, the buyer will

usually hide or mis-inform the seller about his wtp. How is the supplier to price his

good and what is the effect on the supply chain efficiency?

We try to answer this question using amechanism design approach in a games

theoretic setting where a principal wishes to offer a price for some product or service

to an agent. If the agent rejects the offer, the principal is le� with the revenue

generated from selling to a third party. he seller is in a Bayesian setting of incomplete

information and must form a belief about the agent’s wtp. his belief follows a

distribution over a range of possible values.

hemodel shows how the sellermaximizes his profit by his pricing decision and

how the buyer will attempt to increase his rent in detriment of the buyer by keeping

information private. hemodel implies that joint forecasting and collaboration by

the downstream partner will increase the risk of opportunistic behaviour on the

upstream partner’s part.

he present model helps to present in a new light the newsvendor one from

Lariviere and Porteus (2001) in which the single price contract is studied when buyer

and seller know of the distribution of demand and the sensibility to price of this

demand. Instead of using the characteristics of the increasing generalized failure

rate (IGFR) as in Lariviere and Porteus (2001), we demonstrate that the distributions

which admit an increasing failure rate will enable the principal to enjoy a concave

profit function which admits one optimal solution.

he paper is organized as follows. In the next section, we present a brief review

of existing literature justifying our approach. hemodel is presented in §3. In §4, we

present the results which can be applied when the upstream agent has to deal with

several downstream customers and thus faces several belief distributions or when he

can potentially rescale his belief. An application and corresponding insights when

comparing an integrated to a decentralized supply chain management is presented

in §5, further illustrated succinctly in §6 before concluding in §7.

2 Literature

To the best of our knowledge, no model addresses and solves such a setting. his

problem was numerically solved in Brusset (2009, 2010) as particular instances of

the much broader mechanism design problem presented here. A similar model

is presented in Lariviere (2006), the example cited is of a service’s pricing. One
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customer arrives per period, and service takes one period. he cost of service is zero.

Customers privately observe their valuations, which are independent and identically

distributed according to F(X), a cumulative continuous distribution function. A

firm posting price x then faces demand D(x) = F(x), where F(x) = 1 − F(x), and
sets x to maximize revenue, Π(x) = xD(x). An optimal price x∗ must solve

Π′(x∗) = D(x∗) + x∗D′(x∗) = F(x∗)(1 − д(x∗)) = 0, (1)

when Π′′(x∗) < 0, and where д(x) = x f (x)

F(x)
, the generalized failure rate as defined

in Lariviere and Porteus (2001).

he uniqueness of x∗ depends on the generalized failure rate д(X). In particular,

as stated in Lariviere (2006), if д(X) is increasing, it can equal one at only a single

point, and the unique x∗ must solve д(x∗) = 1.

In difference to the model we consider here, the seller is informed of the buyer’s

wtp.

he generalized failure rate function has become popular in the last few years in

supply chain management literature, having been cited no less than 55 times as of

this writing (source: Google Scholar). he applications havemostly been in models

where demand can be modeled as following such a distribution. As much as we

would like to use and extend the use of such functions in supply chain management,

these distributions have some irksome limitations. As noted in Paul (2005), the

IGFR distributions are not closed under convolutions or shi�ing which limits their

use in supply chain models where demand among several retailers may have to

be aggregated. So even though the IGFR property is remarkably inclusive, we feel

that the robustness and extensibility of the results warrant a preference for the IFR

property. We concur with Paul (2005) in arguing that this property is of greater use

and should demonstratemore practical value in future research than the IGFR one

used in Lariviere (2006).

hemodels presented in Lariviere and Porteus (2001) or inZiya et al. (2004a) also

involve amanufacturer selling to a newsvendor given assumptions about demand.

he model in Ziya et al. (2004b) studies the optimal admission price to a service

facility for customers who have a known willingness to pay distribution function.

hemodel in Paul (2006) refines the newsvendormodels of Lariviere and Por-

teus (2001) and Lariviere (2006) by offering some restrictive conditions so that the

manufacturer is guaranteed to have a unimodal profit function.

