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Estimating the Risk-Adjusted Capital

is an Affair in the Tails

Abstract

(Re)insurance companies need to model their liabilities’ portfolio to compute the risk-adjusted

capital (RAC) needed to support their business. The RAC depends on both the distribution and

the dependence functions that are applied among the risks in a portfolio. We investigate the

impact of those assumptions on an important concept for (re)insurance industries: the diversi-

fication gain. Several copulas are considered in order to focus on the role of dependencies. To

be consistent with the frameworks of both Solvency II and the Swiss Solvency Test, we deal with

two risk measures: the Value-at-Risk and the expected shortfall. We highlight the behavior of

different capital allocation principles according to the dependence assumptions and the choice

of the risk measure.
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1 Introduction

The new risk based solvency regulations require (re)insurance companies to model their liabil-

ities to compute the risk-adjusted capital (RAC) needed to support their business. This concept

relies heavily on the portfolio model that is at the heart of this computation. Particularly, it

depends on both the distribution functions (dfs) used to model the individual risks and the de-

pendence functions that are applied among those risks. Besides the debate among regulators

on the type of risk measures that should be applied for estimating the RAC, there are few studies

that systematically explore the impact of those assumptions on the results of the model, see e.g.

Bagarry (2006) and Desmedt and Walhin (2008).

The aim of this paper is to explore various choices of models and to show how they influ-

ence an important concept for the (re)insurance industry: the diversification gain. Considering

a simple portfolio composed of two risks, namely X and Y , we define the diversification gain ac-

cording to Bürgi et al. (2009). This definition requires the choice of a risk measure for computing

the risk-adjusted capital of a single risk and of the portfolio, see SCOR (2008). In our analysis we

deal with two well known measures of risk, i.e. the Value-at-Risk (VaR) and the expected shortfall

(ES), in agreement with Embrechts et al. (2005). To be consistent with the frameworks of both

Solvency II and of the Swiss Solvency Test, we consider those risk measures at the 99.5% and 99%

threshold, respectively. Regulators are expecting companies to model dependence between the

various risk factors (see for instance FINMA (2008) on SST). This work is done to explore the

effect of modeling choices on portfolio results and particularly on the diversification benefit

measured in the model.
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In order to focus on dependence and tail assumptions, the study is performed assuming

identical marginal dfs for X and Y . Two typical distributions have been chosen: the lognormal

df, which is very popular for modeling insurance risks and the Fréchet df, to explore extreme

value distributions (see Embrechts et al. (1997)).

For computing the joint df, we use copulas to model dependencies. In particular, two fam-

ilies of copulas are taken into account: elliptical and Archimedean. Within the former family

the Gaussian and the Student-t copula are considered, while from the latter family, we study

the Clayton, the Frank and the Gumbel copula. Moreover, we flip Archimedean copulas in or-

der to investigate the behavior of the portfolio in cases characterized by stronger/weaker tail

dependencies.

In a first stage of the work, Monte Carlo methods are used to obtain estimations of expected

value, VaR, ES and RAC, for both the single risks and the portfolio. With those values we can esti-

mate the diversification gain obtained by combining both risks. To ensure a consistent compar-

ison, different copulas are parameterized using the same value for Kendall’s tau rank correlation

coefficient. This allows us to impute differences due to the structure of dependence whilst its

strength remains constant.

In a second stage, we consider the required capital, in terms of RAC, according to two dif-

ferent allocation principles related to the choice of the risk measure. The Euler principle and

the haircut allocation principle are compared. We analyze both the change of the dependence

strength, indicated by the value of Kendall’s tau, and the change in the joint distribution, de-

scribed by the choice of a specific copula. For ease of comparison, we limit ourselves to the

aggregation of two underlying risks, but the method and the concept of this study can easily be
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extended to dimensions larger than two.

The rest of this paper is organized as follows. An overview on copulas and a description of

the main families are given in Section 2. Section 3 introduces rank correlation and its link to

copulas. In Section 4, we focus on the evaluation of the RAC and of the diversification gain. The

impact of dependence on capital allocation is discussed in Section 5. Section 6 gives an outlook

on future research and we conclude in Section 7.

2 Copulas and Structure of Dependence

Copulas were originally introduced as a useful mathematical tool to model dependence. An

interesting review of the development of copula theory and its applications is found in Genest

et al. (2008). A must-read literature on copulas is given in Embrechts (2009).

Definition 2.1. A function C : [0,1]2 → [0,1] is a copula if:

1. C (u,0) =C (0, v) = 0 for all u, v ∈ [0,1];

2. C (u,1) = u and C (1, v) = v for all u, v ∈ [0,1];

3. C is quasi-monotone, i.e., for any 0 ≤ u1 ≤ u2 ≤ 1 and any 0 ≤ v1 ≤ v2 ≤ 1,

C (u2, v2)−C (u1, v2)−C (u2, v1)+C (u1, v1) ≥ 0. (2.1)

In other words, a bivariate copula is a cumulative distribution function (cdf) on [0,1]2 whose

marginals are standard uniform.

The usefulness of copulas for describing dependencies is revealed by Sklar’s theorem (see

Sklar (1959)). Sklar’s result shows that copulas allow to separate the dependence structure from
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the behavior of the univariate marginals. This attractive feature of the copula representation

invites to interpret a copula, associated with a random vector, as being its dependence structure.

There are essentially two types of copulas according to the way they are obtained:

• Implicit copulas. We can extract an implicit copula from any distribution with continuous

marginal dfs; examples of this type are the elliptical copulas, i. e. the copulas derived from

elliptically contoured (or elliptical) distributions.

