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Abstract

We study the incentives to acquire information from exclusive news sources versus informa-

tion from popular sources in a CARA-normal asset market. Each trader is able to observe one

of a finite number of news sources. Clustering on the most precise source can happen for two

reasons. One is standard: traders do not care that they dilute others’ profits by trading on the

same information. The other reason is more novel: traders with different information sets may

respond to the same news differently — when this is so, they can benefit by coordinating their

attention on the same news source in order to take opposite sides of the market. News from such

a source will generate abnormal volume that need not be accompanied by large price movement.

Furthermore, we show that as the number of sources grows, traders concentrate their attention

on a few of the best ones, leaving most information unexploited.

1 Introduction

We study a single period asset market in which there are a limited number of “news sources,” each

of which provides a signal (some more precise than others) about the asset value. Each agent can

monitor one of these news sources, and thus observe its signal, prior to trading. In equilibrium, some

news sources will be relatively popular (monitored by many traders), while others are relatively

exclusive, or ignored altogether. We ask whether traders ever have incentives to cluster on popular

news sources, and if so, what implications this has for aggregate market outcomes such as the

informativeness of the asset price and the volume of trade.

The type of news sources that we have in mind could be analysts, brokerages, investment

newsletters, company insiders, columns in the Wall Street Journal, or the like. A signal from a

news source could be a revision by the analyst, a new recommendation from the brokerage or

newsletter, a leak by the insider, or new information in the newspaper. Our premise is that by

dedicating time and attention to monitoring a source, a trader can obtain, digest, and use new

information from that source before it becomes widely known (and perfectly incorporated into the

1



market price). The idea that time and attention are limited is captured, in a stylized way, by

restricting each trader to monitoring a single news source.1 Our market should be understood to

clear at this early stage of dissemination, when only the traders who have been monitoring a news

source are able to act on its new signal.

Because the model has many traders and few news sources, we will usually speak of relatively

exclusive sources — that is, followed by relatively few traders — rather than private ones. There

are standard reasons to expect traders to prefer more exclusive sources: all else equal, popular

news should be more fully incorporated into the asset price, eroding the profits of those who try

to trade on it. However, at times, casual observation seems to suggest that many traders pay

attention to the same news sources. For example, a recommendation from a high profile analyst

can generate dramatic movement in a stock’s price and turnover. Furthermore, one sometimes

hears a countervailing argument that “it is important to understand what other people know.” To

evaluate these arguments, we deem traders to be clustering on a news source when their actions

produce an excessive impact on the asset price, trading volume, or both. Our notion of “excessive”

accounts for the fact that more informative sources (those with more precise signals) should move

the price more than less informative ones.

In equilibrium, more precise news sources are always more popular, and clustering can occur

through two channels. In the first, traders who dislike popularity per se (for the standard reasons)

accept it as the cost of acquiring a more precise signal. High quality, popular news becomes ex-

cessively incorporated into the price (relative to its precision, and the precision of other signals),

essentially because individuals trading on this news are not concerned with how their actions col-

lectively affect the informativeness of the market price. Lower quality news sources may be ignored

entirely — indeed, we show that as the number of news sources grows, traders become so concen-

trated on the best ones that the fraction of sources that are ignored goes to one. Consequently, the

price can be quite inefficient.

The second channel for clustering involves traders who, due to differences in their information

sets, use the same news source in different and opposing ways. Specifically, we suppose that some

traders must place market orders, and thus face price risk, while others place limit orders.2 A

market order trader is endowed with additional private information about the asset. To mitigate

his price risk, he must try to assess whether this private information is good or bad news relative

to what the rest of the market knows. One way to do this is to monitor a popular news source,

as a proxy for the price, and trade against it. When the two types of trader follow the same

news source, they have a symbiotic relationship. By selling on good news from the source, market

order traders tend to reduce its correlation with the price, making it more attractive to limit order

traders. Conversely, by buying on good news, limit order traders make the source a better proxy for

the price, and thus more attractive to market order traders. This symbiosis can lead most traders

to monitor the same news source. When this occurs, a new signal from the source will generate

1Allowing a trader to monitor multiple news sources would complicate the analysis, but should not change the
results too substantially.

2Possible motivations for this setting will be discussed later.
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moderately excessive price movement (because the countervailing trades cancel out) and a very

large spike in trading volume. One implication of this is that two pieces of news that appear to be

of roughly similar fundamental importance can generate drastically different amounts of volume.

Our asset market is in the tradition of Hellwig [22], Grossman and Stiglitz [18], and Diamond

and Verrecchia [8], among others. There are risk averse (CARA) strategic traders and noise traders

who provide liquidity, and signals are normally distributed. Orders are placed simultaneously,

and the asset price is determined by a market clearing condition, as in Kyle [28]. As in the

competitive rational expectations equilibrium literature, strategic traders form correct beliefs about

the functional relationship between signals, orders, and the market price. However, we depart

from that literature by assuming that only limit order traders can condition their demand on the

realized price; market order traders cannot. Information acquisition in such markets has been

extensively studied, but usually under the assumption that informed traders’ signals are either

perfectly correlated, as in Grossman and Stiglitz, or independent, as in Verrecchia [38].3 With a

few notable exceptions, there has been little study of whether agents permitted to choose which

information to acquire will concentrate on the same information as other agents.

Market microstructure models that include both market and limit orders are a relatively recent

development, and most of these models have focused on sequential trading with new orders clearing

against an existing limit order book (or in some cases, against a market-maker’s quotes as well).

An early example with one stage of arrivals and fixed order types is Glosten [16], followed by

Chakravarty and Holden [7] and Handa and Schwartz [20], where a trader is able to choose which

type of order to use.4 Goettler, Parlour, and Rajan [17] develop a fully dynamic model with limit

and market orders which they solve numerically. These studies generally support the idea that

market orders have the virtue of immediate execution but are exposed to price risk, while limit

orders are exposed to execution risk (the chance that an order fails to execute in a timely way)

and adverse selection risk (the danger that a buy order is more likely to execute if bad news about

the asset arrives later, and vice versa for sell orders). Loosely, we would expect a trader who is

impatient about execution to favor a market order; one reason for this impatience could be that he

has private information that is particularly time sensitive. (And conversely for a relatively patient

trader.) In our model, these trade-offs between order types will remain in the background, as

unmodeled motivation for an exogenous distribution of limit and market order traders.5

Outside of our focus on why traders might choose to acquire the same signals, there are other

ways in which financial actors may make similar decisions about information.6 Grundy and Mc-

3Manzano and Vives [30], which has traders with partially correlated signals, is one recent exception.
4Kyle [28] permits traders to choose from an extremely flexible class of demand schedules that includes both

market orders and our linear limit orders as special cases. However, in his setting, market orders are never optimal,
in part because there is no execution risk for limit orders.

5Admittedly, there is some awkwardness in using these expressly dynamic trade-offs to motivate the order types
in a static game. We discuss ways to tighten this motivation a bit later, but ultimately it would be desirable to make
order choice endogenous.

6There are also substantial theoretical and empirical literatures examining herding in analyst and newsletter
recommendations. This herding by information providers is orthogonal to the herding by information acquirers that
we study. Throughout the paper we stick to the term “clustering” to avoid confusion with this other herding literature.
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Nichols [19] and Manzano and Vives [30], among others, study markets in which traders’ decisions

about how much private information to acquire, or how aggressively to trade on that information,

are strategic complements. Generally, the complementarity arises from a feedback loop between

individual actions and the informativeness of the market price, and as a consequence, there may

be multiple equilibria.

More closely related to us are models that allow traders to choose which information to acquire.

In an influential early paper, Admati and Pfleiderer [2] let traders acquire collections of signals

and provide conditions under which two different signals are complements or substitutes to each

other, for a single trader. They show that the property of complementarity can be endogenous,

as the standalone and combined values of two signals depend on equilibrium properties of the

price. Complementary signals encourage all-or-nothing information acquisition, which generates a

different sort of information concentration than the type we study: traders are either well informed

or uninformed, but not moderately informed. More recently, García and Vanden [15] study the

emergence of endogenous “mutual funds” when one trader can choose to buy a stake in the position

taken by another trader. In a multiple asset model, Van Nieuwerburgh and Veldkamp [36] show

that a trader may prefer to deepen his informational advantage on one asset rather than learn what

his competition knows about the other asset; they use this to shed light on the home bias puzzle.

The idea that traders might rationally choose to acquire the same information dates to Froot,

Scharfstein, and Stein [11]. Their mechanism relies traders with short term horizons and a random

trade timing assumption that ensures that popular information is incorporated into the price grad-

ually. A trader who acquires popular information can benefit from this price trend if he is fortunate

enough to trade early. This illustrates how a strategic complementarity can arise in the news that

traders choose to follow; in our interaction between limit and market orders, the complementarity

arises from a different source, but the result is similar. In other papers the desirability of acquiring

popular information arises because traders have “keeping up with the Joneses” preferences (García

and Strobl [13]) or because spreading fixed costs of research across more traders makes popular

information more affordable (Veldkamp [37]). In related work, Hellwig and Veldkamp [21] consider

general environments in which agents acquire information prior to playing a game; they show that

when the second-stage game has strategic complementarities, agents have an incentive to herd at

the information acquisition stage. One key to clustering in our model is that it can be rational for

differentially informed traders (in the sense that limit order traders “observe” the price, but market

order traders do not) to trade on opposite sides of the same piece of new information. Based on

similar logic, Dorn and Strobl [9] demonstrate how informed and uninformed traders may trade on

opposite sides of new public information in a model of the disposition effect.

An advantage of using a large, static market is that we can precisely characterize how clustering

on news affects the informational efficiency of the market price. In particular, like Froot, Scharfstein,

and Stein, we can distinguish inefficient aggregation of the news sources that traders follow from

the inefficiency that arises because some sources are simply ignored altogether. Under certain

conditions, if the potential collective precision of all available news sources grows as N , then the
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number of acquired news sources, and the collective precision of acquired news grow no faster than√
N . These results complement a body of of work on the asymptotic informativeness of prices that

includes Vives [39] and [40] and García and Uroševíc [14].

Our model yields several novel (and potentially testable) implications. With or without market

order traders, the asset price overweights information from higher quality (more precise) news

sources. Under the assumption that news will eventually be priced in correctly, this suggests that

the price impact of popular, high quality news will be more subject to reversals. With market order

traders, the model predicts that news from a prominent source (the most informative one with the

largest following) may generate trading volume that appears drastically disproportionate to its

informativeness. Existing empirical studies do not address these predictions directly, but there is

some suggestive indirect evidence that we will discuss after presenting the model and results.

The next section introduces the model. Section 3 characterizes equilibrium when there are only

limit order traders and describes the conditions under which traders’ attention is focused on a small

subset of news sources. In Section 4, market order traders are added, and we show that the two

order types may trade on opposite sides of the same news. Section 5 discusses how the results

relate to empirical evidence, and Section 6 offers concluding remarks.

2 Model

The model has two stages; in the first stage strategic traders choose which information to acquire,

and in the second stage they trade and realize payoffs. We begin with the second stage, which is

conventional. There is a single asset with uncertain value θ which is traded in a single period. The

asset is traded by continuum of strategic traders of size L+M ; of these, a mass L are limit order

traders, while M are market order traders. There are also noise traders who submit aggregate

demand z ∼ N (0, sz). All strategic traders have CARA preferences over trading profits, with

initial wealth normalized to zero; if trader i buys net quantity qi at price p, then his ex post

realized utility is ui (qi) = −e−
1

γi
qi(θ−p), where γi is his risk tolerance. We assume that all limit

(market) order traders have common risk tolerance γL (γM). A trader chooses an order strategy

qi (Ii) to maximize his expected utility E (ui (qi) | Ii), where Ii is his information set. The main

distinction between trader types is that only the information sets of limit order traders will include

the market price p, allowing them to condition their demand on it. The sequence of events is:

(i) traders simultaneously submit order strategies and noise trader demand is realized, (ii) the

equilibrium price p is determined by market-clearing, and (iii) trades are executed, θ is revealed,

and traders realize their payoffs. If we index limit and market order traders by l ∈ [0, L] and
m ∈ [0,M ], the market-clearing condition is:

Z L

0
ql dl +

Z M

0
qm dm+ z ≡ 0 (1)

The determination of the price follows from the fact that limit orders ql will condition on p.

Next we turn to the information available to traders. First, there is a public signal w = θ+ εw,
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with εw ∼ N(0, sw), that is observed by all traders; w could be considered a common prior about
θ. Next, there is private information: each market order trader m is endowed with an idiosyncratic

signal xm distributed N
¡
θ, τ−1x

¢
. For simplicity, limit order traders are not endowed with private

signals, but this is not critical. Finally, there is a finite set of N news sources, Y = {1, 2, ..., N}.

Each source n provides a common signal yn ∼ N(θ, τ−1n ) to its subscribers. Without loss of

generality, we rank the sources by precision: 0 < τ1 ≤ τ2 ≤ ... ≤ τN−1 < τN .
7 All of the signals

in the model are independent, conditional on θ, and we make the usual convention that the mean

of a continuum of i.i.d. random variables (in this case, the market order traders’ private signals) is

equal to its expectation.

At the information acquisition stage, each trader must choose one news source n ∈ Y to subscribe
to. A trader cannot see the content of the news — that is, the value yn — before choosing, but

their precisions are public. After traders simultaneously choose sources, each trader observes the

realizations of the signals in his information set. For a limit order (market order) trader who

acquires news source n, that information set is Il = {yn, w, p} (Im = {yn, w, xm}). While we

will not attempt to endogenize order types in this paper, one could imagine these information

sets arising from a trade-off in which agents with additional, time-sensitive private information xm
choose market orders to avoid delays in execution. Of course, since our model is static and all

orders execute simultaneously, one must take such a motivation rather figuratively.

By imposing a capacity limit on information acquisition rather than a cost or a price, we imagine

a situation in which the time and attention required to acquire, understand, and use a new signal

before its value expires represents an important constraint on traders. There are no explicit financial

costs to acquire a source, nor do news sources charge prices for their information. News sources are

not strategic players in the model, but we have in mind a story in which free information is a loss

leader that helps to bring in other types of business for the source. Such a strategy might make

sense given the difficulty of limiting access to raw information, and it does not seem too distant

from the approach that brokerages and investment banks take with their analysts. In Section 6

we briefly discuss how our model could be extended to incorporate price competition among news

sources.