Yet in all of the above models, salvage costs, facility capacity cost or overage
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costs are not included in the objective functions. So none of thesemodels capture

the standard supply chain management model where the seller may, additionally to

selling to his standard customer, salvage, hold or turn to another customer.

We extend the use of the IFR property first presented in Barlow and Proschan

(1965) to the area of Bayesian statistical inference in decision theory. In our model,

a decision maker uses a estimate based upon a prior descriptive probabilitymodel

about an unknown piece of information to maximize his utility. his model has

applicationswithin both contract and games theory andhaswide ranging applications

in the classical case of a buyer-seller relationship within supply chain management

where the seller has outside opportunities and is uninformed about the buyer’s wtp.

he distributionswhich have increasing failure rate, also defined a the probability

of failure within a finite interval of time, were first studied extensively in Barlow and

Proschan (1965), tomodel the reliability of systems and have variously been named

hazard rate or failure rate depending upon the area of research. From Barlow and

Proschan (1965), we know that the distributions which enjoy increasing failure rates

include the uniform continuous, gamma, Weibull,modified extreme value and the

truncated normal distributions when their parameters are the commonly accepted

ones. hese distributions are of interest in operations and supply chain management

research because of the implications in the evaluation of some types of objective

functions which model stochastic events or Bayesian beliefs. Due to the extensive

research in convolution, comparisons, inequalities, bounds and dominance of IFR

distributions (Barlow, 2003), arguably further results should be obtainable in supply

chain management and game theoretic research. Tests have been devised to help

determine from a sample of observations whether the underlying population does

have an increasing failure rate.

3 Model

he seller, as principal and Stackelberg leader, is uninformed of the agent’s wtp for a

good he wishes to sell. If he guesses wrongly this level, the seller can still dump his

good on a third party for a price α. he seller has to form a Bayesian belief about the

distribution of this wtp.

Let X represent the agent’s wtp as a random variable with distribution F ranging

over [X , X], continuous and twice differentiable. Let f be its probability density. We

assume that 0 < X < X. his distribution’s failure rate function as defined in Barlow
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and Proschan (1965) is r(X) = f (X)/F(X). X has an increasing failure rate (IFR)

or, equivalently, F is an IFR distribution if r(X) is weakly increasing for all X such

that F(X) < 1. We define α, a real, as the price received by the principal when the

agent refuses the offer.

0 < X ≤ α ≤ X . (2)

Note that if that were not the case, the seller’s belief would have no bearing on his

objective function. If α < X, themaximum revenue for the principal is achieved for

him by choosing X as the offering price. Similarly, if α > X, the principal chooses X.

Tracing a parallel to themodel in Lariviere (2006), here the seller also has to sell

to a downstream partner (say a retailer) any quantity at a posted price. However, in

our setting, the supplier can also sell to a third party in the case where the quoted

price does not satisfy the buyer. his option can also be seen as the buyer’s option of

returning all unsold goods to the supplier. In Lariviere (2006), the seller bears no

responsibility for the unsold goods and enjoys full information about the retailer’s

demand and retail price.

Here, the seller does not have information about the buyer’s wtp nor about the

competition’s eventual offer, so the seller must maximize the following objective

function

Π(x) = αF(x) + xF(x),
= F(x)(α − x) + x , (3)

a�er normalizing the cost to 0. he case where α = 0 is the one covered in Lariviere

(2006). We propose to prove that a unique interior point within the range [X , X]

does indeedmaximize it. We fist show that the point exists, is amaximum and then

prove that it is unique.

3.1 Does the optimal interior point exist?

We now prove that such an optimum exists.

For that, we proceed to prove that

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Π′(X) ≥ 0,

Π′(X) ≤ 0.
(4)
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By construction of F(.), even though f (x) > 0 and F(x) < 1, at the limit,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

limx→X Π′(x) = f (X)(α − X) + 1

limx→X Π′(x) = f (X)(α − X).
(5)

For both conditions in (6) to be true, we obtain the following conditions

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X < α + 1
f (X)

X > α.
(6)

3.2 Is the optimum amaximum?

A property of the increasing failure rate which is of interest in what follows is that

r′(x) ≥ 0. (7)

his means that

f ′(x)(1 − F(x)) + f (x)2 ≥ 0. (8)

he first order condition (F.O.C.) requires that

Π′(x) = f (x)(α − x) + F(x) = 0. (9)

We describe in the following corollaries the properties of this first differential

Corollary 1 If F is such that F(1) = 1, then x = 1 is solution and is also a maximum

because Π′′(1) < 0. his covers the case when the properties of the IFR distributions

cannot be applied since at x = 1, r(x) is not defined. Similarly, if f (X) = 0, then X is

amaximum if X ≤ α because Π′′(X) ≥ 0.