• Explicit copulas. There are many copulas which we can write down in a simple closed

form; the Archimedean family yields examples of this type.

Among elliptical copulas, in this paper we deal with the Gauss copula and the Student-t cop-

ula, extracted from the multivariate normal distribution and from the multivariate Student-t

distribution, respectively.

• Gauss.

CGa
ρ (u, v) =Φρ

(

Φ−1(u),Φ−1(v)
)

, ρ ∈ (−1,1), (2.2)

where Φ is the cdf of a standard univariate normal distribution andΦρ denotes the cdf of

a bivariate normal with standard marginals and correlation coefficient ρ.

• Student-t .

C t
ν,ρ(u, v) = tν,ρ

(

t−1
ν (u), t−1

ν (v)
)

, ρ ∈ (−1,1),ν> 0, (2.3)

where tν is the cdf of a standard univariate Student-t distribution with ν degrees of free-

dom and tν,ρ denotes the cdf of a bivariate Student-t with standard tν marginals and cor-

relation coefficient ρ.

6



In contrast to the Gauss copula, the Student-t copula allows for joint heavy tails and an in-

creased probability of joint extreme events. Moreover, the Student-t copula introduces an ad-

ditional parameter, namely the degrees of freedom ν. Since the Student distribution tends to

the Gaussian when ν→∞, increasing the value of ν decreases the tendency to exhibit extreme

co-movements.

Another interesting family of copulas are the Archimedean copulas. They are commutative,

that is C (u, v) =C (v,u) for all u, v ∈ [0,1], and associative, that is C (C (u, v), z) =C (u,C (v, z)) for

all u, v, z ∈ [0,1]. Archimedean copulas can be constructed through a function φ called genera-

tor (see Embrechts et al. (2005)). A generator characterizes a specific copula within the Archi-

medean family. If we choose as generator φ(t ) =− ln(t ) we obtain the independence copula CΠ,

which corresponds to the case of independent random variables. Other Archimedean copulas

considered in this paper are the Clayton, the Frank and the Gumbel copula.

• Clayton. φ(t ) = 1
θ

(t−θ−1), hence

CC l
θ (u, v) =

[

max
(

u−θ
+ v−θ

−1,0
)]−1/θ

, θ ∈ [−1,∞)\{0}. (2.4)

• Frank. φ(t ) =− ln( e−θt−1
e−θ−1

), hence

C F r
θ (u, v) =−

1

θ
ln

(

1+
(exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

)

, θ ∈R. (2.5)

• Gumbel. φ(t ) = (− ln t)θ, thus

CGu
θ (u, v) = exp

(

−

[

(− lnu)θ+ (− ln v)θ
]1/θ

)

, θ ≥ 1. (2.6)
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Both the Clayton and the Gumbel copula, unlike the above mentioned elliptical copulas,

allow for asymmetries. The Clayton copula exhibits greater dependence in the lower tail than in

the upper tail, while the opposite is valid for the Gumbel copula.

In insurance, as pointed out in Bürgi et al. (2009), the dependence ought to be stressed in

the upper tail, because the few biggest claims are more relevant for the company than the large

amount of small claims, which are often contractually cut-off. Hence we work also with a flipped

Clayton copula, obtained by the transformation (u, v) → (1−u,1− v). We refer to this copula

as the Clayton-M, indicating it with CC l−M
θ

. For the sake of completeness, we consider also a

flipped Gumbel copula. We refer to this copula as the Gumbel-M, indicating it with CGu−M
θ

.

We do not consider the flipped version of the Frank copula since this copula is the only Archi-

medean copula characterized by radial symmetry, like the Gauss and the Student-t . More on

flipped copulas can be found in Venter (2002), pp. 90-91.

Both the Clayton and the Frank copulas are comprehensive copula families. They allow,

depending on the value of their parameter, to describe countermonotonicity, full independence

and comonotonicity.

An extensive list of Archimedean copulas can be found in Nelsen (2006), pp. 116-119, where

22 families are listed.

3 Rank Correlation and Strength of Dependence

Our next aim is to introduce a measure of dependence, namely the Kendall’s tau rank correlation

coefficient, which we adopt as a benchmark for choosing the strength of dependence. Kendall’s
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tau was originally discussed by G. T. Fechner around 1900 and rediscovered by the British statis-

tician Sir Maurice Kendall in Kendall (1938). For a complete historical review we refer to Kruskal

(1958).

Definition 3.1. For the random pair (X ,Y ) the Kendall’s tau is defined as

ρτ(X ,Y ) =P{(X − X̃ )(Y − Ỹ ) > 0}−P{(X − X̃ )(Y − Ỹ ) < 0}, (3.1)

where (X̃ , Ỹ ) is an independent copy of (X ,Y ).

As can be seen from its definition, Kendall’s tau for (X ,Y ) is simply the probability of con-

cordance minus the probability of discordance. For continuous marginal distributions and con-

trary to the linear correlation coefficient ρ, named after the British statistician Karl Pearson,

Kendall’s tau depends only on the unique copula of the risks.

Proposition 3.2. Let (X ,Y ) be a vector of continuous random variables with copula C . Then

Kendall’s tau for (X ,Y ) is given by

ρτ(X ,Y ) = 4

∫∫

[0,1]2
C (u, v)dC (u, v)−1. (3.2)

This is equivalent to say

ρτ(X ,Y ) = 4E (C (U ,V ))−1, (3.3)

where U ,V are standard uniform.

The fact that ρτ is a copula-based measure implies that it inherits its property of invariance

under strictly increasing transformations (see Embrechts et al. (2005), p. 188, for more on this

property).