Our equilibrium concept is essentially competitive rational expectations equilibrium, but with

the addition of the information acquisition stage and also the proviso that market order traders

cannot condition on the realized price. To be more explicit about this, note that any profile of

news source acquisition and order strategies by traders will induce some price function P over

the variables (~y,w, z, θ), where ~y = (y1, ..., yN ), such that the realized equilibrium price is given

by p = P (~y,w, z, θ).8 We assume that all traders correctly anticipate this functional relationship

(and that limit order traders additionally observe the realization p). Let ~l = (l1, l2, ..., lN) and

~m = (m1,m2, ...,mN ) denote the fractions of limit and market order traders choosing each news

7Keeping the most precise source unique (via the condition τN > τN−1) is not essential to the results, but it helps
in stating some of them concisely.

8We omit the xm signals because equilibrium price will depend only on the aggregate of these signals, and we have
assumed 1

L

R L
0
xm = θ.
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source, and let functions qnl () and q
n
m () denote the order strategy a trader of each type who acquired

news source n, with ~ql and ~qm the vectors of these functions. Finally, let Unl = E (E (ul (q
n
l ) | Il))

refer to the ex ante expected utility anticipated by a limit order trader who acquires source n,

before receiving his information. Define Unm similarly.

We say that order strategies are interim optimal (with respect to an anticipated price function

P ) if for all n, qnl (Il) maximizes E (ul (q
n
l ) | Il) and q

n
m (Im) maximizes E (um (q

n
m) | Im). We will

say that news source choices are ex ante optimal if for any n such that ln > 0, we have U
n
l ≥ Un

0

l

for all n0 ∈ Y, and for any n such that mn > 0, we have Unm ≥ Un
0

m for all n0 ∈ Y .

Definition 1 A News Choice Equilibrium is a collection
n
~l, ~m, ~ql, ~qm, P

o
such that (i) the market-

clearing price generated by
n
~l, ~m, ~ql, ~qm

o
satisfies p = P (~y,w, z, θ), (ii) order strategies are interim

optimal with respect to P , and (iii) news source choices are ex ante optimal with respect to P .

Because traders are free to acquire any news sources they like, optimality requires that all

sources acquired by limit order traders must offer them the same ex ante utility, and similarly for

sources acquired by market order traders. Throughout the paper, we will follow common practice

by restricting attention to equilibria in linear order strategies; that is, we will look for equilibria in

which qnl and q
n
m are linear functions of the variables in Il and Im. In this case, the pricing function

will take the form

P (~y,w, z, θ) =
XN

n=1
λnyn + λww + λθθ + ρz (2)

for some coefficients ~λ = (λ1, ...,λN), λw, λθ, and ρ. When this is the case, correct expectations

about the form of P reduce to anticipating these coefficients correctly. In the next section, linear

equilibria are characterized for the somewhat simpler case in which all traders use limit orders

(M = 0).

We will consider two definitions of clustering over news sources. The second one, which is

based on excessive impact on trading volume, is deferred until later. The first definition is based

on a source’s price impact. In a linear equilibrium, the news sources’ contribution to the price

can be summarized by the normalized variable Y =
PN
n=1 λ

0
nyn, where λ

0
n = λn/

PN
n=1 λn. Y is

most informative about the asset value θ when each source has a price impact proportional to its

precision; that is, when λn/τn is constant across n. When this condition fails, we will say that

there is clustering on the news with higher values of λn/τn. An extreme version of this occurs if

some news sources are not acquired at all and have price impacts of zero. Since this definition is

rather inclusive, it is not too surprising that clustering occurs in equilibrium; what will be more

interesting is the size and scope of these excessive price impacts.

2.1 Preliminaries: Orders and Ex Ante Utility with CARA Preferences

For now, we fix a price function P , and consider the behavior of traders. Notice that the price

function in (2) is unbiased — the unconditional expectation E (θ − p) of per unit profit is zero.
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Furthermore, the per-unit profit θ − p is distributed normally: θ − p ∼ N (0, sp), where

sp = E
³
(p− θ)2

´
=
XN

n=1
λ2n/τn + λ2w/τw + ρ2/τ z . (3)

As a preliminary step, we introduce well known general expressions for the quantity of a risky

asset that a trader demands, and his ex ante utility, with exponential preferences and normal

uncertainty. Let R (I) = E (θ − p | I) be a trader’s expectation of the per-unit return, conditional
on information set I, and let s (I) = var (θ − p | I) = E

³
(R (I)− (θ − p))2 | I

´
be the variance

of the error in his estimate. Call τ (I) = s (I)−1 the precision of the trader’s information; note

that the values of s (I) and τ (I) do not depend on the realization of the random variables in I. If

the trader has risk tolerance γ, then he chooses a quantity q to maximize the certainty equivalent

wealth R (I) q − s(I)
2γ q

2 which yields an optimal order

q (I) = γτ (I)R (I) (4)

Furthermore, prior to receiving any information, the ex ante expected utility of a trader who expects

to acquire information set I is

UI = −
p
s (I) /s (p) . (5)

For details, see Grossman and Stiglitz [18] and Admati and Pfleiderer [2]. The notable distinction in

(4) and (5) is that we have not yet made any assumptions about whether I includes p, so the price

remains inside the expectation operator in R (I) and s (I).9 As a consequence of (5), the optimal

information acquisition decision of a trader is simply to choose the information set I that gives him

the most precise estimate of θ − p. That is, he maximizes τ (I) over all available information sets.
For market order traders, the wrinkle will be that a precise estimate of θ − p requires estimating
both the asset value and the market-clearing price.

3 Equilibrium with Limit Order Traders

This section studies the case in which all traders submit limit orders; thus for now set M = 0.

To characterize equilibria, we use (4) and (5) to develop detailed expressions for optimal orders

and ex ante utility. With the latter, we can construct indifference curves over news sources that

demonstrate a trade-off between a source’s precision and its price impact. Finally we impose

consistency (P must be generated by traders’ actions) and show that equilibria exist.

3.1 Optimal Limit Order Strategies and Ex Ante Utility

Consider a limit order trader who observes information set Il = {yn, w, p} and expects that the

price to satisfy (2) with
PN
n=1 λn + λw + λθ = 1. Because this trader observes the price, his order

9Otherwise, (5) is just a special case of Proposition 3.1 in Admati and Pfleiderer [2], with initial wealth normalized
to zero and E (θ − p) = 0.
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and utility hinge on his estimate of θ: R (Il) = E (θ | Il)− p and s (Il) = var (θ | Il). We will write
snl = s (Il) and τ̂nl = τ (Il) = (s

n
l )
−1 to emphasize the dependence of his estimate precision on his

news source n. Because of (5), a trader’s decision about which news source to follow boils down to

choosing the source that maximizes τ̂nl . By standard properties of the normal distribution, E (θ | Il)

will be a convex combination of the elements in Il; given (4), this implies that his demand can be

written in the linear form

qnl (yn, w, p) = βny (yn − p) + βnw(w − p) (6)

for some coefficients βny and βnw. In order to derive these coefficients and determine the trader’s

preferences over news sources, we must derive his estimate of θ and τ̂nl . While the errors in signals

yn and w are independent, the trader must account for the fact that both signals are correlated

with the price. To deal with this, we construct a transformation of the price p to strip out the

influence of the other two signals. Let

ζn =
1

1− λw − λn
(p− λww − λnyn) =

1P
n0 6=n λn0 + λθ

³X
n0 6=n

λn0yn0 + λθθ + ρz
´

The set of random variables {w, yn, ζn} is informationally equivalent to Il, but now those variables

are also independent, conditional on θ. Furthermore, ζn is distributed N
³
θ, τ−1ξn

´
, with precision

that can be written τ ζn = (1 − λw − λn)
2/
¡
sp − λ2w/τw − λ2n/τn

¢
. Then by standard results for

normal distributions, the trader’s optimal estimate of θ is a precision-weighted average of w, yn,

and ζn, and the precision of that estimate is simply τ̂nl = τw + τn + τ ζn . With this in hand, it is

straightforward to compute the coefficients of the trader’s order strategy:

βny = γL

µ
τn − τ ζn

λn
1− λw − λn

¶
= γLτn

µ
1− λn

τn

1− λw − λn

sp − λ2w/τw − λ2n/τn

¶
(7)

βnw = γL

µ
τw − τ ζn

λw
1− λw − λn

¶
= γLτw

µ
1− λw

τw

1− λw − λn

sp − λ2w/τw − λ2n/τn

¶
(8)

In comparing news sources, it suffices to compare τ̂nl − τw = τn+ τ ζn , since the additional term

τw is constant with respect to n. To make this comparison, we define a function

f(τ ,λ) = τ +
(1− λw − λ)2

sp − λ2w/τw − λ2/τ
(9)

such that τ̂nl = τw + f (τn,λn). A limit order trader who believes that the price follows P will

weakly prefer source n over source n0, if and only if f (τn,λn) ≥ f (τn0 ,λn0). Thus, level curves
of f represent indifference curves over combinations of precision and price impact. As a useful

hypothetical case, let us say that a news source n is worthless to a limit order trader if it gives him

the same utility that he would earn with the information {w, p} alone. Worthless news must satisfy

f(τn,λn) = f0, where f0 =
(1−λw)2
sp−λ2w/τw

and τw + f0 is the precision of a trader who sees {w, p}; with
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Figure 1: Limit order indifference curves

some simplification one can see that n is worthless if (τn,λn) lies along the line
λ
τ =

sp−λ2w/τw
1−λw in

τ -λ space. This worthless news line marks a transition in traders’ order strategies. We say that a

trader with source n buys on good news (sells on good news) from n if βny is positive (negative).

Lemma 1 A trader with source n buys on good news from n if its price impact to precision ratio

is lower than that of a worthless source: that is, if λn
τn
<

sp−λ2w/τw
1−λw . Conversely, he sells on good

news from n if its price impact to precision ratio is higher than that of a worthless source.

Proof. This follows directly from (7) and basic algebra.

In a similar manner, one can show that this trader buys on the public signal (βnw > 0) if and only

if λw
τw
<

sp−λ2n/τn
1−λn . For limit order traders, selling on good news from a source n — or equivalently,

buying on bad news — can only arise if the price severely overreacts to n. In this case, holding the

price fixed, worse news from n implies either relatively strong noise trader demand or relatively

good news from other (more precise) sources. It is the second possibility that, in principle, could

induce trades against n. The next lemma characterizes indifference curves for signals whose value

is positive (that is, f(τn,λn) > f0).

Lemma 2 (Limit order indifference curves)

i) Fix λ1, ...,λN , λw, and ρ. For K > f0, solutions to the equation f (τ ,λ) = K lie on an ellipse

characterized by a chord AB that does not depend on K plus two additional points C and D such

that A = (0, 0), B = ( (1−λw)
2

sp−λ2w/τw
, 1−λw), C = (K, 1−λw), D = (K− (1−λw)2

sp−λ2w/τw
, 0), and the ellipse

has vertical tangencies (dτ/dλ = 0) at A and C. Furthermore, if K > K 0 > f0 then the ellipse

f(τ ,λ) = K 0 lies strictly in the interior of f(τ ,λ) = K (except for tangencies at A and B).

ii) Thus a limit order trader strictly prefers source n to source n0 if (τn0 ,λn0) lies in the interior

of the ellipse f (τ ,λ) = f (τn,λn). If (τn0 ,λn0) lies on this ellipse, then the trader is indifferent

between n and n0.

Some typical indifference curves are displayed in the left panel of Figure 1. Note that the chord

AB lies along the worthless news line. In this example, a trader would prefer the less precise signal

yn over the more precise yn0 on the inner ellipse because the price impact of the latter is too large.
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Some of the possible precision-price impact combinations on these level curves seem unlikely to

arise in equilibrium. For example, if source n lies along arc AB, then its price impact is so large

that an agent who observes good news from n would sell on it. However, if traders sell on good

news from n, its price impact will be negative, not positive. Similarly, if source n lies along arc

AD, then its price impact is negative. This could only arise if traders sell on good news from n, but

they would want to do the opposite. Finally, if n lies along BC, then λw + λn > 1, implying that

some other source must have a negative price impact. In the next section, we show that these three

cases are indeed incompatible with equilibrium, so for practical purposes, one can concentrate on

the arc CD (as shown in the right panel of Figure 1). Arc CD looks like a conventional convex

indifference curve: traders prefer news that is more accurate and less incorporated into the price.

Because in equilibrium, traders must be indifferent between all news sources that are acquired,

price impacts will need to adjust so that the precision-price impacts pairs for all acquired sources

lie along a single curve such as CD.

3.2 Limit Order Equilibrium

Now we close the model by deriving the price function that arises from the news source choices and

linear demands discussed above. If traders are distributed over sources according to ~l and submit

orders as described in (6), the market-clearing condition becomes:

L
XN

n=1
ln
¡
βnyyn + βnww − (βny + βnw)p

¢
+ z ≡ 0 (10)

Solving for p delivers a price function of the form (2) with coefficients

λn = ρLlnβ
n
y , λw = ρL

PN
n=1 lnβ

n
w , λθ = 0 , ρ =

³
L
PN
n=1 ln(β

n
y + βnw)

´−1
(11)

Note that the quantity on the left-hand side of (10) is the aggregate excess demand at price p. We

call a equilibrium regular if it has the following two features.

A1. Aggregate excess demand is decreasing in p. (That is, −LPN
n=1 ln(β

n
y + βnw) is strictly

negative.)

A2. λw ∈ (0, 1)

Condition A2 says that good news from the public signal has a non-negative impact on the

price, but not more than one-for-one.

Proposition 1 A regular linear equilibrium exists.

Proof. This is a special case of Proposition 6.

The intuitive flavor of the proof is fairly familiar: if traders respond to their own information

too aggressively, the price will be quite informative, encouraging all traders to rely more on the

price and less on private information. Conversely, if all traders rely too much on the price, it will be

uninformative and they will be forced to turn back to their private information. The proposition

11



Figure 2: Equilibrium with limit order traders

is silent on uniqueness of linear equilibria satisfying A1 and A2, and furthermore, we have not

ruled out the possibility of additional equilibria. (However, equilibria violating A1 or A2 seem very

unlikely, and if they do exist, they would have rather perverse features.) Next we confirm that the

counterintuitive possibilities mentioned in the indifference curve discussion cannot occur.