For all cases such that f (x) > 0, we can write the F.O.C. as

α − x = −F(x)
f (x) . (10)

he second order condition (S.O.C.) for amaximum requires that

Π′′(x) = (α − x) f ′(x) − 2 f (x) < 0. (11)

In the case when f (x) > 0, when we replace (α − x) from (10) in (11), we obtain

f (x)Π′′(x) = −r′(x) − f (x)2. (12)

Since f (.) is positive and r(.) is increasing, when the F.O.C. is satisfied, the S.O.C. is

also satisfied.
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Corollary 2 Since F is increasing, the domain [X , X] can be truncated at the largest

value x1 for which f (x1) = 0 and set X = x1. So when x = X, Π(x) = X.

By definition of the first differential of the failure rate r′(x) ≥ 0. So, because

f (x) > 0, R′′(x) < 0.

So, if

∃x0 ∣Π′(x0) = 0 ⇒ Π′′(x0) < 0. (13)

If a value existswhich is an extremum for the objective function, it is amaximum.

Let us now see whether this maximum is unique.

3.3 Is thismaximum unique?

Reasoning by the absurd, if

∃(x0, x1) ∈ [X , X]2, ∣ x0 < x1, Π
′(x0) = Π′(x1) = 0, (14)

then by (13),

Π′′(x0) < 0 ∧Π′′(x1) < 0. (15)

Since Π(.) is continuous by construction, it decreases for values in the vicinity and

above x0, whereas it increases for values in the vicinity but below x1. Hence, between

x0 and x1, R
′(.) changes sign, so that

∃x2 ∈]x0, x1[, ∣Π′(x2) = 0,Π′′(x2) ≥ 0, (16)

his contradicts (13). Hence there cannot exist another point x1, distinct from x0, for

which Π′(x1) = 0.

We conclude that the point which represents the maximum of the objective

function in the interval [X , X], if it exists, is unique.

All of the above allow us to enunciate the following theorem.

heorem 3 Assuming that F is IFR with a finite support [a, b], then the principal has

a unique optimal solution x∗ to his concave profit function which is solution to

x∗ − α = F(x∗)

f (x∗)
. (17)

Corollary 4 he optimal value is always higher than the outside option price α re-

flecting the fact that there is a non-zero probability that the buyer is willing to pay

more than α.
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4 Properties of IFR distributions

In this section, we present some useful properties of the IFR distributions. We show

some properties of the addition of distributions andmultiplication by a scalar. hese

properties can be applied in cases where the upstream party has to price a good

or service to several potential customers involved in different industries and hence

where the beliefs about their outside options may be different. hemultiplication by

a scalar can allow a principal involved in amulti period game to update his belief.

heorem 5 Let F and G two IFR distributions with density resp. f and д then

1. F +G is an IFR distribution.

2. FG is an IFR distribution if дF − fGG ≥ 0 and fG − дFF ≥ 0.

Before beginning the proof, note that if F = G then the above condition in 2.

becomes 1 − F ≥ 0 which is always satisfied.

Proof. Proof ofheorem 5

Let’s introduce the failure rates functions rF(x) = f (x)

F(x)
, rG(x) = д(x)

G(x)
, rF+G(x) =

( f+д)(x)

(F+G)(x)
and rFG(x) = ( fG+Fд)(x)

(FG)(x)
.

1. We notice that

rF+G(x) = F(x)
F +G(x) rF(x) +

G(x)
F +G(x) rG(x). (18)

hen it can be established that

r′F+G(x) = [ F(x)
F +G(x)]

′
rF(x) + F(x)

F +G(x) r
′
F(x)

+[ G(x)
F +G(x)]

′
rG(x) + G(x)

F +G(x) r
′
G(x) (19)

where rF , r
′
F , rG , r

′
G ,

F

F+G
and G

F+G
are positive functions. So we just have to demon-

strate that

[ F(x)
F +G(x)]

′
≥ 0 (20)

and

[ G(x)
F +G(x)]

′
≥ 0 (21)
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to finish the proof.