We collect some facts and useful considerations about Kendall’s tau in the next theorem.
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Theorem 3.3 (Kendall’s tau). Let X and Y be random variables with continuous distributions F

and G, joint distribution H and copula C . The following are true:

• ρτ(X ,Y ) = ρτ(Y , X ).

• If X and Y are independent then ρτ(X ,Y ) = 0.

• −1 ≤ ρτ(X ,Y ) ≤ 1.

• For T : R→R strictly monotone on Ran(X ), ρτ satisfiesκ(T (X ),Y ) = κ(X ,Y ) orκ(T (X ),Y ) =

−κ(X ,Y ) if T is increasing or decreasing, respectively.

• ρτ(X ,Y ) = 1 ⇔ Y = T (X ) a.s. with T increasing.

• ρτ(X ,Y ) =−1 ⇔ Y = T (X ) a.s. with T decreasing.

Proof. See Embrechts et al. (2002), p. 196.

Moreover, for specific copula families, it is possible to establish simpler relationships be-

tween the copula itself and Kendall’s tau.

Theorem 3.4 (Kendall’s tau for Gauss copula). The Gauss copula defined as in (2.2) satisfies

ρτ

(

CGa
ρ

)

=
2

π
arcsinρ (3.4)

Proof. See Embrechts et al. (2005), pp. 215, 216.

The relationship (3.4) holds more generally for all elliptical distribution, and hence also for

the Student-t copula.

It is possible to link Kendall’s tau to the generator of a specific Archimedean copula.
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Copula CGa
ρ C t

ν,ρ CC l
θ

C F r
θ

CGu
θ

ρτ
2
π

arcsinρ 2
π

arcsinρ θ
(θ+2)

1− 4
θ
+

4D1(θ)
θ

1− 1
θ

Table 1: Kendall’s tau for specific copulas where D1(θ) = θ−1
∫θ

0 t/(exp(t )−1)d t .

Theorem 3.5 (Kendall’s tau for Archimedean copulas). Let X and Y be continuous random vari-

ables with unique Archimedean copula C and generator φ. Then

ρτ(X ,Y ) = 1+4

∫1

0

φ(t )

φ′(t )
d t , (3.5)

= 1−4

∫∞

0
t

(

d

d t
φ[−1](t )

)2

d t . (3.6)

Proof. For (3.5) see Genest and MacKay (1986), pp. 282-283; for (3.6) see Joe (1997).

Through this result explicit relationships between Kendall’s tau and Archimedean copula

parameters can be found. These are summarized in Table 1.

There are other copula-based dependence measures called coefficients of tail dependence.

They specifically measure how the tails of the distribution, rather than the entire random vari-

ables, are correlated. As we are not using them in this study, we just mention that they exist and

that their explicit formulas for various copulas can be found in Embrechts et al. (2005).

4 Dependence and Diversification Gain

In this section, we investigate through Monte Carlo methods the role of dependence on the risk-

adjusted capital. Some preliminary concepts about risk measures are provided below.
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Definition 4.1. For a random variable X with E(|X |) <∞ and df F , the VaR at confidence level

α ∈ (0,1) is defined as

VaRα(X ) = inf{x ∈R : P (X > x) ≤ 1−α} = inf{x ∈R : F (x) ≥α}. (4.1)

VaR is not a coherent measure of risk, according to the characterization given in Artzner et al.

(1999).

A coherent measure of risk is the expected shortfall (ES). There is not a unique definition

in the literature for the ES, see Acerbi and Tasche (2002). The nomenclature we adopt is in

agreement with Embrechts et al. (2005).

Definition 4.2. For a random variable X with E(|X |) < ∞ and df F , the expected shortfall at

confidence level α ∈ (0,1) is defined as

ESα(X ) =
1

1−α

∫1

α
qu(F )du, (4.2)

where qu(F ) is the quantile function of F .

Hence the expected shortfall, contrary to VaR, takes (the shape of) the tail into account. ES

is always greater or equal to VaR for a chosen confidence level α, i.e. ESα(X ) ≥ VaRα(X ).

For continuous distributions a more intuitive expression can be derived which shows that

ES can be interpreted as the expected value given that VaR is exceeded.

Proposition 4.3. For a random variable X with E(|X |) < ∞ and continuous df F , the expected

shortfall at confidence level α ∈ (0,1) satisfies

ESα(X ) = E [X | X ≥ VaRα(X )]. (4.3)
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Since we deal with lognormal and Fréchet marginal distributions, we provide for these dfs

analytic formulas, which permit to compute both of the above mentioned risk measures.

As shown in Denuit et al. (2005), p. 98, for a lognormal random variable X ∼ logN(µ,σ2) we

have

VaRα(X ) = exp
(

µ+σΦ−1(α)
)

, (4.4)

ESα(X ) = exp
(

µ+σ2/2
)

(1−Φ(Φ−1(α)−σ)

(1−α)

)

, (4.5)

where Φ is the standard normal df.

For a Fréchet random variable X with shape parameter a and scale parameter s (see Ap-

pendix A), we have

VaRα(X ) = s(− ln(α))(−1/a), (4.6)

ESα(X ) = s
1

1−α
Γ

(

1−
1

a
,− ln(α)

)

Γ

(

1−
1

a

)

, (4.7)

where Γ(·) is the Gamma function and Γ(·, ·) is the incomplete Gamma function, i.e. Γ(γ, x) =

∫x
0 xγ−1 exp(−x)d x/Γ(γ).