Lemma 3 In a regular linear equilibrium, the price impact of every source is positive: λn ≥ 0 (and
consequently, λn ≤ 1− λw) for all n. Furthermore, no trader sells on good news from his source.

Proof. If λn were strictly negative, then given 1 − λw positive by A2, we would have β
n
y > 0

by Lemma 1. But then (11) and A1 imply λn > 0, a contradiction. Furthermore, we have
PN
n=1 λn = 1 − λw, so λn > 1 − λw would imply that λn0 < 0 for some other n0 6= n, which

we have showed is impossible. If traders observing n were to sell on good news, then βny < 0 and

A1 would imply λn < 0, which we have ruled out.

A typical equilibrium is summarized concisely in Figure 2. The precision and price impact of

each acquired source must lie along the CD arc of a single level curve of f (τ ,λ); in the figure this

is sources 2 through 6. Any unacquired source must lie inside this level curve, along the λ = 0 axis

(source 1, in the figure). This example has the following general features:

1. There is a threshold τ , such that news sources that are less precise than this threshold are

not acquired. (If this threshold is low enough, all sources are acquired.)

2. Traders cluster on more precise news sources: λn/τn is increasing in n.

Mathematically, the second point follows directly from the convexity of arc CD. The intuition

for both points is also straightforward. After controlling for his own source, the amount that a

trader can infer about other news n0 from the price depends on the signal-to-noise ratio of λn0

relative to noise trader demand. A trader who is willing to choose a less precise source n, with

τn < τn0 , must be able to compensate by learning relatively more from the price (controlling for

yn) than he could by choosing n
0 instead. This turns out to require λn0/τn0 large and λn/τn small.

12



ε 0 0.1 0.2 0.5 1 2 3 4

l10,000sup 0 0.05 0.10 0.25 0.47 0.72 0.82 0.87
λ10,000sup 0 0.05 0.11 0.29 0.59 0.87 0.94 0.97

Table 1: Approximate limiting influence (N = 10000) of the superior signal in Example 1. Other
parameters: γ = 1, L = 1, τ̄ = 1, τw = 0, τ z = 1.

Point 1 reflects the fact that profits from a popular source never erode completely, due to the

presence of noise trader demand and the cap on trading imposed by risk aversion. In some cases,

the profits available from a low quality source, even a very exclusive one, cannot compete.

To explore the scope of concentration on news in this model, we present a few examples and

limiting cases for which particularly sharp results are possible. One such case is the limit as

the number of news sources grows large. Many market models begin from the assumption that

there are many independent signals available and that each trader is endowed with a different one.

This resembles the situation in our model when N is large, except that traders can decide which

information to acquire.

Example 1: One superior news source

Consider a market with N − 1 equally precise signals, each with precision τ̄ and one superior

signal with precision τ̄ + ε. Models often assume that signals are identically distributed, but this

is a matter of convenience — there is no particular reason to think that real-world information

sources are all equally precise. This example explores the effect of a minimal amount of quality

heterogeneity. The following result shows that the best source attracts disproportionate interest,

and has a disproportionate influence on the price, even when there are infinitely many signals to

choose from. Let λNsup and l
N
sup denote the price impact and “market share” (the fraction of acquiring

traders) of the superior signal in an equilibrium with N news sources.10 As the number of news

sources grows, we have:

Proposition 2 For the model of Example 1,

i) The price impact and market share of a non-superior source tend to zero with N .

ii) The price impact and market share of the superior source remain positive even as N grows

large. That is, λNsup and l
N
sup are bounded away from zero uniformly in N .)

Table 1 illustrates the excess influence of the superior signal in the large N limit for a case with

no public signal and τ̄ = 1. The results indicate that when traders can choose which information

to acquire, it is not innocuous to assume away quality heterogeneity. When quality differences

are relatively small, a market observer might find it puzzling and arbitrary to see news from one

of these sources move the market price substantially, when similar news from other sources has a

much smaller effect.

In the numerical example of Table 1, the lower quality sources have a collective market share

1 − lNsup that remains positive as the number of sources grows, even though the share of each
10We know that such an equilibrium exists; the results below do not depend on whether it is unique.
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individual source vanishes. While the price does not aggregate these signals efficiently, in principle

the collective information that traders acquire would reveal the asset value perfectly (N →∞), if
one could only weight this information properly. However, the outcome can be starker than this:

under some conditions, all news sources except for the superior one are ignored! The next result

applies not just to Example 1, but for any configuration of news sources, and for any τw ≥ 0.

Proposition 3 Suppose that the second best news source N − 1 satisfies D ≡ (LγL)2 τ zτN−1 < 1
and the best news source N satisfies τN ≥ 1

1−DτN−1. Then there is an equilibrium in which all

traders acquire source N .

The conditions for Proposition 3 tend to be met when the precision advantage of the best

news source is large and opportunities to profit from noise traders are relatively large (τ z small)

and unexploited (L and γL small). In such an equilibrium, traders acquire information that is

(endogenously) perfectly correlated, even though independent news is available.11 The asset price

will be extremely sensitive to this news: λN = 1. Furthermore, the necessary conditions do not

depend on the number of sources, just the first and second best precisions. If we let N grow,

holding τN−1 and τN fixed, then we can easily have a situation in which potentially available

information reveals θ perfectly, but the collective precision of information that traders actually

acquire is bounded at τN . The last two results demonstrate the possibility of concentration at the

very best news source. The next example shows that if we broaden the focus to the top few news

sources, the phenomenon of concentration at the top is quite general.

Example 2: General quality distributions as N →∞
This example looks at the concentration of traders’ news choices are in a large N setting that

is more general than Example 1. The idea will be that in the N → ∞ limit, there is an arbitrary

cumulative distribution function Ψ over the precision of news sources. We assume that Ψ is defined

over a compact interval [τL, τH ] and is Lipschitz continuous and invertible. For each N ≥ 1,

construct a market with N news sources whose precisions are spaced evenly across the percentiles

of Ψ. That is, for market N , set τ1 = Ψ
−1(1/N), τ2 = Ψ−1(2/N), ... , τn = Ψ−1(n/N), and

τN = Ψ
−1(1) = τH . As N grows, the news sources populate the interval [τL, τH ] more and more

finely in such a way that their distribution approximates Ψ.12 Notice that because the precision of

each source is bounded below by τL, the collective precision of the information available to traders

grows at rate N .

Proposition 4 In the model of Example 2, as N → ∞, the fraction of sources that are acquired
shrinks to zero and the collective precision of acquired information grows at a rate no faster than√
N .

11We conjecture that the result could be strengthened to show that, when the conditions hold, a linear equilibrium
must have all traders acquiring N . That is, the equilibrium is unique. Numerical investigation strongly suggests that
this is true, but we do not have a proof.
12Of course, a simpler approach would be to sample N times from Ψ. The advantage of the construction we use is

tractability — keeping the precisions non-stochastic avoids detours to deal with the Central Limit Theorem. However,
there is no reason to expect the results to change materially under a sampling-based approach.
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Proposition 4 shows that when there are many news sources and a trader can only follow one of

them, clustering on a small fraction of the highest quality sources is the norm. As a consequence,

the asset price will appear to be oversensitive to a small set of news items and underresponsive

to the rest. Of course, whenever we say that asset-relevant information is ignored, we mean that

this is true within the time horizon — a single episode of market-clearing — covered by the model.

In the long run, one would expect all relevant information to become incorporated into the price;

loosely interpreted, our results suggest a framework for thinking about why some news might be

incorporated more slowly than others.

The results so far focus on the supply of information holding other parameters fixed, including

the volume of noise trading and the level of risk tolerance. However, if traders holding a popular

signal yn are to make a profit, there must be a wedge between that signal and the price. That

wedge is generated by the fact that risk aversion limits the price impact of yn, while noise trading

generates price movement that is unrelated to yn. A reduction in noise trading or an increase in risk

tolerance should tend to penalize traders with popular news, and thus encourage them to broaden

the base of information acquired. This intuition is formalized in the following proposition.

Proposition 5 For fixed N , and any sequence of equilibria as γL → ∞ or τ z → ∞, the co-
efficients of the equilibrium price function converge to λw = τw

³PN
n=1 τn + τw

´−1
and λn =

τn

³PN
n=1 τn + τw

´−1
, for all n ∈ {1, ..., N}. That is, every source is acquired and weighted ac-

cording to its precision in the price.

Models with exogenous information often predict that an increase in risk tolerance should

encourage traders to use the information they have more aggressively; alone, or in combination

with a decrease in noise trading, this should tend to boost the signal to noise ratio in the price.

We extend the spirit of those results to say that because this more aggressive trading reduces the

returns on shared information, traders have greater incentives to acquire more exclusive information

when risk tolerance increases.

4 Equilibrium with Both Limit and Market Order Traders

Now we relax the constraint that M = 0 and allow market order traders in the model. The next

section characterizes their order strategies and preferences over news sources. Then we examine

how limit and market order traders interact in equilibrium.

4.1 Market Order Traders: Order Strategies and Ex Ante Utility

Consider a market order trader with information set Im = {yn, w, xm}. Just as with the limit order

traders, his demand and ex ante utility are determined by (4) and (5), but because he cannot observe

the price, their exact forms will be a bit different. For this trader, the precision of his estimate of

θ−p is a different quantity from the precision of his estimate of θ. Write the former as τ̂nm = τ (Im)
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(with snm = s (Im) = (τ̂
n
m)
−1) and the latter as tnm. Because the signals in Im are independent, his

estimate of θ, E (θ | Im) is just the precision-weighted average of yn, w, and xm, and so we have

tnm = τn + τw + τx. Then because he expects the price function to obey (2), it is straightforward

to show that his estimate of the price is E (p | Im) = λnyn + λww+ (1− λw − λn)E (θ | Im), so we

arrive at an estimate E (θ − p | Im) = (λn + λw)E (θ | Im)−λnyn−λww of the per-unit profit from
a purchase. Direct computations then yield the following linear order strategy.

Lemma 4 The demand of a market order trader m who believes the price to be described by (2)

and chooses information source yn is a linear function q
n
m(xm, yn, w) = αnxxm+αnyyn+αnww where

αny = γM τ̂nm(λn + λw)

µ
τn
tnm
− λn

λn + λw

¶
, (12)

αnw = γM τ̂nm(λn + λw)

µ
τw
tnm
− λw

λn + λw

¶
, and (13)

αnx = γM τ̂nm(λn + λw)
τx
tnm
= −

¡
αny + αnw

¢
(14)

Notice that the trader always buys on good news from his idiosyncratic signal (αnx ≥ 0 as long
as the price impacts of yn and w are not negative), and because α

n
y + αnw = −αnx this implies that

he must sell on good news either from w or yn (or perhaps both). We will discuss intuition for this

momentarily, but first we characterize τ̂nm (and therefore, his ex ante utility).

Lemma 5 For a market order trader who acquires news source n, the precision of his estimate of

θ − p is given by
(τ̂nm)

−1 = snm = sp −
λ2w
τw
− λ2n

τn
+

(λn + λw)
2

τn + τx + τw

Market order preferences over news sources can be ranked by τ̂nm.

Proof. Using the expressions above, we can write E (θ − p | Im)− (θ − p) as

(λn + λw) (E (θ | Im)− θ) +

⎛
⎝X

n0 6=n

λn0 (yn0 − θ) + ρz

⎞
⎠

The two terms in parentheses are independent and have variances (λn + λw)
2 /tnm and sp−λ2n/τn−

λ2w/τw respectively, from which the result follows.

For reference, note that the precision of a (hypothetical) trader who cannot observe any news

source reduces to
¡
τ0m
¢−1

= s0m = sp− λ2w
τw
+ λ2w

τx+τw
. For a comparison across news sources, there is no

harm in stripping away terms that are constant with respect to n, so the next result is immediate.

Lemma 6 A market order trader who believes the price to be described by (2) will choose an

information source that maximizes

g (τn,λn) ≡
λ2n
τn
− (λn + λw)

2

tnm
(15)
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Figure 3: Market order indifference curves

across all n.

Just as with limit orders, we can treat g(τ ,λ) = g(τn,λn) as an indifference curve representing

the pairs in (τ ,λ) space that give a market order trader the same ex ante utility as (τn,λn). In

this case, worthless news satisfies the condition τnm = τ0m, or equivalently, g(τn,λn) = g0, where

g0 = − λ2w
τx+τw

. Simplifying this condition, we find that source n is worthless if and only if it satisfies

λn/τn =
λw

τx+τw
; not coincidentally, this is also the condition under which the trader puts zero

weight on yn in his market order. If λn/τn <
λw

τx+τw
or λn/τn >

λw
τx+τw

, then source n is valuable,

but for different reasons: in the first case, the trader will buy on good news from n, while in the

latter case he will sell on good news.

Lemma 7 (Market order indifference curves) If source n is not worthless (g(τn,λn) > g0), then the

set of pairs (τ ,λ) satisfying g(τ ,λ) = g(τn,λn) lies on one branch of a hyperbola, with a tangency to

the λ-axis at (τ ,λ) = (0, 0). “Broader-jawed” hyperbolas are associated with higher ex ante utility.

Some typical indifference curves are sketched in Figure 3.13 Worthless news lies along the dashed

line. A trader will buy on good news from his source if it lies below this line, such as source n in

the figure. If it lies above this line, such as source n0 in the figure, he will sell on good news. We

will say that a source lies on the upper or lower branch respectively of an indifference curve if it

lies above or below the worthless news line. As drawn, a trader would prefer source n over source

n0, as n lies on the higher indifference curve.

The intuition is straightforward. Because a market order trader faces execution risk (she cannot

condition her order on p), her profit depends on estimating θ − p. To do this, she needs signals
that distinguish θ from p or vice versa. For this purpose, signals that are strongly correlated with θ

(high τn) and weakly correlated with p (low λn) are useful as proxies for θ; these are the signals for

which the trader buys on good news. Alternatively, signals that are strongly correlated with p and

13While all indifference curves approach the point (0, 0), this point belongs only to the worthless news indifference
curve. The reason that indifference curve grow close together near (0, 0) relates to the fact that a signal’s contribution
to variation in the price is on the order of λ2n/τn. This quantity can be quite different for two different signals, even
if both have (τn,λn) approaching (0, 0), and so utility can be quite different as well.
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weakly correlated with θ (high λn and low τn) are valuable as proxies for p; the trader prefers to sell

when these signals are high. This provides another way to think about the zero-value indifference

curve: a signal is of no value precisely when a trader’s optimal market order does not condition

on it (αny = 0). It may be helpful to think of a trader as starting off with his private signal xm as

a proxy for θ and the public signal w as a proxy for p. If the public signal is a good price proxy,

additional news yn will be used to support xm. However, when price risk is large — in the sense

that w does not predict variation in p very well — the trader will seek out additional news that he

expects to cause excess price movement in order to trade against it.