[ F

F +G
]
′

= F
′(F +G) − F(F +G)′

(F +G)2

= f (F +G) + F( f + д)
(F +G)2 (22)

= fG + Fд

(F +G)2
≥ 0.

By symmetry we can obtain also

[ G

F +G
]
′
≥ 0 (23)

such that rF+G(x) is weakly increasing for all x verifying (F +G)(x) < 1.

We now proceed to prove that if F and G are IFR, then FG, the product of F and

G, is IFR.We notice that

rFG(x) = G(x)F(x)
FG(x) rF(x) + F(x)G(x)

FG(x) rG(x). (24)

hen it can be established that

r′FG(x) = [G(x)F(x)
FG(x) ]

′
rF(x) + G(x)F(x)

FG(x) r′F(x)

+ [F(x)G(x)
FG(x) ]

′
rG(x) + F(x)G(x)

FG(x) r′G(x) (25)

where rF , r
′
F , rG , r

′
G ,

GF

FG
and FG

FG
are positive functions. Further, we have

[GF

FG
]
′

= (дF −G f )FG −GF(FG)′
(FG)2

= дF −G f + f FG2 + f FG2

(FG)2 (26)

= дF − fGG

(FG)2 . (27)

For r′FG ≥ 0, we simply need to demonstrate that :

(дF − fGG)rF +GF FGr′F ≥ 0, (28)

because of the symmetry between G and F.
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Using f ′F ≥ − f 2 from r′F ≥ 0, we can write

(дF − fGG)rF +GF FGr′F = 1

F
[ f (дF − fGG) +GFG( f ′F + f 2)]

= 1

F
[ f дF + f ′FGFG + f 2G(FG −G)]

= 1

F
[ f дF + f ′FGFG + f 2G2(F]

≥ 1

F
[ f дF + f 2G(GF − FG)] (29)

= 1

F
[ f дF − f 2GG] (30)

= f

F
[дF − fGG] (31)

(32)

which is positive if дF − fGG ≥ 0.

5 Supply chain performance

Let us compare the performance of this decentralized asymmetric informationmodel

with the case when the same supplier andmanufacturer work in the same organi-

zation as an integrated supply chain with a single-price contract. Let Πi represent

the integrated channel profit, Πi = Πs +Πm with the subscript letters s and m rep-

resenting the profits to the supplier andmanufacturer. We define for this scenario

the manufacturer’s selling price of the good or service bought from the supplier

as r, r > 0 and an alternative sourcing price for the same good or service from a

non-strategic third party γ. Each party has the opportunity to source or sell outside

the organization if that opportunity yields a larger overall profit. In this case, the

supplier knows themanufacturer’s wtp and adjusts x∗ = γ so that the parties have

the following profits according to the respective cost of γ and α to themanufacturer.

α ≥ γ ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Πm(x) = r − γ,

Πs(x) = α,

Πi = r − γ + α,

α ≤ γ ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Πm = r − γ,

Πs = γ,

Πi = r.

(33)

he case where α ≥ γ is a trivial one : if themanufacturer is able to find an alternative

source for the product or service by the supplier which is lower than the alternative

selling opportunity that the supplier faces, both turn to their alternatives and the
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supply chain’s integrated profit is enhanced but not based on the integration of that

supply chain. In what follows, we focus on α ≥ γ.

he interest is to compare the outcome of the integrated supply chain’s profit to

the one achieved by the decentralized one. If themanufacturer accepts the supplier’s

offer, it is because γ > x∗, in which case, the decentralized profit is similar to the

integrated case. If γ < x∗, we have as decentralized profit

⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ < x∗, ⇒ Πd = r − γ + α.