We use the notation ̺α(X ) to indicate the value of a generic risk measure, at confidence level

α, for a risk X . According to the Swiss Solvency Test (SST) guidelines, Swiss-based insurances

have to adopt as risk measure the ES at 99%. In order to meet the solvency requirements under

the Solvency 2 guidelines, European insurances will have to utilize as the risk measure the VaR

calibrated to a confidence level of 99.5%. In our analysis we explore both cases.

The choice of the risk measure is preliminary to the evaluation of the RAC, as defined below.

Definition 4.4. We define the RAC as the uncertainty around the expectation, i.e.

RAC̺α(X ) = ̺α(X )−E(X ). (4.8)
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The main goal of this section is to provide a quantitative judgment about the diversification

gain, as defined in Bürgi et al. (2009). The diversification gain represents the percentage of the

RAC that a (re)insurance company can save in the management of its portfolio by taking into

account the positive effect of aggregating various risks.

Definition 4.5. We define the diversification gain for a portfolio Z , aggregating the risks X and

Y , as

D̺α(Z ) = 100%−
RAC̺α (X +Y )

RAC̺α(X )+RAC̺α(Y )
. (4.9)

In a first stage, we study a simple portfolio Z , composed of two risks both lognormally dis-

tributed, namely X ,Y ∼ logN(9.58,0.83). The lognormal df is very popular for modeling insur-

ance risks and we select µ and σ such that the coefficient of variation, that is the ratio of the

standard deviation to the mean, is equal to one, which represents a high insurance risk. For

computing the joint df, we use copulas to model the structure of dependence. According to the

families introduced in Section 2, we examine two elliptical copulas, the Gauss and the Student-

t , together with three Archimedean copulas, the Clayton, the Frank and the Gumbel. More-

over, as previously mentioned, we consider two flipped copulas, namely the Clayton-M and the

Gumbel-M, to investigate the importance of tail dependencies. For the Student-t copula, if not

specified, we assume ν= 1.

Concerning the strength of the dependence and in order to ensure consistent comparison,

different copulas are parameterized using the same value for Kendall’s tau, through the equa-

tions given in Table 1. Figure 1 illustrates how different copulas imply different structures of

dependence.
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Figure 1: Rank scatter plots for copulas parameterized with ρτ = 0.5.

Using MATLAB, we implement ad-hoc procedures to compute all the values necessary to

quantify the diversification gain. We simulate a realization (x, y) of the bivariate random vector

(X ,Y ), according to the specific copula, to its parametrization and to the marginal distributions.

Marshall and Olkin (1988) provide an algorithm for the simulation of Archimedean copulas. Al-

gorithms for simulating from both the Gauss and the Student-t copula can be found in Em-

brechts et al. (2005). We repeat the simulation process 107 times for each characterization of the

bivariate distribution. This allows us to derive precise Monte Carlo estimates for the portfolio

of the expected value, E(Z ), the Value-at-Risk at 99.5%, VaR99.5%(Z ), and the expected shortfall

at 99%, ES99%(Z ). For the sake of simplicity and without loss of generality, we drop percentiles

from notation, keeping them fixed at the above mentioned levels.

From these results and from (4.8), we calculate the RACVaR(Z ) and the RACES(Z ) according
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to the adopted measure of risk. Finally, in accordance to (4.9), we determine the DVaR(Z ) and

the DES(Z ).

In Table 2, we provide the results for three different values of Kendall’s tau, namely 0.05,

0.35 and 0.7. For each determination of Kendall’s tau, the corresponding values of the copula

parameters are given. The Student-t copula requires an additional parameter, the degrees of

freedom, that is not implied by the Kendall’s tau. We select three values for ν, namely 1, 3 and 7,

to have a more complete picture about the Student-t copula.

Looking at the figures displayed in Table 2, a first consideration can be drawn about risk

measures. For this type of df, characterized by a (moderately) heavy tail, the difference be-

tween VaR99.5%(Z ) and ES99%(Z ) is relatively small. Nonetheless, due to this difference, the RAC

increases, as expected, moving from VaR to ES. Regarding RAC, empirical results confirm the

common intuition. The risk-adjusted capital increases as the strength of the dependence in-

creases. For the Gauss copula, we have RACES(Z ) = 153,605 if ρτ = 0.05, RACES(Z ) = 186,401 if

ρτ = 0.35 and RACES(Z ) = 222,244 if ρτ = 0.70. Consequently, the diversification gain reflects

these movements. Looking still at the Gauss copula, we obtain DES(Z ) = 34.31% if ρτ = 0.05,

DES(Z ) = 20.27% if ρτ = 0.35 and DES(Z ) = 5.03% if ρτ = 0.70. A similar behavior is obtained in

the case that VaR is considered instead of ES.

Not considering the limiting case of the independence copula and focusing on the structure

of dependence, it is interesting to observe among the analyzed copulas a certain order with re-

spect to conservativeness. Both whenρτ = 0.35 and when ρτ = 0.70, the Clayton copula provides

the highest diversification gain, followed by the Frank, the Gumbel-M, the Gauss, the Student-t ,

the Gumbel and the Clayton-M copula. Further analysis have taken into account more values
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Clayton-M Gumbel Student-t Gauss Gumbel-M Frank Clayton Independence