4.2 Equilibrium

We will show that equilibria with both types of trader have the following features, some of which

carry over from the case with only limit order traders. The first three points are relatively self-

explanatory, while for the fourth we will need to be more specific about what is meant by excess

volume.

1. More precise news sources have excessive price impacts. Specifically, the ratio λn/τn is

increasing in n.

2. Segmentation of trader types. If a market order trader plans to buy on good news from his

source, then he follows a less precise, more exclusive source than a limit order trader would.

3. Sales on good news at the top. If any selling on good news takes place, it is done by market

order sellers who observe the most precise source.

4. Excess volume at the top. If there are sales on good news, then the volume of trade associated

with the most precise source yN is greater than its precision and price impact would otherwise

suggest.

The first step in characterizing equilibrium is to update equation (11), which expressed the

coefficients of the market-clearing price generated by traders’ order strategies and distribution

across news sources. When market orders are present, these coefficients become:

λn = ρ(Mmnα
n
y + Llnβ

n
y ) , λw = ρ

PN
n=1(Mmnα

n
w + Llnβ

n
w) , (16)

λθ = 1− λw −
PN
n=1 λn , and ρ =

³
L
PN
n=1 ln(β

n
y + βnw)

´−1

and the market-clearing condition is

XN

n=1

©
(Mmnα

n
y + Llnβ

n
y )yn + (Mmnα

n
w + Llnβ

n
w)w +Mmnα

n
xθ − Lln(βny + βnw)p

ª
+z ≡ 0 (17)

Proposition 6 A regular linear equilibrium with both limit and market order traders exists. Fur-

thermore, any such equilibrium satisfies λn ∈ [0, 1− λw] for every news source n, and λn > 0 for

any news source that is acquired by either type of trader.
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As earlier, a source could only become negatively correlated with the price if traders trade

against its good news, but in fact this negative correlation would be an extra incentive to trade in

the same direction as its good news. From this point forward, our analysis will restrict attention

to equilibria that satisfy one additional restriction.

A3. In equilibrium, the price impact of the public signal satisfies λw/τw < sp.

We suspect that A3 is actually an implication of equilibrium, as it is satisfied in every com-

putational example we have studied, but we do not have a proof of this. In any case, A3 has a

sensible and appealing interpretation. Consider adding to the market a hypothetical limit trader

whose only information is {w, p}. The optimal order of this trader can be shown (see the limit

order strategies in the appendix) to be proportional to (τwsp − λw) (w − p), so A3 is equivalent to
the condition that this trader’s demand is downward sloping in the price.

In characterizing equilibria, A3 acts like a single-crossing condition — it ensures that a trader

planning to buy on good news will find high precision - high price impact news sources relatively

more attractive if he can place a limit order than he would if placing a market order. A hint of this

can been seen in the worthless news indifference curves. With a slight manipulation, A3 may be

written as λw/τw <
¡
sp − λ2w/τw

¢
/ (1− λw), where the righthand side is the slope of the worthless

news indifference curve for limit order traders. Then because λw/ (τx + τw) < λw/τw, A3 implies

that limit order traders have a steeper worthless news indifference curve than market order traders

do. This relationship is generalized in Lemma 8.

Lemma 8 Fix an equilibrium and a news source n. Suppose that 0 ≤ λn ≤ 1 − λw and that, if

constrained to choose source n, a limit order trader would buy on good news. Then the limit order

indifference curve through (τn,λn) is strictly steeper at (τn,λn) than the market order indifference

curve through the same point.

The intuition behind this is fairly straightforward if market order traders would also prefer to

buy on good news at from source n. For a market order trader, a more precise signal may not be

helpful in discriminating θ from p if it is also more correlated with the price. For a limit order

trader, the role of the signal is not to distinguish θ from p — after all, this trader can condition on

p — but just to estimate θ. Thus, the downside of a higher price impact is less severe for the limit

order trader.

As earlier, the (τn,λn) pairs for all news sources chosen by limit order traders must lie along

a common indifference curve. Proposition 6 rules out the possibility that one of these sources lies

along the AD or BC arc from Figure 1. Next, we rule out segment AB.

Lemma 9 (i) If, in equilibrium, limit order traders would sell on good news at some source yn,

then market order traders would also sell on good news at that source. (ii) Consequently, limit

order traders never sell on good news in equilibrium.

Proof. (i) If limit order traders would sell on good news at yn only if λn >
sp−λ2w/τw
1−λw τn holds.

A3 implies that sp − λ2w/τw > (1− λw)λw/τw, and therefore,
λw
τw
<

sp−λ2w/τw
1−λw . Consequently, λn >
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Figure 4: Examples of equilibrium news source acquisition with N = 3. Equilibrium limit order
and market order indifference curves pictured. LO buy (sell) means limit order traders acquired
the source and buy (sell) on good news.

λw
τw

τn >
λw

τx+τw
τn, so by Lemma 4, any market order trader at yn would also sell on good news. For

(ii), suppose limit order traders acquire n and sell on its good news, so λn >
sp−λ2w/τw
1−λw τn > 0holds.

Then βny < 0 and by part (i), α
n
y < 0. But then (16) implies λn ≤ 0, a contradiction.

This result, which also has the flavor of a single-crossing property, is complementary to Lemma

8. Because market order traders need to find a proxy for p and limit order traders do not, the

former tend to be more disposed to trade against any particular signal than the latter are. We are

finally ready to characterize the equilibria of the model with both order types.

Proposition 7 Suppose that news source precisions are distinct. In any regular linear equilibrium

satisfying A3, there are threshold sources n̄1 and n̄2, with n̄1, n̄2 ∈ {1, 2, ..., N} and n̄2 ≥ n̄1, such
that:

i. If n < n̄1, then source n is not acquired.

ii. Market order traders acquire all sources in {n̄1, ..., n̄2 − 1}. They may acquire n̄2 or N as well.

iii. Limit order traders acquire all sources {n̄2 + 1, ..., N}. They may acquire n̄2 as well.

iv. All limit order traders, and all market order traders who do not acquire N , buy on good news

from their sources.

v. Market order traders who acquire source N may sell on good news.

vi. The sequences {λn} and {λn/τn} are increasing, strictly for n ≥ n̄1.
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The condition that news sources have distinct precisions is not critical; it is only imposed to

avoid a verbose description of special cases.14 Various configurations of news acquisition can arise

depending on the equilibrium thresholds n̄1 and n̄2; Figure 4 illustrates some of the possibilities.

Market order traders who acquire news in order to improve their estimate of the asset value focus on

less precise, more exclusive sources, while limit order traders focus on more precise, less exclusive

sources. This reflects the intuition discussed with Lemma 8. As earlier, the least precise news

sources may not be acquired at all, as in panels (a) and (c) of Figure 4. Also as earlier, more popular

news sources create price impacts that are disproportionate to the quality of their information, in

the sense that λn/τn rises with n.

The more novel possibility raised by Proposition 7 is that market order traders may treat the

source that is most incorporated into the price as a proxy for the price, and trade against it. For

these traders, news source N is valuable precisely because it is popular, as this makes it a good

bellwether of which way the price is likely to go, and its high precision is actually a disadvantage.

Furthermore, by selling on good news from N , these traders tend to depress its price impact,

making it possible for more limit order traders to acquire N and buy on good news. This means

that there may be a disproportionate volume of trade associated with source N , a subject that we

will turn to in the next section.

4.3 Complementary Clustering on News Source N

We refer to clustering by both types of trader at news source N as complementary because each

type tends to absorb the other’s trades, preventing the price impact of news from N from becoming

either unattractively high (for limit orders) or unattractively low (for market orders). The next

result shows that complementary clustering on source N will occur whenever public information

about the asset value is weak or when private information is strong.

Proposition 8 For τw sufficiently small or for τx sufficiently large, all market order traders ac-

quire source N and sell on good news.

While the proof is a bit involved, the intuition is quite direct. A market order trader who

already has accurate private information about the asset value has little to gain from acquiring

additional information about θ. He does better by acquiring additional information to help him

hedge against adverse price movements — he should try to buy less when the price is likely to be

undeservedly high (relative to θ), and more when it is undeservedly low. Because of its popularity

and large excess price impact, news source N is the best barometer of the direction the price will

move.

Alternatively, when there is a strong public consensus about the asset value (τw large), price

risk is mitigated, as a trader can weigh his private information xm against this consensus w. In

14The main issue has to do with the case in which both types acquire the threshold precision τ n̄2 . If there were
many identical sources at the threshold precision, then then the masses of limit and market traders at this threshold
precision could be distributed over these identical sources in many different ways that are all essentially equivalent.
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this case, if his private information is only moderately precise, he may want to acquire relatively

exclusive news to supplement it. However, his price risk grows with increasing public uncertainty

about the asset (declining τw). If public beliefs become sufficiently uncertain, he will begin to turn

to popular news sources to better gauge market sentiment.

To put a sharp focus on the implications of complementary clustering, we will look at the

extreme case in which public information is absent (τw = 0) and market order traders’ private

information is perfect (xm ≡ 0, so (τx)−1 = 0).
Example 3 : Two almost identical news sources

Suppose that there are two sources with τ1 = τ̄ and τ2 = τ̄ + ε. Set τw = (τx)
−1 = 0

as discussed above, and consider limiting equilibria with ε → 0, so the two news sources are of

essentially identical quality. Our discussion will be kept intuitive, but all of the points could easily

be made more rigorous. Notice that as ε is taken to zero, the price impacts λ1 and λ2 of the two

sources must converge together, as a consequence of limit order indifference. Let λ̄ be the common,

limiting price impact. We can write the traders’ orders in the ε → 0 limit as q1l = β1y (y1 − p),
q2l = β2y (y2 − p), and q2m = α2y (θ − y2). However, because (τ1,λ1) and (τ2,λ2) converge together,
limit order strategies at the two sources will be identical: β1y = β2y. Furthermore there is no

ambiguity which source market order traders acquire, so we can simplify notation and simply write

the limiting orders as q1l = β (y1 − p), q2l = β (y2 − p), and qm = α (xm − y2).
Given these observations, we can work out how many limit order traders must acquire each

source. From (16), the equality of price impacts requires λ1 = ρLl1β = ρ (Ll2β −Mα) = λ2, so we

must have l1 =
1
2 − 1

2
Mα
Lβ and l2 =

1
2 +

1
2
Mα
Lβ . This is not a complete characterization — α and β are

endogenous quantities — but it gives the flavor of how news acquisition must look. The number of

excess limit order traders at source 2, Ll2 − Ll1 = Mα
β , depends on how much limit order demand

is required to soak up the market orders on the opposite side of the market. This excess rises the

more market order traders there are (M), or the more aggressively they trade relative to limit order

traders (α/β).

The expected volume of trade in this limiting equilibrium is

V ol =
1

2
E
¡
Ll1

¯̄
q1l
¯̄
+ Ll2

¯̄
q2l
¯̄
+M |qm|+ |z|

¢

We can partition this volume into gross trade associated with traders using each news source,

V ol1 = E
¡
Ll1

¯̄
q1l
¯̄¢
and V ol2 = E

¡
Ll2

¯̄
q2l
¯̄
+M |qm|

¢
, and gross noise trader volume V olz = |z|.

Notice that the expected size of a single limit order will not depend on which source is observed

— because y1 and y2 appear symmetrically in the price and in q
1
l and q

2
l , we will have E

¡¯̄
q1l
¯̄¢
=

E
¡¯̄
q2l
¯̄¢
. We will drop the subscript and write E (|ql|). Our focus will be on the ratio V ol2/V ol1,

which we will interpret as a measure of ‘abnormal’ trading volume generated by news from source
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Figure 5: Two identical news sources: Concentration on Source 2 vs. M . (Parameters: τ1 = τ2 = 1,
τw = τ−1x = 0, τ z = 1, L = γL = γM = 1. Left panel: fraction of limit order traders l2 and of
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2. We can write this ratio as15

V ol2
V ol1

=
l2
l1
+
M

Ll1

E (|qm|)

E (|ql|)
=
l2
l1
+
M

Ll1

α

β

s
var (θ − y2)
var (y2 − p)

Figure 5 presents numerical results for the limiting equilibrium when τ1 = τ2 = 1. (For other

parameters, see the figure.) Holding the mass of limit order traders, we vary the mass of market

order traders from M = 0 up to M = 50, computing a new ε = 0 equilibrium at each step. When

market order traders are absent, the two news sources appear identical in terms of observable

outcome variables: half of the traders acquire each source (l2 =
1
2), and half of the ‘informed

volume of trade’ is associated with each source (V ol2/V ol1 = 1). As more and more market order

traders enter, both types find it mutually advantageous to cluster on source 2, l2 tends to one, and

the ratio V ol2/V ol1 of excess volume related to source 2 tends to infinity. To outside observers,

news from the two sources will appear to be of similar quality and to generate similar changes in

the price, but only news from source 2 will be accompanied by a spike in volume.

Example 4 : Varying the precision of public information

To illustrate the transition to the state of weak public information where Proposition 8 applies,

Figure 6 presents numerical results for a market with two news sources of quality τ1 = 1 and

τ2 = 1.1. We vary τw from 1 down to 0; other parameters are described in the figure. Initially,

for τw large, all market order traders acquire source 1 and buy on good news. At this point, the

trading volume associated with the two sources is similar. As τw falls below 0.5, there is a fairly

abrupt transition in which these traders all switch to source 2 and begin to sell on good news. At

the same point V ol1 and V ol2 diverge sharply.
16 This transition is accomplished with almost no

15The last step follows from the fact that, unconditionally, ql and qm are both distributed normally with mean

zero. Then it is a standard result that E (|ql|) =
q

2

π
var (ql) and similarly for qm.