γ ≥ x∗ ⇒ Πd = r.
(34)

Hence, we can evaluate the difference between the profit for the supplier in the

integrated and decentralized supply chains as

Πsi −Πsd = γ − αF(x∗) − x∗F(x∗). (35)

his difference tends to 0 as the first moment of F(.) tends to γ and as the second

moment tends to 0. In other words, if we consider that the precision of information

available is continuous, then as the seller becomes better informed, the difference

between the integrated and decentralized chains becomes smaller. Given opportu-

nity for mutually beneficial interaction, supply chain efficiency increases with the

availability and precision of information about a buyer’s wtp.

here is another conclusion which can be made from the difference between

integrated and decentralized supply chain rents presented in equation (35). In the

decentralized supply chain, the manufacturer’s rent increases with the standard

deviation of the supplier’s belief distribution. In other words, themanufacturer will

tend to refrain from informing or signaling to the supplier about his true alternative

options in the hope that the optimal x∗ will be low compared to his outside option.

he supply chain’s overall rentmay be unchanged but the conditions for trust and

goodwill among itsmembers are not favourable. In fact, our result point to active

mis-information by the buyer of his wtp to the seller.

In table 1, we present the values that the parameters of some of the classical

IFR distributions so that themean converges towards γ and the standard deviation

towards 0.

Let us examine how the supplier’s optimal x∗ based upon a belief which follows

a Normal IFR distribution would behave. Suppose that γ = 8 and α = 1. In figure 1

we can see that the optimal quantity decreases before increasing again as σ decreases.

he fact that x∗ is “high” for high values of σ can be put down to the fact that
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Table 1: Table of the values to be given to the parameters of the IFR distributions if

the belief has to converge towards the true value of γ

Distribution 1st parameter 2nd parameter

Uniform(a, b) a = b = γ –

Normal(µ, σ) µ = γ σ = 0

Weibull(α, β) β = γ α →∞

Gamma(α, θ) α = γ/θ θ → 0+

Log Normal(µ, σ) µ = Loд(γ) σ → 0+

Extreme Value(α, β) α = γ β = 0

the belief distribution spans an areamuch larger and includes a larger probability

of values for which the alternative α = 1 is more interesting. In other words, the

alternative becomes a bulwark which helps the supplier in case themanufacturer has

an alternative which is higher than α. he other conclusion is that x∗ converges to

γ as σ tends to 0. he standard deviation of the belief distribution is a proxy to the

precision of the supplier’s information.

6 Numerical illustration

Let us illustrate the result with with two different distributions. he first is a uni-

form continuous distribution on the range [1, 8]. he second is an extreme value

distribution with parameters with location parameter α = 1 and scale parameter

β = 8. In both cases, the outside option α = 4. he graphs in figure 2 represent the

corresponding profit functions and optimal values x∗.

Fromheorem 3, we obtain x∗ = 6 for the uniform distribution and x∗ = 12.9671

for the extreme value distribution, both of which are higher than the outside option

price α = 4 and effectively represent themaximum of the profit function.

7 Conclusion

We prove that for all IFR distributions, and when the range of possible values of the

random variable includes the outside option price α, the objective function of the

formΠ(x) = αF(x)+xF(x) admits one single interiormaximizing point. his result

has applications in operational research and supply chain management which use

game theoretic settings where a Stackelberg leader makes a take-it-or-leave-it offer to
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Figure 1: Representation of the optimal solution for the supplier as his information

about the true value of the alternative option to themanufacturer becomes more

precise. γ = 8 and the alternative α = 1 in this example where the belief follows a

Normal(8, σ).
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Figure 2: Representation of the profit function and optimal solution when the belief

distribution is uniform and ranges between 1 and 8 (le� graph), when the belief

distribution follows an extreme value distribution (right graph) and α = 4.
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sell a product or service to the agent relying only upon a Bayesian prior belief of the

agent’s wtp. We prove here that the supply chain rent may be distributed differently

according to the standard deviation of the upstream partner’s belief and give the

correspondence between this belief and the supplier’s rent. As the information about

the downstream’s outside option becomesmore precise, the upstream partner is able

to increase his share of the supply chain rent in detriment of the downstream partner.

We suggest that the conditions for deliberate disinformation by the upstream partner

as to his outside options are thus given.

hese results can be applied to repeated games in which case the new range

distribution depends upon Bayesian updating with cutoff (Hart and Tirole, 1988).
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