ρτ = 0.05 θ = 0.1053 θ = 1.0526

ρ = 0.0785

ρ = 0.0785 θ = 1.0526 θ = 0.4509 θ = 0.1053

ν= 1 ν= 3 ν= 7

RACVaR(Z ) 143,013 143,401 164,739 150,505 143,192 136,844 135,210 134,990 133,778 132,316

RACES(Z ) 161,740 163,955 190,791 174,028 163,076 153,605 151,739 151,357 150,213 148,872

DVaR(Z ) 30.14% 29.98% 19.88% 26.42% 29.95% 33.09% 33.97% 33.87% 34.52% 35.32%

DES(Z ) 30.83% 29.93% 18.75% 25.65% 30.27% 34.31% 35.17% 35.23% 35.75% 36.31%

ρτ = 0.35 θ = 1.0769 θ = 1.5385

ρ = 0.5225

ρ = 0.5225 θ = 1.5385 θ = 3.5088 θ = 1.0769

ν= 1 ν= 3 ν= 7

RACVaR(Z ) 192,821 186,106 183,074 176,609 171,149 165,559 154,874 150,180 142,738 132,316

RACES(Z ) 221,479 213,935 210,572 203,735 195,191 186,401 173,540 167,197 159,379 148,872

DVaR(Z ) 5.81% 9.11% 10.43% 13.74% 16.39% 19.00% 24.30% 26.70% 30.19% 35.32%

DES(Z ) 5.47% 8.62% 9.84% 13.23% 16.58% 20.27% 25.86% 28.73% 31.90% 36.31%

ρτ = 0.70 θ = 4.6667 θ = 3.3333

ρ = 0.8910

ρ = 0.8910 θ = 3.3333 θ = 11.4115 θ = 4.6667

ν= 1 ν= 3 ν= 7

RACVaR(Z ) 203,374 202,195 198,578 197,755 196,616 194,853 185,855 169,621 158,278 132,316

RACES(Z ) 232,333 231,268 227,053 226,362 225,281 222,244 209,851 186,778 175,205 148,872

DVaR(Z ) 0.44% 1.28% 2.77% 3.10% 3.87% 4.70% 9.10% 17.20% 22.59% 35.32%

DES(Z ) 0.43% 1.24% 2.63% 3.01% 3.84% 5.03% 10.35% 20.23% 25.13% 36.31%

Table 2: Results for a portfolio composed of X ,Y ∼ logN(9.58,0.83).
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for rank correlations. The trend of the diversification gain is presented in case of ES in Figure 2

and in case of VaR in Figure 3. In Figure 2, we see clearly the behavior mentioned above. Except

for very low levels of dependence, the Clayton-M copula is the most conservative in terms of

diversification gains. This means that when a (re)insurance company has to assume a copula

to model the dependence among the risks of its (bivariate) portfolio, the CC l−M
θ

would guar-

antee a prudent choice. This is to be expected, since the Clayton-M copula concentrates the

dependence in the right tail which is the one that matters for the computation of the RAC. For

instance, when ρτ = 0.35, if the model is based on a Gauss copula, then the (re)insurance com-

pany can claim a diversification gain, DES(Z ), of more than 20% while if the real model would

follow a Clayton-M copula, then the DES(Z ) would be only a bit more than 5%. Thus, a warning

has to be sent with regard to the cautiousness of certain assumptions. Only for very low depen-

dencies, the Student-t copula with ν= 1 supplies the lowest diversification gain among the set

of copulas considered. Another interesting feature illustrated in Figure 2 and anticipated by a

theoretical property mentioned in Section 2, is that the results provided by the Student-t cop-

ula tend to those given by the Gauss copula, as the degrees of freedom increase. When ν = 7,

the divergence is already significantly reduced. Note that as ρτ → 0 then DES(Z ) →≈ 36.30%

(DVaR(Z ) →≈ 35.30%) for all the copulas analyzed except the Student-t . This is not the case for

the Student-t copula (if ν<∞) since this copula family gives asymptotic dependence in the tail

even when ρ = 0 (i.e. when ρτ = 0).

In Figure 3, based on VaR as risk measure, all the remarks valid for Figure 2 are confirmed.

Hereafter, we use the ES to illustrate the results, pointing out differences with VaR, if any. Fur-

ther, unreported, analysis have been conducted to check the behavior under other parameteri-
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Figure 2: Diversification gain as a function of both the strength and the structure of dependence.

The risk measure is the expected shortfall. X and Y are both lognormally distributed.
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Figure 3: Diversification gain as a function of both the strength and the structure of dependence.

The risk measure is the Value-at-Risk. X and Y are both lognormally distributed.
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zations of the lognormal dfs. No particular discrepancy has emerged.

In Figure 4, we can see the influence of dependence on the RAC. For each copula model,

the darker column quantifies the RACVaR(Z ), and the lighter column represents the RACES(Z ).

The lines refer to the diversification gain. As noticed above, the difference among the two risk

measures used is modest within this portfolio.

To explore extreme value distributions, we repeat all of the previous analysis with a new

portfolio Z . Z is now composed from two risks, X and Y , both Fréchet distributed with a = 1.5

and s = 4,657.15. The shape parameter a is chosen to grant both an important tail and sufficient

stability in the simulation process. In Table 3 we provide results for ρτ = 0.35.

Focusing on DES(Z ), we observe an estimated value ranging from 4.38%, in case we as-

sume a Clayton-M copula, to 18.41%, in case our model is based on a Clayton copula. The

main difference, that has to be stressed with respect to the previous portfolio, is the relevance

of the choice of the risk measure. For instance, when the copula is the Clayton-M, we have

RACVaR(Z ) = 280,527 and RACES(Z ) = 547,802. A similar discrepancy is present regardless of

the model used for dependence. The divergence between the capital requirements, according

to the risk measure applied, is due to the marginal distributions. The tail of the Fréchet df, con-

trary to the tail of the lognormal df, emphasizes the diversity between the two risk measures.