16V ol1 and V ol2 are defined as above, but the expressions for E (|q
n
l |) and E (|q

n
m|) become a bit more complicated

than in Example 3. One must also remember that while, e.g., E
¡¯̄
q2m
¯̄¢
is the expected order size of a market order

trader holding signal y2, now variation in w and xm is responsible for some portion of that order.
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movement by limit order traders, roughly 58% of whom acquire source 2 throughout. The reason

is that from the standpoint of a limit order trader, the shift of market order traders from source 1

to 2 has two immediate effects: there is new demand on the opposite side of the market at source

2, and there is less congestion on the same side of the market at source 1. These effects make both

sources more attractive to limit order traders, and they happen to roughly balance. Both sources

have growing impacts on the price as public information deteriorates, but λ1 and λ2 rise smoothly

as τw declines, showing no evidence of the sharp transitions in market share and volume.

Example 5 : Abnormal volume at the most popular source

When there are many news sources, one can plot trend lines for the equilibrium price impact

and volume associated with a source of quality τ . Then one way to define excessive, or abnormal

volume associated with a news source would be to ask whether that source is an outlier from the

trend. To illustrate this idea, consider an example with five news sources. For the first four, set

τn =
n
4 , and let the last source be just slightly superior to source 4: τ5 = 1.01. Figure 7 shows the

equilibrium values of λn and V oln in an equilibrium with strong public information (τw = 1.5, left

24



panel) and with weak public information (τw = 0.2, right panel). With strong public information,

market order traders focus on the lower quality sources, and price and volume impacts are roughly

linear in τ . In particular, the best two sources have almost identical price and volume impacts.

However, in the equilibrium with weak public information, most market order traders shift to selling

on good news from source 5, and as a result, V ol5 becomes an outlier.

5 Empirical Evidence

The model delivers several predictions that in principle could be tested. The main predictions

are: (1) higher quality news sources over-affect the price relative to their precision, while news

from lower quality sources is under-incorporated or ignored altogether (in the short run); (2) new

information from top quality news sources may be associated with abnormal trading volume; (3)

effect (2) should be more pronounced when public information is weak relative to privately held

information. As mentioned earlier, it is probably most natural to think of our static market as a

stylization of short run market clearing around the arrival of new information. If we indulge this

interpretation, and suppose that new information becomes efficiently incorporated into the price in

the longer run, then as a counterpart to (1) we can also suggest (4): price movements generated

by the most popular news sources will be prone to long run reversals. While the existing empirical

literature has not addressed these predictions directly, there is a certain amount of indirect evidence

which we survey below. One limitation in comparing this evidence to a static model is that natural

candidates for new signals from sources, such as analyst revisions or newsletters, are generally

studied as isolated events, not as an ensemble.

A common empirical approach involves identifying an information event, which could be an

earnings or insider trade announcement, an analyst or newsletter recommendation, a macroeco-

nomic surprise, or other news, and then studying an asset’s abnormal returns and volume in a

window around that event. In an influential series of papers, Kim and Verrecchia [24] [25] [26]

laid out a theoretical framework for the price and volume effects of a public announcement. In

their models, an announcement generates trade both because traders differ in the quality of their

pre-announcement private information (leading them to weight the news differently in their poste-

riors, which leads to trade) and because they interpret the announcement differently.17 The first

effect generates a positive linear relationship between volume and the magnitude of price changes,

while the latter generates excess volume unrelated to the size of price changes. On this basis, it

has been suggested (see, for example, Bamber et al. [5]) to take residual volume, after controlling

for that portion explained by price changes, as a proxy for differential interpretations of the same

information. Our model suggests a different explanation: excess volume can arise, as in Figure 7,

because traders are rationally using the same information to serve different needs.

In data there is relatively strong evidence that firm-specific announcements generate abnormal

17These differential interpretations arise because traders have idiosyncratic private information about the error in
the announcement that only becomes useful when the announcement arrives. The operational effect is similar to
Kandel and Pearson’s [23] assumption that traders interpret the same news with different likelihood functions.
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volume.18 At the aggregate level, Mitchell and Mulherin [31] find that Dow Jones news announce-

ments are strongly correlated with aggregate market volume but relatively weakly related to the

sum of firms’ absolute price changes. For individual stocks, Kandel and Pearson [23], find ab-

normal volume in a window around earnings announcements, even after controlling for a positive

relationship with the magnitude of price changes in that window. They appeal to heterogeneous

interpretations of news to explain how an announcement could generate substantial volume relative

to a small price impact. Our model offers a complementary explanation: it can be fully rational for

traders to use news in opposite ways due to differences in the ‘portfolios’ of other information they

have access to. In this case, prominent news can be a convenient coordination device for traders

who need to take opposite sides of the market. While it is outside our analysis in this paper, this

coordination issue may also shed light on Stice’s [33] puzzling finding that a Wall Street Journal

report about a firm’s 10-K or 10-Q filing sparks abnormal price and volume activity, even when

the filing was submitted (and made publicly available) several days earlier. Conceivably a delayed

response to news could be self supporting if traders who plan to respond in opposite ways wait

until a time when they expect the other side of the market to be deep.

To apply our model more directly to data, it would be advantageous to have some exogenous

proxy for a news source’s precision. In studies focused on analyst reports, a common criterion for

identifying top quality analysts is selection as an Institutional Investor All American (AA). Stickel

([34] and [35]) find evidence that AA analysts’ revisions generate larger (in magnitude) short run

abnormal returns than non-AA analysts’ revisions do, but that this excess impact tends to be

reversed in long run returns.19 This is loosely consistent with our predictions (1) and (4). Park

and Stice [32] apply Stickel’s approach using a different quality measure based on an analyst’s past

forecasting accuracy relative to the I/B/E/S consensus. They also find that revisions by top quality

analysts generate significantly larger short run price impacts than revisions by other analysts. Their

results suggest that the relationship between an analyst’s percentile in the quality ranking and the

price impact of his revision is positive but relatively weak below the 80th percentile. However,

as an analyst rises above the 80th or 90th percentile, his price impact rises substantially. This is

similar to the convex relationship that we find between τn and λn (because λn/τn is increasing in

τn), although without knowing the cumulative distribution function for analyst precision we cannot

draw any firm conclusions.

A related paper by Loh and Stultz [29] provides some suggestive evidence for prediction (2).

Rather than look at the average response to an analyst’s revision as an outcome variable, they study

the probability that the revision generates a “large” response, as measured by abnormal returns

or volume exceeding pre-defined thresholds. Among the explanatory variables are the analyst’s

past forecast accuracy, a continuous measure of quality, and AA status, which could be interpreted

18See, for example, Bamber [4] for earnings announcements, or Womack [41] for brokerage recommendations.
19 In recent work, Fang and Yasuda [10] find that portfolios formed by following AA analyst buy recommendations

(but not sell recommendations) do earn short run excess returns, but that these excess returns are not reversed in the
long run. However, given the portfolio methodology, it is difficult to draw conclusions about long run price impacts
for any single stock.
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as an indicator variable singling out the right tail of the analyst quality distribution. Even after

controlling for forecast accuracy, AA analysts’ revisions are substantially more likely to have large

impacts on both price and volume.

Finally, in one strand of work that touches on prediction (3), dispersion of analysts’ recommen-

dations is used to proxy for the absence of a strong consensus belief among investors. In a typical

result, Atiase and Bamber [3] find that analyst dispersion is associated with higher trading vol-

ume around earnings announcements. One possible explanation, as with the Kandel and Pearson

findings, is that traders interpret the same signal differently. Our model offers the complementary

possibility that analyst dispersion is associated with periods when market order traders face sub-

stantial price risk, making it particularly important for them to closely monitor (and trade on)

news that is expected to move the price.

6 Concluding Remarks

We show that if there are many potential sources of information about an asset but a trader must

focus on one of them to use its information profitably, then most traders may concentrate on a

few precise and popular sources, leaving other information under-utilized. Furthermore, differences

in baseline information — in our case, market order traders who give up conditioning on the price

in order to exploit additional private information — can motivate rational traders to focus on the

same news but respond to it in opposite ways. Together, these effects can explain why one signal

may generate substantial price movement and trading volume, while another signal of apparently

similar quality does not. Below we comment on the robustness of these conclusions and suggest a

few extensions.

By restricting traders to one source, we have implicitly assumed that there is a capacity limit

on how much information a trader can acquire, absorb, and profit from before it becomes stale —

this amounts to a highly convex cost of information. If this limit were relaxed so that a trader

could follow more than one news source, we would expect concentration to be less extreme, but

the results should be qualitatively similar. A capacity limit may be reasonable if inelastic time and

attention are important components of the cost of information, but there is probably a degree to

which both time and attention can be multiplied with additional cash. Thus it would be useful to

know how our results would change if a trader can acquire more signals, or higher quality signals,

by spending more money.

Of course, signal costs rising with precision might emerge endogenously if news sources set

prices for their information. In a setting with a monopolist information provider, Admati and

Pfleiderer [1] have shown that profit maximization affects how information will be packaged for

buyers (in some cases with extra noise added), thus making the set of available signals endogenous.

Less is known about oligopoly competition among information providers. In our model, if one is

willing to take the news source precisions as given, it is straightforward to append a first stage with

price competition among news sources. One loses the simple geometric representation of traders’
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indifference curves, but the model can still be solved computationally.20 One would expect price

competition to lead to less concentration by traders, since popular sources will charge relatively

higher prices. Examples suggest that this is correct, but concentration is not wiped out. Moreover,

if the market order - limit order complementarity gives a news source a disproportionately large

market share, this does not mean that it has substantial market power. If it has a close competitor

on the characteristics that matter to traders, precision and price impact, then if it charges too much,

the excess market share will switch en masse to the competitor.21 It appears that competition for

this bloc of traders can keep information prices fairly competitive.

While a static model is useful for examining how efficiently the market aggregates dispersed

information, the conceit that news sources release new signals at the same time is stylized. Within

the scope of the model, one could make this more realistic by, for example, assuming that each

news source fails to deliver a signal with some probability. However, ultimately it would make

sense to study which news sources traders choose to follow in a dynamic model. A dynamic model

could also allow traders’ order types to emerge endogenously, which might yield interesting insights.

Finally, an alternative to our assumption that the market clears without intermediation would be

to introduce a market-maker who sets a competitive price conditional on the order flow as in Kyle

[27]. If this market-maker can acquire additional information, then one can show that he and the

market order traders may have incentives to coordinate on the same information, for reasons that

are similar to the complementarity between market and limit order traders in our model.22

References

[1] Anat R. Admati and Paul Pfleiderer. A monopolistic market for information. Journal of Economic
Theory, 39(2):400 — 438, 1986.

[2] Anat R. Admati and Paul Pfleiderer. Viable allocations of information in financial markets. Journal of
Economic Theory, 43(1):76 — 115, 1987.

[3] Rowland Atiase and Linda Bamber. Trading volume reactions to annual earnings announcements: The
incremental role of information asymmetry. Journal Of Accounting And Economics, pages 309—329,
1994.

[4] Linda Smith Bamber. The information content of annual earnings releases: A trading volume approach.
Journal of Accounting Research, 24(1):pp. 40—56, 1986.

[5] Linda Smith Bamber, Orie E. Barron, and Douglas E. Stevens. Trading volume around earnings an-
nouncements and other financial reports: Theory, research design, empirical evidence, and directions
for future research. Contemporary Accounting Research, 28(2):431—471, 2011.

[6] Kim C. Border. Fixed point theorems with applications to economics and game theory. Cambridge
University Press, 1985.

20A price of cn at news source n introduces an extra multiplicative factor of e
cn/γ into our expressions for the ex

ante utility of a trader with risk tolerance γ; see Grossman and Stiglitz [18] or Admati and Pfleiderer [2].
21The situation would be different if a source’s value to any trader were to rise with the total number of other

traders. That type of one-sided network effect creates a wedge in value that discourages demand from switching away.
The network effect here is two-sided and self-regulating: a trader is attracted to a source when the ratio of traders
acquiring it favors the other order type. This prevents the value of a popular news source from running away from
its competitors.
22Specifically, if market order traders expect the market-maker to incorporate a signal yn into the price, then they

may have an incentive to acquire yn in order to trade against it. But then the market-maker may need to acquire
yn, not for its own sake per se, but in order to correct for its effect on the order flow before estimating θ.

28



[7] Sugato Chakravarty and Craig W. Holden. An integrated model of market and limit orders. Journal of
Financial Intermediation, 4(3):213 — 241, 1995.

[8] Douglas W. Diamond and Robert E. Verrecchia. Information aggregation in a noisy rational expectations
economy. Journal of Financial Economics, 9(3):221 — 235, 1981.

[9] Daniel Dorn and Günter Strobl. Rational disposition effects: Theory and evidence. Working Paper,
2010.

[10] Lily H. Fang and Ayako Yasuda. Are stars’ opinions worth more? the relation between analyst reputa-
tion and recommendation values. SSRN eLibrary, 2010.

[11] Kenneth A. Froot, David S. Scharfstein, and Jeremy C. Stein. Herd on the street: Informational
inefficiencies in a market with short-term speculation. The Journal of Finance, 47(4):pp. 1461—1484,
1992.

[12] Jayant Vivek Ganguli and Liyan Yang. Complementarities, multiplicity, and supply information. Journal
of the European Economic Association, 7(1):90—115, 2009.

[13] Diego García and Günter Strobl. Relative wealth concerns and complementarities in information acqui-
sition. Review of Financial Studies, 24(1):169—207, 2011.

[14] Diego García and Branko Urosevic. Noise and aggregation of information in large markets. Working
Paper, 2010.

[15] Diego García and Joel M. Vanden. Information acquisition and mutual funds. Journal of Economic
Theory, 144(5):1965 — 1995, 2009.

[16] Lawrence R. Glosten. Is the Electronic Open Limit Order Book Inevitable? The Journal of Finance,
49(4):1127—1161, 1994.

[17] Ronald L. Goettler, Christine A. Parlour, and Uday Rajan. Equilibrium in a dynamic limit order
market. The Journal of Finance, 60(5):2149—2192, 2005.

[18] Sanford J. Grossman and Joseph E. Stiglitz. On the impossibility of informationally efficient markets.
The American Economic Review, 70(3):pp. 393—408, 1980.

[19] Bruce D. Grundy and Maureen McNichols. Trade and the revelation of information through prices and
direct disclosure. The Review of Financial Studies, 2(4):pp. 495—526, 1989.

[20] Puneet Handa and Robert A. Schwartz. Limit order trading. The Journal of Finance, 51(5):pp. 1835—
1861, 1996.

[21] Christian Hellwig and Laura Veldkamp. Knowing what others know: Coordination motives in informa-
tion acquisition. The Review of Economic Studies, 76(1):223—251, 2009.

[22] Martin F. Hellwig. On the aggregation of information in competitive markets. Journal of Economic
Theory, 22(3):477 — 498, 1980.

[23] Eugene Kandel and Neil D. Pearson. Differential interpretation of public signals and trade in speculative
markets. Journal of Political Economy, 103(4):pp. 831—872, 1995.

[24] Oliver Kim and Robert E. Verrecchia. Trading volume and price reactions to public announcements.
Journal of Accounting Research, 29(2):pp. 302—321, 1991.

[25] Oliver Kim and Robert E. Verrecchia. Market liquidity and volume around earnings announcements.
Journal of Accounting and Economics, 17(1-2):41 — 67, 1994.

[26] Oliver Kim and Robert E. Verrecchia. Pre-announcement and event-period private information. Journal
of Accounting and Economics, 24(3):395 — 419, 1997.

[27] Albert S. Kyle. Continuous auctions and insider trading. Econometrica, 53(6):pp. 1315—1335, 1985.

[28] Albert S. Kyle. Informed speculation with imperfect competition. The Review of Economic Studies,
56(3):317—355, 1989.

[29] Roger K. Loh and René M. Stulz. When are analyst recommendation changes influential? Review of
Financial Studies, 24(2):593—627, 2011.

29



[30] Carolina Manzano and Xavier Vives. Public and private learning from prices, strategic substitutability
and complementarity, and equilibrium multiplicity. Journal of Mathematical Economics, In Press,
Corrected Proof:—, 2011.

[31] Mark L. Mitchell and J. Harold Mulherin. The impact of public information on the stock market. The
Journal of Finance, 49(3):pp. 923—950, 1994.

[32] Chul W. Park and Earl K. Stice. Analyst forecasting ability and the stock price reaction to forecast
revisions. Review of Accounting Studies, 5:259—272, 2000. 10.1023/A:1009668711298.

[33] Earl K. Stice. The market reaction to 10-k and 10-q filings and to subsequent the wall street journal
earnings announcements. The Accounting Review, 66(1):pp. 42—55, 1991.

[34] Scott E. Stickel. Reputation and performance among security analysts. The Journal of Finance,
47(5):pp. 1811—1836, 1992.

[35] Scott E. Stickel. The anatomy of the performance of buy and sell recommendations. Financial Analysts
Journal, 51(5):pp. 25—39, 1995.

[36] Stijn Van Nieuwerburgh and Laura Veldkamp. Information immobility and the home bias puzzle. The
Journal of Finance, 64(3):1187—1215, 2009.

[37] Laura L. Veldkamp. Media frenzies in markets for financial information. The American Economic
Review, 96(3):pp. 577—601, 2006.

[38] Robert E. Verrecchia. Information acquisition in a noisy rational expectations economy. Econometrica,
50(6):pp. 1415—1430, 1982.

[39] X Vives. Short-term investment and the informational efficiency of the market. Review of Financial
Studies, 8(1):125—160, 1995.

[40] Xavier Vives. The speed of information revelation in a financial market mechanism. Journal of Economic
Theory, 67(1):178 — 204, 1995.

[41] Kent L. Womack. Do brokerage analysts’ recommendations have investment value? The Journal of
Finance, 51(1):pp. 137—167, 1996.

7 Appendix

Proof of Lemma 2

Any solution to f (τ ,λ) = K must also satisfy Qf (τ ,λ) = QK where Q = τ
¡
sp − λ2w/τw − λ2/τ

¢
. With

algebra, Qf (τ ,λ)−QK = 0 can be written as the quadratic form [τ λ 1] Z [τ λ 1]0 = 0, where

Z =

⎡
⎣

sp − λ2w/τw − (1− λw) − 12 (K − f0)
¡
sp − λ2w/τw

¢

− (1− λw) K 0
−12 (K − f0)

¡
sp − λ2w/τw

¢
0 0

⎤
⎦

This quadratic form is an ellipse if |Z| 6= 0, |Z33| > 0 (where Z33 is the leading principal minor), and
the diagonal entries of Z33 do not have the same sign as |Z|. Checking these conditions, we have |Z| =

−14K (K − f0)
³
sp − λ2w

τw

´2
< 0, |Z33| =

¡
sp − λ2w/τw

¢ ³
K − (1−λw)2

sp−λ2w/τw

´
=
¡
sp − λ2w/τw

¢
(K − f0) > 0, and

the diagonal entries of Z33 are positive.
The fact that A, B, C, and D lie on this ellipse and the vertical tangencies at A and C are easy to check

directly. Note that the same points A and B lie on every ellipse in the family Qf (τ ,λ) = QK indexed by
K, but as singularities of f , they do not belong to the level curve f (τ ,λ) = K for any K > f0. The sign
of f (τ ,λ)−K must be constant over the interior or exterior of ellipse Qf (τ ,λ) = QK; to confirm that this
sign is negative on the interior and positive on the exterior, check the value of f at the midpoint of AB and
at (τ , 0) for τ large.

Proof of Proposition 2

Let λNinf be the price impact of one of the inferior sources in an equilibrium with N sources. (Indifference
requires that all N − 1 of these sources have the same price impact.) Let lNinf be the fraction of traders who
acquire each inferior source. We have λNinf ≥ 0, λNsup ≥ 0, and (N − 1)λNinf + λNsup ≤ 1, so we must have
limN→∞ λNinf = 0. A similar argument applies to l

N
inf .
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For the superior source, first note that we can bound ρ above and below, uniformly in N : 0 < ρ ≤
ρ ≤ ρ̄ < ∞. (See the proof of Proposition 6.) Next, fix an equilibrium with N sources. We either have
lNsup = 1 or l

N
sup < 1. In the former case, only the superior source is acquired; working through (11) we find

λNsup =
τ̄+ε

(τ̄+ε)+τw
. Alternatively, suppose that lNsup < 1, so inferior sources are acquired. Then indifference

requires f
³
τ̄ ,λNinf

´
= f

³
τ̄ + ε,λNsup

´
. Let ∆ be the slope of this indifference curve where it crosses the λ = 0

axis. Convexity of the indifference curve then implies that λNsup ≥ λNinf +∆ε. From the proof of Lemma 8

we have ∆ = 1
2

sNp −(λNw )
2
/τw

1−λw ≥ ρ2

2τz
, so λNsup ≥ λNinf +

ρ2

2τz
ε ≥ ρ2

2τz
ε. Then applying (11), and using ρ ≤ ρ̄

and βsupy ≤ γL (τ̄ + ε), we have lNinf ≥
λNsup

LγLρ̄(τ̄+ε)
≥ ρ2

2LγLρ̄τz(τ̄+ε)
ε. To summarize, in any equilibrium with

N sources, we have λNsup ≥ min
³

τ̄+ε
(τ̄+ε)+τw

,
ρ2

2τz
ε
´
and lNsup ≥ min

³
1,

ρ2

2LγLρ̄τz(τ̄+ε)
ε
´
. Thus λNsup and l

N
sup are

bounded away from zero uniformly in N , as claimed.

Proof of Proposition 3

Consider a prospective equilibrium in which all traders acquire N . If we set aside the ex ante utility

maximization condition for the moment, by standard results we can find an order strategy
³
βNy ,β

w
y

´
for

traders and a price function P that are mutually consistent (in the sense that
³
βNy ,β

w
y

´
is interim optimal

with respect to the P , and the P is generated by
³
βNy ,β

w
y

´
). If in addition to this, no trader would prefer

to deviate by acquiring some other source instead, then
n
lN = 1,

³
βNy ,β

w
y

´
, P
o
is an equilibrium. Because

unacquired sources will have identical price impacts λ1 = ... = λN−1 = 0 in this prospective equilibrium, it
will suffice to check for deviations to the next most precise source, N − 1.

Next consider a few facts about the prospective equilibrium. It is straightforward to show that λN+λw =
1. Because the price provides no additional information after controlling for yn and w, the posterior precision
of a trader’s estimate of θ is just τ̂Nl = τN + τw. For the order strategy, we have (consulting (7) and

(8)) βNy = γLτN and βNw = γLτw, so by (11) we have λN = τN/ (τN + τw), λw = τw/ (τN + τw), and

ρ−1 = LγL (τN + τw). The variance of the price will be sp = λ2N/τN + λ2w/τw + ρ2/τz.
Now turn to a potential deviation to source N − 1. Using λN−1 = 0, (9), and the results above, we have

τ̂N−1l = τN−1 + τw +
λ2N

sp − λ2w/τw
= τN−1 + τw +

1

1
τN
+ 1

τz

³
ρ
λN

´2

The condition that rules out a deviation to N − 1 is τ̂Nl ≥ τ̂N−1l , or, using ρ/λN = 1/ (LγLτN ):

τN − τN−1 ≥
Ã
1

τN
+
1

τz

1

(LγLτN)
2

!−1

With rearranging, this condition becomes: (τN − τN−1) (1−D) ≥ DτN−1. The condition cannot hold if
D ≥ 1, since we have τN > τN−1. In this case, there cannot be an all-N equilibrium. If D < 1, then
the prospective equilibrium is valid if τN − τN−1 ≥ τN−1D/ (1−D). Note that no part of this argument
depends on the number of signals N .

Proof of Proposition 4

The style is similar to the proof of Proposition 2. For each market N , let nN1 be the worst signal that

is acquired in equilibrium. We will use the constraint that
PN

nN
1
λn ≤ 1 to show that the fraction of signals

acquired,
N−nN1
N , shrinks like 1√

N
as N grows. Follow the proof of Proposition 2 to show

λNn ≥ λNn − λNnN1
≥

ρ2

2τz

³
τn − τnN1

´
=

ρ2

2τz

µ
Ψ−1(

n

N
)−Ψ−1(n

N
1

N
)

¶

for all n ∈ {nN1 , ..., N}. Let C be a Lipschitz constant for Ψ, so that we have Ψ−1(b)−Ψ−1(a) ≥ 1
C |b− a|
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for all a, b ∈ [τL, τH ]. Thus we have λNn ≥
ρ2

2τzCN

¡
n− nN1

¢
. Adding up over all acquired signals, we have

PN
nN1

λn ≥
ρ2

2τzCN

PN
nN1

¡
n− nN1

¢
=

ρ2

4τzCN
dN (dN − 1)

where dN = N − nN1 + 1 is the number of acquired signals. Applying
PN

nN1
λn ≤ 1, we have

¡
dN
¢2

N
≤ 4τzC

ρ2
+ 1

so dN grows no faster than
√
N with the total number of signals. Thus, dN/N → 0 and the total precision

of all the information acquired by traders is bounded above by τHd
N , proving the proposition.

Proof of Proposition 5

We prove the risk tolerance case; the argument for τz →∞ is essentially the same. Consider a sequence
{(γL)k}k≥1 → ∞, and for each risk tolerance level in the sequence, fix an equilibrium. We write (rn)k =
(λn)k /τn and (rw)k = (λw)k /τw, and let n̄k be the lowest numbered source that is acquired in equilibrium.
Henceforth we drop the subscripts k to avoid clutter. Note that with rearranging we can write

Bn ≡ βny/γL = τn
ρ2/τz +

P
n0 6=n (rn0 − rn) rn0τn0

ρ2/τz +
P
n0 6=n r

2
n0τn0

and Bnw ≡ βnw/γL = τw
ρ2/τz +

P
n0 6=n (rn0 − rw) rn0τn0

ρ2/τz +
P

n0 6=n r
2
n0τn0

Claim 1 γL →∞ implies ρ2/τz → 0.
Equilibrium Bn and Bnw are weakly positive for all n. Furthermore, because rn is weakly increasing in

n, we have Bn̄ ≥ τ n̄
¡
ρ2/τz

¢ ³
ρ2/τz +

P
n0 6=n r

2
n0τn0

´−1
. Suppose toward a contradiction that ρ2/τz 9 0.

Then Bn̄ must be bounded away from zero, but then (11) and γL →∞ imply that ρ2/τz → 0.

Claim 2 ρ2/τz → 0 implies rn − rn0 → 0, Bn → 0, and Bn
0 → 0 for all n, n0 such that limγL→∞ rn > 0 and

limγL→∞ rn0 > 0.
Consider the numerator of BN . Because rn is weakly increasing in n, we have

P
n0 6=N (rn0 − rN ) rn0τn0 =

−Pn0 6=N |rN − rn0 | rn0τn0 ≤ 0. Thus, because BN ≥ 0, we have
P
n0 6=N |rN − rn0 | rn0τn0 ≤ ρ2/τz. But then,

for any n0 such that limγL→∞ rn0 > 0, we must have rN − rn0 → 0. The first claim follows. Then in the
numerator of Bn, each term in the sum satisfies (rn0 − rn) rn0 → 0, so we have Bn → 0.
Claim 3 rN − rw → 0

Write the numerator of Bnw as ρ
2/τz +

P
n0 6=n (rn0 − rN ) rn0τn0 +

P
n0 6=n (rN − rw) rn0τn0 . Then because

the first two terms tend to 0, the weak positivity of Bnw implies that limγL→∞ (rN − rw) ≥ 0. Suppose
toward a contradiction that limγL→∞ (rN − rw) > 0. This would imply Bnw eventually strictly positive

and bounded away from 0, and therefore, by Claim 2, that BN/BNw → 0. However, from (11) we have

rN/rw ≤ τN
τw

BN

BN
w
→ 0, a contradiction. Thus, limγL→∞ (rN − rw) > 0.

Claim 4 Suppose limγL→∞ n̄ = n̄
∞, and let τp =

PN
n=n̄∞ τn + τw. The coefficients of the equilibrium price

function satisfy λw → τw/τp and λn →
n

τn/τp if n ≥ n̄∞
0 if n < n̄∞ .

This follows from the earlier claims and the adding up constraint
PN

n=1 λn + τw = 1.
Claim 5 n̄→ 1 (All sources are acquired.)

Suppose toward a contradiction that limγL→∞ n̄ = n̄
∞ > 1. The limiting price function is sufficient for

{yn̄∞ , yn̄∞+1, ..., yN , τw}, so the posterior precision of a trader choosing source n̄
∞ or higher tends to τp. But

then the posterior precision of a trader who chose source 1 and observed {y1, w, p} would tend to τ1 + τp,
so source 1 must be observed in the limit after all.

Proof of Lemma 7

Let ḡ = g(τn,λn), so the curve of interest is g(τ ,λ) = ḡ > g0. We proceed just as for Lemma 2.