Indeed, contrary to the VaR, the ES takes into account the shape of the tail, which is of course

more important for extreme value distributions than for a lognormal df.

In Figure 5, we illustrate the trend of the diversification gain as a function of the dependence.

Remarks provided for Figure 2 are valid here as well.

In Figure 6, we see clearly the influence of dependence on the RAC. The importance of the
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Figure 4: Risk-adjusted capital and diversification gain for different choices of the copula and

rank correlations ρτ = 0.05 (top), ρτ = 0.35 (middle) and ρτ = 0.70 (bottom). X and Y are both

lognormally distributed.
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Clayton-M Gumbel Student-t Gauss Gumbel-M Frank Clayton Independence

ρτ = 0.35 θ = 1.0769 θ = 1.5385

ρ = 0.5225

ρ = 0.5225 θ = 1.5385 θ = 3.5088 θ = 1.0769

ν= 1 ν= 3 ν= 7

RACVaR(Z ) 280,527 273,321 273,036 266,257 265,606 263,426 255,347 252,047 245,257 238,857

RACES(Z ) 547,802 536,850 518,970 515,486 510,731 487,801 474,289 470,125 469,401 463,443

DVaR(Z ) 4.35% 6.65% 7.06% 8.79% 9.30% 9.81% 13.03% 14.23% 16.10% 18.34%

DES(Z ) 4.38% 6.49% 6.87% 9.22% 11.18% 13.68% 16.35% 17.60% 18.41% 19.52%

Table 3: Results for a portfolio composed of X and Y both Fréchet distributed with a = 1.5 and s = 4,657.15.
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Figure 5: Diversification gain as a function of both the strength and the structure of dependence.

The risk measure is the expected shortfall. X and Y are both Fréchet distributed.

choice of the risk measure is eye-catching and it is preserved also varying the strength of the

dependence.

(Unreported) analysis have been conducted to check the behavior under other parameteri-

zations of the Fréchet dfs. No particular discrepancy has emerged, but the stability of the Monte

Carlo process, for a → 1, has to be supported by an increasing number of simulations.

As a further analysis, we mixed a new portfolio Z = X +Y consisting of a moderately heavy

tail df and an extreme value df. In particular, X is lognormally distributed with µ = 6.52 and

σ= 2.15, and Y is Fréchet distributed with a = 1.5 and s = 4,657.15.

The new parametrization of the lognormal df has been chosen such that the weights of both

risks are almost equivalent in terms of capital allocation (see Section 5). In Table 4 we provide

results for ρτ = 0.35.

We observe once more the same order among dependence structures in terms of conser-
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Clayton-M Gumbel Student-t Gauss Gumbel-M Frank Clayton Independence

ρτ = 0.35 θ = 1.0769 θ = 1.5385

ρ = 0.5225

ρ = 0.5225 θ = 1.5385 θ = 3.5088 θ = 1.0769

ν= 1 ν= 3 ν= 7

RACVaR(Z ) 298,496 292,262 291,237 285,075 282,340 280,407 274,275 267,400 261,589 258,160

RACES(Z ) 550,688 545,779 523,580 514,950 506,174 484,198 477,493 462,426 459,977 450,910

DVaR(Z ) 4.46% 6.60% 6.89% 9.06% 9.64% 9.84% 12.25% 14.16% 16.22% 17.53%

DES(Z ) 4.73% 6.84% 7.15% 9.83% 12.01% 14.62% 17.11% 18.70% 19.63% 20.76%

Table 4: Results for a portfolio composed of X and Y , where X is lognormally distributed with µ= 6.52 and σ= 2.15, and Y is

Fréchet distributed with a = 1.5 and s = 4,657.15.
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Figure 6: Risk-adjusted capital and diversification gain for different choices of the copula and rank

correlations ρτ = 0.35. X and Y are both Fréchet distributed.

vativeness. In Figure 7, the trend of the diversification gain as a function of the dependence is

illustrated. No contradiction arose with respect to Figure 2.

In Figure 8, the influence of the dependence on the RAC is highlighted. The presence in the

portfolio of one extreme value df is sufficient to emphasize the difference between the RACVaR(Z )

and the RACES(Z ).

5 Dependence and Capital Allocation

In this section, we investigate by means of Monte Carlo simulations the role of dependence

on capital allocation. We refer to Goovaerts et al. (2003) for a broad discussion on allocation

principles. A capital allocation principle is a method to split the overall risk capital of a portfolio

among its components. For the purpose of this analysis, two allocation principles are described.

As in the previous section, we drop the α indicating the percentile from the notation.
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Figure 7: Diversification gain as a function of both the strength and the structure of depen-

dence. The risk measure is the expected shortfall. X is lognormally distributed and Y is Fréchet

distributed.
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Figure 8: Risk-adjusted capital and diversification gain for different choices of the copula and rank

correlations ρτ = 0.35. X is lognormal distributed and Y is Fréchet distributed.
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• Euler principle. According to the Euler principle, the expected shortfall contribution of

risk X to the portfolio Z = X +Y is given by

ES(X , Z ) = E [X |Z ≥ VaR(Z )] . (5.1)

Thus, the RAC allocated to risk X is equal to

RACES(X , Z ) = ES(X , Z )−E(X ). (5.2)

We denote by RACES(X |Z ) the percentage of RAC allocated to risk X , i.e.

RACES(X |Z ) =
RACES(X , Z )

RACES(Z , Z )
=

RACES(X , Z )

RACES(Z )
. (5.3)

The contribution of risk Y to the portfolio Z is obtained analogously. For more informa-

tion on the Euler principle, we refer to Tasche (2008).