Let Q̃ = τ (τ + τw + τx) and clear denominators, noting that any solution to g(τ ,λ) = ḡ must also solve

Q̃ (g(τ ,λ)− ḡ) = 0. This last equation can be written as the quadratic form [τ λ 1] Z̃ [τ λ 1]
0
= 0, where

Z̃ =

⎡
⎣

ḡ λw
1
2

¡
ḡ (τw + τx) + λ2w

¢

λw − (τw + τx) 0
1
2

¡
ḡ (τw + τx) + λ2w

¢
0 0

⎤
⎦
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To show this curve is a hyperbola, it suffices to show
¯̄
¯Z̃
¯̄
¯ 6= 0 and

¯̄
¯Z̃33

¯̄
¯ < 0. We have

¯̄
¯Z̃
¯̄
¯ = 1

4 (τw + τx)
2
³
ḡ +

λ2w
τw+τx

´2
=

1
4 (τw + τx)

2 (ḡ − g0)2 > 0, and
¯̄
¯Z̃33

¯̄
¯ = −ḡ (τw + τx) − λ2w = − (τw + τx) (ḡ − g0) < 0. The tangency at

(0, 0) is an easy application of the implicit function theorem, and the ranking of indifference curves is
straightforward.

Proof of Proposition 6

We overload notation by writing ~P = (λ1, ...,λN ,λw,λθ, ρ) for a vector of price coefficients. Let D =
Dl×Dm×DP ⊂ R3N+3 be a compact set that we will define presently. Let Γ = (Γl,Γm,ΓP ) : D→→ R

3N+3

be a correspondence over triples of vectors
³
~l, ~m, ~P

´
. Intuitively, we will have ΓP

³
~l, ~m, ~P

´
return the price

function that would arise if traders respond optimally to
³
~l, ~m, ~P

´
, and Γl

³
~l, ~m, ~P

´
and Γm

³
~l, ~m, ~P

´
return

the sets of market shares ~l and ~m that are consistent with optimal news choice with respect to ~P . Then we
will prove that Γ has a fixed point.

Formally, define ΓP = (Γλ1 , ...,ΓλN ,Γλw ,Γλθ ,Γρ) : D→→ R
N+3 as follows. Given an input

³
~l0, ~m0, ~P0

´
,

let
³
~β1, ~α1

´
be the order strategies induced by ~P0 according to (3) and (7), (8), (12), and (13). Let

Γρ

³
~l0, ~m0, ~P0

´
be the ρ price coefficient induced, according to (16), by market shares

³
~l0, ~m0

´
and order

strategies
³
~β1, ~α1

´
. Similarly, let Γλw

³
~l0, ~m0, ~P0

´
be the price coefficient induced on w, and Γλn

³
~l0, ~m0, ~P0

´

the price coefficient induced on source n, according to (16), by market shares
³
~l0, ~m0

´
and order strategies

³
~β1, ~α1

´
. Finally, let Γλθ

³
~l0, ~m0, ~P0

´
= 1 − Γλw

³
~l0, ~m0, ~P0

´
−PN

n=1 Γλn

³
~l0, ~m0, ~P0

´
be the residual. In

passing, notice that ΓP is a function.

Next, the market shares. For brevity let us write ~P1 = ΓP

³
~l0, ~m0, ~P0

´
for the new price function

generated from
³
~l0, ~m0, ~P0

´
. Let fn = f (τn,λn)|~P1 and gn = g (τn,λn)|~P1 be the values of source n to

limit and market order traders respectively when evaluated according to ~P1. Let f̄ = maxn∈{1,...,N} fn and

ḡ = maxn∈{1,...,N} gn. Now let Γl
³
~l0, ~m0, ~P0

´
=
n
~l ∈ ∆N |

¡
f̄ − fn

¢
ln = 0 ∀n

o
. In other words, take the

set of all distributions over news sources that put zero weight on strictly suboptimal sources. Similarly, set

Γm

³
~l0, ~m0, ~P0

´
= {~m ∈ ∆N | (ḡ − gn)mn = 0 ∀n}.

The domains for~l and ~m are straightforward; setDl = Dm = ∆N . For ~P , setDP = ∆N+2×
£
ρ, ρ̄
¤
. Notice

that any ~P ∈ DP satisfies λw ∈ [0, 1], a relaxed version of A2, as well as λn ≥ 0 and 1− λw −
PN
n=1 λn ≥ 0.

The bounds ρ and ρ̄ are defined by ρ−1 = LγL (τw + τN ) and ρ̄
−1 = r̄, where r̄ is the positive solution to the

quadratic equation r = LγL
¡
τw + τ1 − τzr

2
¢
. (To confirm that ρ < ρ̄, note that ρ−1 > LγL (τw + τ1) >

ρ̄−1.)
Now we can introduce a version of the Browder fixed point theorem due to Border [6].

Theorem 1 Let D ⊂ R
k be compact and convex and let Γ : D →→ R

k be an upper hemicontinuous
correspondence with non-empty closed convex values. Define ∂D to be the boundary of D. If for every point
d ∈ ∂D, there exists some d0 ∈ Γ(d) and some κ > 0 such that (1− κ)d+ κd0 ∈ D, then Γ has a fixed point
in D.

Loosely, this says that if the “gradient set” Γ(d) − d has an element that points into D at every point
on D’s surface, then there must be a point within D at which some member of the set Γ(d)− d is equal to
zero. To apply the theorem to Γ, note that ΓP is a continuous function (and so its values are trivially closed
and convex). Furthermore, the values of Γl constitute a simplex ∆ñ ⊆ ∆N , where 1 ≤ ñ ≤ N is the number
of ex ante optimal sources, so these values are also closed, convex, and non-empty. Γl is defined by weak

inequalities on the “quasi-utilities” fn, which are continuous functions of ~P , so Γl is uhc. (And similarly for
Γm.)

Next note that we do not need to worry about the boundary condition for Γl and Γm because Γl

³
~l, ~m, ~P

´
⊆

Dl and Γm

³
~l, ~m, ~P

´
⊆ Dm by construction. Then, because ΓP is a function, it will suffice to that for all
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³
~l, ~m, ~P

´
∈ ∂D, there is some κ > 0 such that (1 − κ)~P + κΓP

³
~l, ~m, ~P

´
∈ DP . Note that ∂D is defined

by the linear constraints λn ≥ 0, λw ≥ 0, λθ ≥ 0, and ρ ≤ ρ ≤ ρ̄. We start by considering boundary points
where exactly one of these constraints binds and the others are slack. For these cases, it suffices to show

that the binding constraint is satisfied at ΓP

³
~l, ~m, ~P

´
, since κ may be chosen small enough that none of the

constraints that are slack at ~P become violated at (1− κ)~P + κΓP

³
~l, ~m, ~P

´
.

λn = 0, other constraints are slack.

Suppose that λn = 0 in the vector ~P . Then by (12) and (7), ~P generates order strategies of αny =
γM
snm

τn
τx+τn+τw

λw ≥ 0 and βny = γLτn > 0 at source n. With (16) and mn ≥ 0 and ln ≥ 0, this implies that
Γλn

³
~l, ~m, ~P

´
≥ 0.

λw = 0, other constraints are slack.

Suppose that λw = 0 in the vector ~P . Then (13) and (8) imply that ~P generates order strategies of

αnw =
γM
snm

τw
τx+τn+τw

λn ≥ 0 and βnw = γLτw > 0 for all n. Consulting (16), we have Γλw

³
~l, ~m, ~P

´
> 0.

λθ = 1− λw −
PN
n=1 λn = 0, other constraints are slack.

Suppose this is true at ~P . Note that we can write (16) as λθ = ρM
PN
n=1mnα

n
x . By (14), ~P generates

the order strategy αnx =
γM
snm

τx
τx+τn+τw

(λn + λw) ≥ 0 for each n, so with mn ≥ 0 we have Γλθ
³
~l, ~m, ~P

´
≥ 0.

ρ = ρ, other constraints are slack.

By (7) and (8), ~P generates order strategies satisfying βny ≤ γLτn and βnw ≤ γLτw for all n. Then using

(16) we have
³
Γρ

³
~l, ~m, ~P

´´−1
≤ LγL

³
τw +

PN
n=1 lnτn

´
≤ LγL (τw + τN ), so we have Γρ

³
~l, ~m, ~P

´
≥ ρ.

ρ = ρ̄, other constraints are slack.

By (7) and (8), ~P generates order strategies satisfying

βny + βnw = γL(τn + τw)− γL
(λn + λw)(1− λw − λn)P

n0 6=n λ
2
n0/τn0 + ρ̄2/τz

> γL(τ1 + τw)− γLτz

µ
1

ρ̄

¶2

Thus, using (16) we have
³
Γρ

³
~l, ~m, ~P

´´−1
≥ LγL

³
τ1 + τw − τz (1/ρ̄)

2
´
= 1/ρ̄. Thus Γρ

³
~l, ~m, ~P

´
≤ ρ̄.

From these arguments, it is straightforward to see that if some combination of these constraints binds at
~P , while others are slack, then ΓP

³
~l, ~m, ~P

´
satisfies all the conditions binding at ~P , so by taking κ > 0 small

enough, we have (1−κ)~P +κΓP

³
~l, ~m, ~P

´
∈ DP for all

³
~l, ~m, ~P

´
∈ ∂D. Applying the theorem, we conclude

that Γ has a fixed point in D. Note that A1, which amounts to ρ > 0, is satisfied by construction. Also by
construction, we have λw ∈ [0, 1], but for A2 we need to show that λw = 0 and λw = 1 cannot be part of a

fixed point. First consider some price function ~P with λw = 1. This implies λθ = 0 and λn = 0 for all n, so in

particular,
PN

n=1 λn = 0. But then (following the argument for the λn case above)
~P would generate order

strategies satisfying αny ≥ 0 and βny > 0 for all n. But this, using (16), would imply
PN
n=1 Γλn

³
~l, ~m, ~P

´
> 0,

so ~P cannot be part of a fixed point. Next consider a price function ~P with λw = 0. Then the argument

above for the λw = 0 constraint applies directly: Γλw

³
~l, ~m, ~P

´
> 0, so ~P cannot be part of a fixed point.

Thus there exists an equilibrium satisfying A2 as well. The condition that λn ≤ 1 − λw is implied by the
constraints that λn = 1− λw − λθ −

P
n0 6=n λn0 and the positivity of λw, λθ, and λn0 . Finally, for the strict

positivity of λn if n is acquired, use ln +mn > 0 and λw > 0 in the argument for the λn = 0 constraint, to

show that Γλn

³
~l, ~m, ~P

´
> 0.

Proof of Lemma 8
Families of indifference curves are completely characterized by the equilibrium values of sp and λw and

the precisions τw and τx. We will show, a fortiori, that for any point
¡
τ̄ , λ̄

¢
with 0 ≤ λ̄ ≤ 1− λw, the limit

order indifference curve through
¡
τ̄ , λ̄

¢
is steeper than the market order indifference curve at that point, if a
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Figure 8: Relative slopes of limit and market order indifference curves

limit order trader would buy on good news at a (hypothetical) signal
¡
τ̄ , λ̄

¢
. First we show that the lemma

holds on the λ = 0 axis, then we will extend to λ > 0. For a point (τ̄ , 0), and for the indifference curves
g(τ ,λ) = g(τ̄ , 0) and f(τ ,λ) = f(τ̄ , 0), by direct computation we have

dλ

dτ

¯̄
¯̄
MO

= −∂g/∂τ
∂g/∂λ

¯̄
¯̄
(τ ,0)

=
1

2

λw
τx + τw + τ̄

and
dλ

dτ

¯̄
¯̄
LO

= −∂f/∂τ
∂f/∂λ

¯̄
¯̄
(τ ,0)

=
1

2

sp − λ2w/τw
1− λw

But then A3 and the positivity of τx and τ̄ imply dλ
dτ

¯̄
LO
> dλ

dτ

¯̄
MO

as claimed.

For (τ̄ , λ̄) with λ̄ > 0, first observe that the conditions λ̄ ≤ 1− λw and that a limit order trader would
buy on good news at (τ̄ , λ̄) imply that (τ̄ , λ̄) lies on the increasing, convex CD portion of a limit order
indifference curve as in Figure 1.

Case 1: (τ̄ , λ̄) is on the upper branch of g(τ ,λ) = g(τ̄ , λ̄).
Refer to the left panel of Figure 8 where (τ̄ , λ̄) is labeled point E. Let M(τ) denote the upper branch

of g(τ ,λ) = g(τ̄ , λ̄) and let L(τ) denote that portion of f(τ ,λ) = f(τ̄ , λ̄) that lies along the arc ADC,
where A = (0, 0), D = (τD, 0) is defined by f (τD, 0) = f(τ̄ , λ̄), and C = (τC , 1− λw) is defined by
f (τC , 1− λw) = f(τ̄ , λ̄). Note that M (τ) is concave and L (τ) is convex. Furthermore, because of the
vertical tangency at (0, 0), we have M(τ) > L(τ) for small τ . Thus, M(τ)−L(τ) crosses zero at most once,
and only from above, and so we must have M 0 (τ̄) < L0 (τ̄).

Case 2: (τ̄ , λ̄) is on the lower branch of g(τ ,λ) = g(τ̄ , λ̄).
Refer to the right panel of Figure 8. E = (τ̄ , λ̄) is labeled as in Case 1, as are D, C, and and the

limit order indifference curve through E =
¡
τ̄ , λ̄

¢
, L (τ). Let M̄ (τ) be the lower branch of the market order

indifference curve through point D. The market order indifference curve through (τ̄ , λ̄) is not pictured. Note
that by condition A3 and the results above for the λ̄ = 0 case, at point D we have L0 (τ̂) | > M̄ 0 (τ̂) as
depicted. Now consider the market order indifference curve g(τ ,λ) = g(τ̄ , λ̄). The hyperbola that it lies on
intersects the ellipse that L (τ) lies on at points E and A, with a tangency at the latter. Suppose toward a
contradiction that g(τ ,λ) = g(τ̄ , λ̄) is steeper than L (τ) at point E, as suggested in the “candidate” curve
represented by the dashed line. This implies that the market order indifference curve crosses into the interior
of the ellipse at E. But then it must cross the ellipse twice more, as pictured — once because the hyperbola
must exit the ellipse as τ and λ tend to infinity, and once more because the hyperbola must connect E
to A without crossing indifference curve M̄ (τ). Thus, there must be at least four points of intersection
for the ellipse and hyperbola that f(τ ,λ) = f(τ̄ , λ̄) and g(τ ,λ) = g(τ̄ , λ̄) lie on respectively, including one
point of tangency. But this is impossible, as an ellipse and a hyperbola can intersect at most three times,
if one of those intersections is a tangency. Nor can the two indifference curves be tangent at E; if they
were, we would be able to find a slightly perturbed point Ẽ along g(τ ,λ) = g(τ̄ , λ̄), with corresponding limit

order indifference curve L̃ (τ), for which the contradictory four intersections reemerges. Thus the limit order
indifference curve must be strictly steeper than the market order indifference curve at E.