• Haircut principle. According to the haircut principle and in agreement with the above

notation, the contribution of risk X to the portfolio Z = X +Y is given by

VaR(X , Z ) =
VaR(X )

VaR(X )+VaR(Y )
VaR(Z ). (5.4)

Hence, the RAC allocated to risk X is equal to

RACVaR(X , Z ) = VaR(X , Z )−E(X ). (5.5)

We denote by RACVaR(X |Z ) the percentage of RAC allocated to risk X , i.e.

RACVaR(X |Z ) =
VaR(X )

VaR(X )+VaR(Y )
. (5.6)

A description of the haircut principle is offered in Dhaene et al. (2009), Section 2.
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Both principles lead to a full allocation of the capital requirement, i.e. RACES(X |Z )+RACES(Y |Z ) =

RACES(Z ) and RACVaR(X |Z )+RACVaR(Y |Z ) = RACVaR(Z ). Concerning the haircut principle, the

full allocation criterion may be not satisfied if we substitute the right hand side of (5.6) with

̺(X )

̺ (X +Y )
. (5.7)

If̺(·) = VaR(·), in particular, this alternative implies in general that VaR(X )+VaR(Y ) > VaR(X +Y ),

due to the lack of subadditivity, see Section 4.

Among capital allocation principles, Theorem 4.4 in Tasche (1999) proves that only the Euler

principle is suitable for performance measurement. This feature is very important in steering

the portfolio towards profitability through RORAC (return on risk-adjusted capital) optimiza-

tion. The RORAC of a risk (portfolio) represents the ratio between the expected profit and

the risk capital contribution necessary to run that risk within the portfolio. Roughly speaking,

Tasche’s theorem guarantees that if, according to the Euler principle, the RORAC of risk Xi is

higher than the RORAC of the portfolio containing that risk, then an increase of the weight of

risk Xi will improve the RORAC of the entire portfolio.

In agreement with Section 4, we first study a portfolio Z ′ composed of two risks both lognor-

mally distributed, namely X ,Y ′ ∼ logN(9.58,0.83). The Value-at-Risk is computed at 99.5% and

expected shortfall at 99%. Our goal is to study the Euler and the haircut capital allocation prin-

ciples under several dependence assumptions. We also investigate how these principles react

to changes in the riskiness of the portfolio components. Thus, we define two other portfolios,

Z ′′ and Z ′′′, composed of X and Y ′′ or X and Y ′′′, respectively, where Y ′′ ∼ logN(9.58,0.70) and

by Y ′′′ ∼ logN(9.58,0.40). Hence, with respect to the original portfolio Z ′, the riskiness of the
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second component is reduced, varying its parameter σ. We implement ad-hoc procedures to

quantify the allocated capital per risk. All the results are obtained with Monte Carlo methods

that benefit of 107 iterations. In Table 5, we provide the results for portfolios where the assumed

dependence structure is either a Clayton-M copula or a Gauss copula. Concerning the strength

of dependence, which is characterized via the Kendall’s tau, results are given for ρτ = 0.20 and

ρτ = 0.50.

From (5.6), we notice that the denominator, VaR(X )+VaR(Y ), does not take into account

the dependence among risks. Thus, as our empirical data emphasizes, the haircut allocation

principle does not react neither to changes in the dependence structure nor to changes in the

strength of dependence within the portfolio. For instance, considering Z ′′′, both when we have

a Clayton-M or a Gauss copula and ρτ = 0.20 or ρτ = 0.50, for any combination the RACVaR(Y |Z )

=̃24.8%. Naturally, the capital requirement varies in terms of absolute amounts, but this is

a consequence of the varied RACVaR(Z ) only. Hence, continuing the previous example, the

RACVaR(Y , Z ) fluctuates from 29,052 to 31,229, and from 27,078 to 29,528. The alternative for-

mulation of the haircut principle, using (5.7), would grant a sensibility to dependence assump-

tions, because of its denominator. Unfortunately, as noticed above, this alternative would not

grant a full allocation of the capital.

The Euler principle, instead, is able to catch different dependence conditions directly in

terms of the weights assigned to the portfolio components. For instance, considering again

Z ′′′, RACES(Y |Z ) with a Gauss copula equals 6.75% when ρτ = 0.20 and 13.80% when ρτ = 0.50.

Thus, to an increased strength of dependence, the Euler principle reacts assigning more weight

to the less volatile risk. This behavior is in accordance with the intuition that if risks are linked by
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Clayton-M Gauss

Z ′ Z ′′ Z ′′′ Z ′ Z ′′ Z ′′′

ρτ = 0.20

RACVaR(Z ) 174,239 146,924 116,991 151,383 128,099 109,411

RACES(Z ) 200,040 168,377 133,076 169,847 143,639 124,131

Euler

RACES(X |Z ) 49.97% 63.88% 86.89% 50.21% 69.83% 93.25%

RACES(Y |Z ) 50.03% 36.12% 13.11% 49.79% 30.17% 6.75%

RACES(X , Z ) 99,956 107,565 115,629 85,283 100,302 115,746

RACES(Y , Z ) 100,084 60,812 17,447 84,564 43,337 8,385

Haircut

RACVaR(X |Z ) 50.00% 58.25% 75.17% 50.15% 58.26% 75.25%

RACVaR(Y |Z ) 50.00% 41.75% 24.83% 49.85% 41.74% 24.75%

RACVaR(X , Z ) 87,122 85,584 87,939 75,919 74,627 82,332

RACVaR(Y , Z ) 87,117 61,340 29,052 75,464 53,472 27,078

ρτ = 0.50

RACVaR(Z ) 201,787 168,429 125,686 180,858 151,972 118,774

RACES(Z ) 231,055 190,749 141,822 204,212 171,353 134,091

Euler

RACES(X |Z ) 50.04% 60.53% 82.07% 49.88% 63.35% 86.20%

RACES(Y |Z ) 49.96% 39.47% 17.93% 50.12% 36.65% 13.80%

RACES(X , Z ) 115,617 115,453 116,389 101,871 108,551 115,582

RACES(Y , Z ) 115,439 75,297 25,433 102,341 62,801 18,509

Haircut

RACVaR(X |Z ) 50.13% 58.31% 75.15% 49.99% 58.27% 75.14%

RACVaR(Y |Z ) 49.87% 41.69% 24.85% 50.01% 41.73% 24.86%

RACVaR(X , Z ) 101,149 98,218 94,456 90,408 88,553 89,245

RACVaR(Y , Z ) 100,637 70,211 31,229 90,450 63,419 29,528

Table 5: Numerical results for the capital allocation. X and Y indicate the first and the second

component of the general portfolio, denoted by Z .
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a stronger dependence, we have to pay higher attention to the less volatile risks as well, because

the probability that something goes wrong for them too is increased by the stronger dependence

with the more volatile risks. The same remark is valid considering a change in the structure of

dependence. In particular, if we move from the Gauss to the Clayton-M assumption, we are

heightening tail dependence and increasing conservativeness, as described in Section 4. Hence,

continuing the previous example, we register an increase in the weight of the less volatile risk

that moves from 6.75% to 13.11%, when ρτ = 0.20, and from 13.80% to 17.93%, when ρτ = 0.50.

(Unreported) extensive analysis have been conducted for all copulas listed in Table 1. The

above mentioned order of conservativeness leads, in the Euler principle, to an equivalent order

in terms of the importance of the weights assigned to less volatile risks. Hence the values of,

say, RACES(Y |Z ), will range from the minimum weight assigned by the Clayton copula, followed

by the the Frank, the Gumbel-M, the Gauss, the t and the Gumbel copula, to the maximum

weight assigned by the Clayton-M copula. The complete analysis on the capital allocation is

repeated for two other portfolios. We consider a portfolio composed of two Fréchet distributed

random variables, both originally with a = 1.5 and s = 4,657.15, and then we modify the second

component. Similarly, we study a portfolio that mixes a Fréchet distributed random variable

with a = 1.5 and s = 4,657.15 together with a lognormally distributed random variable with

µ = 6.52 and σ = 2.15, such that the weight of the two risks is almost equivalent in the original

composition, and then we reduce the riskiness of the Fréchet rv increasing its shape parameter,

a (see Appendix A). All these further analysis confirm the above remarks about the link between

(structure and strength of) dependence and allocation of capital.
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6 Proposals for Future Research

We dealt with bivariate copulas but most of the concept illustrated here can be easily extended

to higher dimensions. The fair comparison among structures of dependence, granted by the link

between the copulas’ parameter and Kendall’s tau, could be maintained without loss of gener-

ality in case of one-parameter copula families, like the Archimedean copulas here discussed. In

case of elliptical copulas, instead, this fair comparison would require to deal with a subset of the

specific copula family. For instance, if d = 3, we should define the Gauss copula such as it gives

the same dependence among all the three portfolio components.

In Bürgi et al. (2009) the authors investigate the diversification gain using a reference model

based on a Clayton-M copula. The Monte Carlo techniques employed in our analysis could be

used to extend their study varying the reference model (both in terms of copula and parameter)

and reviewing the diversification gain. This procedure would allow to judge the conservative-

ness of assumptions on dependence with respect to each possible reference model assumed to

represent the reality.

7 Conclusion

In this paper, we pointed out the importance of dependence in the assessment of the capital re-

quirements. The appraisal of RAC is heavily influenced by both the strength and the structure of

dependence which are assumed in modeling the portfolio. Through the investigation of several

copula models we identified an order among them in terms of conservativeness, with regard to

the stated diversification gain. We observed robustness of this order varying both parametric
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and non parametric assumptions about marginal distributions. The results of our analysis send

a warning concerning the cautiousness of certain assumptions. The main risk is to overestimate

the diversification gain, and thus to underestimate the RAC of the portfolio, due to an improper

choice of the copula model. Regarding risk measures, we noted the sizeable differences in terms

of RAC based on VaR and on ES as the importance of the tail increases. Indeed, the tail of the dis-

tribution plays a fundamental role in determining the RAC, from a twofold perspective. In case

the risk measure is the ES, it directly takes into account the shape of the tail for determining the

capital requirements. Moreover, the dependence among risks ought to be modeled cautiously

on the tail, as certain copulas allow to do.

Finally, we discussed capital allocation principles. We observed that the split of the overall

risk capital of a portfolio among its components can either take dependence into account or not.

The Euler principle reacts to changes in dependence assumptions. In particular, we showed that

as dependence increases in strength or it is heightening with respect to tail dependence, the less

volatile risk gains more weight coherently with the increased probability of a joint severe event.
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A Fréchet distribution

Definition A.1 (Fréchet distribution). A continuous random variable X is said to have a Fréchet

distribution if its cdf is

FX (x) =























exp
(

−( x
s

)−a
)

, x > 0,

0, x ≤ 0,

(A.1)

where a > 0 is the shape parameter and s is the scale parameter.

The mean of the Fréchet distribution is given by E(X ) = Γ (1−1/a) s whereΓ(γ) =
∫∞

0 xγ−1 exp(−x)d x

is the Gamma function.
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