Proof of Proposition 7

Suppose that in equilibrium, sources acquired by limit order traders lie on the curve f (τ ,λ) = f̄ , while

sources acquired by market order traders lie on g (τ ,λ) = ḡ. For market order traders, let λLBMO(τ) and
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λUBMO(τ) denote the lower and upper branches of the hyperbola g (τ ,λ) = ḡ. The equilibrium condition
0 ≤ λn ≤ 1− λw and Lemma 9 imply that if limit order traders acquire n, then (τn,λn) lies along the DC

arc of f (τ ,λ) = f̄ (as designated in Figure 1). With this in mind, let λLBLO(τ) denote the portion of this
ellipse lying along ADC. We will proceed through a series of claims.

Claim 1 If for some n, mn > 0 and market order traders sell on good news at n, then ln > 0 and limit order
traders buy on good news at n.

Proof A1, positivity of λn by Proposition 6, and (16) imply that Mmnα
n
y +Llnβ

n
y ≥ 0, so if mnα

n
y < 0,

then lnβ
n
y > 0.

Claim 2 There is at most one source n0 such that mn0 > 0 and ln0 > 0 and both types buy on good news.
Proof Suppose both types acquire both n0 and n00 > n0 and buy on good news. Define the continuous

function δ (τ) = λLBMO(τ) − λLBLO(τ). We have δ (τn0) = δ (τn00) = 0 and by Lemma 8, δ0 (τn0) and δ0 (τn00)
both strictly negative. Then there must be some τ∗ ∈ [τn0 , τn00 ] such that δ (τ∗) = 0 and δ0 (τ∗) ≥ 0. Let
λ∗ = λLBMO(τ

∗) = λLBLO(τ
∗). But then (τ∗,λ∗) lies on both indifference curves with λLBMO weakly steeper than

λLBLO at (τ
∗,λ∗), a contradiction of Lemma 8.

Claim 3 If mnm > 0 and lnl > 0 for distinct nm and nl, and market order traders buy on good news at
ynm , then n

m < nl.
Proof Suppose instead that nm > nl. Then we have λLBMO(τnm) = λnm and λLBLO(τnl) = λnl , with

λnm > 0 and λnl > 0 by Proposition 6, and τnl < τnm . Furthermore, we must have λnl ≥ λLBMO(τnl) (or

else MO traders would strictly prefer to buy on good news at nl instead) and λnm ≥ λLBLO(τnm) (or else LO
traders would strictly prefer to acquire nm instead). Define δ (τ) as in Claim 2 and observe that the last two
inequalities imply δ (τnl) ≤ 0 and δ (τnm) ≥ 0. Then there must be some τ∗ ∈ [τnl , τnm ] such that δ (τ∗) = 0
and δ0 (τ∗) ≥ 0. Let λ∗ = λLBMO(τ

∗) = λLBLO(τ
∗) > 0. But then (τ∗,λ∗) lies on both indifference curves, with

the market order indifference curve weakly steeper at (τ∗,λ∗), a contradiction of Lemma 8. Thus nm < nl.

Claim 4 Let n̄1 be the least precise source acquired by any trader. If n̄1 < N , then every source between
n̄1 and N is also acquired by some trader.

Proof One of the order types must buy on good news at n̄1. (If ln̄1 > 0, then βn̄1y > 0 by Lemma 9. If
ln̄1 = 0 and mn̄1 > 0, then αn̄1y > 0 by Claim 1.) Suppose there were some n0 > n̄1 that was not acquired
by any trader. But then we would have τn0 > τ n̄1 and λn0 = 0 ≤ λn̄1 , so the order type that buys on good
news at n̄1 could do strictly better by switching to the more precise, more exclusive source n

0.

Claim 5 If market order traders acquire and sell on good news at a source yn, then n = N .
Proof Suppose that market order traders sell on good news at some yn0 with n

0 < N . By Claim 1,
Ln0 > 0 and (τn0 ,λn0) must be an intersection of λ

UB
MO(τ) and λLBLO(τ). Since the former is concave and the

latter is convex, there is at most one such intersection, so market order traders do not sell on good news at
any other source. Furthermore, Claims 3 and 4 imply LN > 0. (Claim 4 implies either LN > 0 or MN > 0.
If the latter, then market order traders would have to buy on good news at yN but then Claim 3 applies.)

But by the same convexity-concavity argument, this means that (τN ,λ
LB
LO(τN )) lies above λ

UB
MO(·), so market

order traders would prefer to acquire yN instead.

Claims 2, 3, and 4 imply parts i-iv of the proposition. Claim 5 implies part v. Parts i-v imply that
λn+1−λn equals either λLBMO(τn+1)−λLBMO(τn), λ

LB
LO(τn+1)−λLBLO(τn), or λLBLO(τn+1)−λLBMO(τn) for n ≥ n̄1.

In the first two cases, the fact that λLBMO(·) and λLBLO(·) are increasing functions (where they are positive)
suffices to show {λn} increasing. The third case only applies if market order traders acquire yn but do not
acquire yn+1 in which case their weak preference for yn implies λ

LB
LO(τn+1) ≥ λLBMO(τn+1), and this together

with λLBMO(·) suffices. The result that {λn/τn} is increasing follows by a similar argument from the convexity
of λLBMO(·) and λLBLO(·) and the fact that both approach the origin as τ → 0.

The following lemmas are used in proving Proposition 8.

Lemma 10 If A3 holds and for some source n, λn/τn < λw/τw, then βnw > 0.

Proof. βnw strictly positive is equivalent to

λw
τw

<
sp − λ2w/τw − λ2n/τn

1− λw − λn
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Clearing denominators (note that 1− λw − λn > 0) and simplifying, this is equivalent to

λw
τw

< sp + λn

µ
λw
τw
− λn

τn

¶

But λw/τw < sp by A3, so the inequality holds.

Lemma 11 (Lower bound on the total price impact of news sources and w) In equilibrium, λw+
PN
n=1 λn =

1− λθ > ε̄ > 0, where ε̄ = 1
2LMγLγMτz(τN+τw)+1

.

Proof. Write V = λw +
PN
n=1 λn. Using (11), we have V = 1 − ρ

PN
n=1Mmnα

n
x , where αnx =

γM
snm
(λn + λw)

τx
tnm
≥ 0. Using expressions for snm and sp, we have s

n
m ≥ ρ2/τz. Furthermore τx/t

n
m =

τx/ (τx + τw + τn) < 1, so we have α
n
x ≤ γMτz

ρ2 (λn+λw). Finally, let ρ = (LγL (τN + τw))
−1
and note that

ρ ≥ ρ. Combining these, we have

V ≥ 1− MγMτz
ρ

NX

n=1

mn(λn + λw). (18)

Now suppose that V < ε, for some ε > 0. A fortiori, we have λw < ε and λn < ε for all n. Then by

(18) we have ε > V ≥ 1 − 2MγMτz
ρ ε. But this is impossible for ε ≤ ε̄ =

ρ

2MγMτz+ρ
. We conclude that

V >
ρ

2MγMτz+ρ
> 0. Expand ρ to get the result.

Lemma 12 If A3 holds in equilibrium, then the following are true: (i)
PN

n=1
λn
τn
≥ λw

τw
, and (ii) λN

τN
≥ 1

N
λw
τw
.

Proof. Part (ii) follows from part (i) and λn/τn increasing in n. For part (i), observe that if λN/τN ≥
λw/τw, then the claim holds trivially, so assume λN/τN < λw/τw. Then we must have λn/τn < λw/τw for
all n < N as well. By (11), we have

Ã
NX

n=1

λn
τn

!

− λw
τw

= ρ
NX

n=1

µ
Lln

µ
βny
τn
− βnw

τw

¶
+Mmn

µ
αny
τn
− αnw

τw

¶¶

Examine a typical term in the summation. We have

βny
τn
− βnw

τw
= γL

µ
λw
τw
− λn

τn

¶
Sn > 0 (where Sn =

1− λn − λw

sp − λ2w/τw − λ2n/τn
> 0)

and
αny
τn
− αnw

τw
=

γM
snm

µ
λw
τw
− λn

τn

¶
> 0

But then because each term in the summation is strictly positive, part (i) follows.

Lemma 13 (Lower bound on λN) If A3 holds in equilibrium, then λN > 1
N

τN
τN+τw

ε̄ > 0, where ε̄ is the
constant from Lemma 11.

Proof. We have λN ≥ λn for all n, so by Lemma 11, NλN + λw > ε̄ holds. By Lemma 12, we also

have λw ≤ N τw
τN

λN , combining the two yields NλN

³
1 + τw

τN

´
> ε̄. Rearranging yields the result.

Proof of Proposition 8

For each case, τw small and τx large, we must show that (i)
λN
τN

> λw
τx+τw

, so by Lemma 4 a market

order trader holding N would sell on its good news, and (ii) a market order trader would choose source
N . Consider point (i) first. Fix τx and τw such that

τx
τw
> N τN

τ1
, and suppose toward a contradiction that

λN
τN
≤ λw

τx+τw
in equilibrium. Consider the following implications.

(1) λn/τn < λw/τw for all n. This follows from τx > 0 and λn/τn increasing in n.
(2) βnw > 0 for all n by Lemma 10.
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(3) βny > τn
τw

βnw > 0 for all n. This follows from the fact that βny/β
n
w = τn

τw

³
1−(λn/τn)Sn
1−(λw/τw)Sn

´
and

λn/τn < λw/τw (where Sn = τ ξn/ (1− λw − λn) > 0).

(4) λN/τn ≥ 1
NR, where R =

1
λw

PN
n=1 λn. (This follows from λn ≤ λN for all n.)

(5) αny ≥ 0 for all n. For N , this follows from our assumption that (i) fails; for n < N this follows from
Proposition 7.

(6) αnw ≤ 0 for all n. This follows from point (5) and the weak positivity of αnx = −
¡
αny + αnw

¢
.

(7) R ≥
³PN

n=1 lnβ
n
y

´
/
³PN

n=1 lnβ
n
w

´
. From (16) and points (5) and (6).

(8) R ≥
³PN

n=1 lnβ
n
w (τ1/τw)

´
/
³PN

n=1 lnβ
n
w

´
= τ1

τw
. From points (2), (3), and τ1 ≤ τn for all n.

(9) λN/τn ≥ 1
N

τ1
τw
. From (4) and (8).

(10) λw
τx+τw

< 1
N

τ1
τw
. From τx

τw
> N τN

τ1
.

(11) But by hypothesis, λNτN ≤
λw

τx+τw
< 1

N
τ1
τw
, contradicting (9).

Thus, τx
τw
> N τN

τ1
implies λN

τN
> λw

τx+τw
, and therefore, a market order trader holding N will sell on good

news. Point (i) follows for τx sufficiently large or τw sufficiently small.
Now consider point (ii). Let g (τ ,λ ; (τx, τw)) = g (τN ,λN ; (τx, τw)) be the market order indiffer-

ence curve through (τN ,λN ) at an equilibrium given τx and τw. Write λUB (τ ; (τN ,λN) , (τx, τw)) and

λLB (τ ; (τN ,λN ) , (τx, τw)) for the upper and lower branches of this indifference curve. We make two
claims, deferring a proof of the first one until later:

Claim 1: For τx sufficiently large, or for τw sufficiently small, λ
LB (τ ; (τN ,λN ) , (τx, τw)) < 0 for all τ > 0.

Claim 2: For any particular τx and τw, if there is an equilibrium in which some market order traders choose
source n < N , then λn ≤ λLB (τn ; (τN ,λN ) , (τx, τw)).

Proof: Optimality of n requires that (τn,λn) lie on a (weakly) broader-jawed hyperbola than (τN ,λN );

thus (τn,λn) lies above λ
UB or below λLB. However, if (τn,λn) lay above λ

UB, then the traders would sell

on good news at n, which Proposition 7 rules out. Thus we must have λn ≤ λLB (τn ; (τN ,λN ) , (τx, τw)).

We also have λn ≥ 0 for all n, in any equilibrium, so Claims 1 and 2 establish that for τx sufficiently
large or for τw sufficiently small, market order traders do not choose any source except N .

Proof of Claim 1: One can readily show that the lower branch of an indifference curve g (τ ,λ ; (τx, τw)) =
ḡ lies below the λ = 0 axis if the slope of its asymptote is negative. A necessary and sufficient condition
for this is ḡ > 0. Thus it will suffice to show that g (τN ,λN ; (τx, τw)) > 0 for τx sufficiently large or τw
sufficiently small. We have

g (τN ,λN ; (τx, τw)) =

λ2N
τN
(τx + τw)− λw (2λN + λw)

τN (τN + τx + τw)

Now we make Claim 3: There is a constant K > 0, independent of τx and τw, such that
λ2N
τN
≥ K for τx

sufficiently large or τw sufficiently small. We defer a proof. Claim 3 plus the boundedness of λw and λN
imply that g (τN ,λN ; (τx, τw)) > 0 for τx sufficiently large. Finally, it is not hard to show that λw must

tend to zero with τw. Thus for τw → 0, we have g (τN ,λN ; (τx, τw))→ λ2N
τN

τx
τN (τN+τx)

> 0.

Proof of Claim 3: By Lemmas 11 and 13, we have λ2N/τN > ε̄2/τN > 0. For the case of τx → ∞, we
are done, as ε̄ does not depend on τx. For the case of τw → 0, observe that ε̄ increases as τw declines, with
ε̄∞ = limτw→0 ε̄ > 0, and ε̄∞ not dependent on τw. Then, for all τw sufficiently small, we have λN > 1

2 ε̄
∞

and thus λ2N/τN > (ε̄
∞)2 / (4τN ) > 0.
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