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“There is no “right” model. The best you can do is pick a model that

mimics the most important behavior of the underlyer in your market.

Then add perturbations if necessary.”

– Emanuel Derman in “Modeling the Volatility Smile”.

Abstract

The May 2005 crisis and the recent credit crisis have indicated to us that any
realistic model of default dependency needs to account for at least two risk factors,
firm-specific and catastrophic. Unfortunately, the popular Gaussian copula model has
no identifiable support to either of these. In this article, a two parameter model of
default dependency based on the Lévy subordinator is presented accounting for these
two risk factors. Subordinators are Lévy processes with non-decreasing sample paths.
They help ensure that the loss process is non-decreasing leading to a promising class
of dynamic models. The simplest subordinator is the Lévy subordinator, a maximally
skewed stable process with index of stability 1/2. Interestingly, this simplest subordi-
nator turns out to be the appropriate choice as the basic process in modeling default
dependency. Its attractive feature is that it admits a closed form expression for its dis-
tribution function. This helps in automatic calibration to individual hazard rate curves
and efficient pricing with Fast Fourier Transform techniques. It is structured similar
to the one-factor Gaussian copula model and can easily be implemented within the
framework of the existing infrastructure. As it turns out, the Gaussian copula model
can itself be recast into this framework highlighting its limitations. The model can
also be investigated numerically with a Monte Carlo simulation algorithm. It admits a
tractable framework of random recovery. It is investigated numerically and the implied
base correlations are presented over a wide range of its parameters. The investigation
also demonstrates its ability to generate reasonable hedge ratios.
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Modeling dependent events and their correlations has remained a challenging issue. An
understanding of its implications is needed for pricing derivative instruments referencing a
collection of credit names, and it is a subject of interest outside the realm of credit derivatives
as well. Many models have been developed for pricing the correlation products, but the
market standard has remained the Gaussian copula model in spite of all the criticisms it
received for its alleged role in the recent credit crisis. As has been emphasized by many, it has
been well-known that the Gaussian copula model has serious limitations and is inadequate
as a model of default dependency.

Major attraction of the Gaussian copula model is its simplicity and tractability. It can
easily be calibrated to individual hazard rate curves. It can be formulated in closed form
providing a semi-analytical framework for pricing. It admits efficient pricing with recursive
methods or Fast Fourier Transform techniques. As we will see in this article, there exists
another simple and tractable model similar in architecture that also enjoys these properties.
Unlike the Gaussian copula model, it is a dynamical two-parameter model capable of offering
a reasonable explanation of the correlation smile. The two parameters provide the two
measures necessary to assess dependency risk, a measure of correlation and that of the
likelihood of a catastrophe. The model is based on the Lévy subordinator, an α = 1/2 stable
process maximally skewed to the right, whose distribution function is expressible in closed
form and is known as the Lévy distribution. Though it is inevitable that, with a model of
such few parameters, there is bound to exist a residual smile, the ability to capture the smile
characteristics will be helpful in sensitivity analysis and stress testing.

Issues with the Gaussian copula model have been addressed before. Brigo, Pallavicini and
Torresetti [2010] provide a discussion of its limitations and an account of the developments
in this field. They also note that, since the start of the credit crisis, the probability mass
associated to a catastrophic or armageddon event, i.e. the default of the entire pool of
credit references, has increased dramatically. The need for such a catastrophic scenario
while pricing the super-senior tranche was noted earlier by many authors, see for instance
Balakrishna [2009]. However, in many of the models, such a scenario needs to be enforced,
somewhat artificially. An attractive feature of the subordinator models discussed here is
that such a scenario arises naturally as a consequence of a drift term that is well-known to
be a natural component of the dynamics of subordinators.

During the earlier May 2005 crisis, a so-called correlation dislocation is said to have taken
place. As has been pointed out by many, this is attributable to increased firm-specific risk.
The May 2005 crisis and the recent credit crisis have thus indicated to us that any realistic
model of default dependency needs to account for at least two risk factors, firm-specific and
catastrophic. Unfortunately, the Gaussian copula model has no identifiable support to either
of these. The two risk factors necessitate introduction of at least two parameters into any
realistic model of default dependency as in the models discussed in this article.

Pricing models are helpful in computing hedges. Delta-hedges are sensitivities to the
underlyings and are relatively more important. When the underlyings are credit default
swaps as in our case, sensitivities are determined with respect to the individual hazard
rates, assuming an environment wherein the parameters governing default dependency are
relatively stable. Hazard rates are intensity-like variables having dimension of inverse time.
Many of the pricing models have other intensity-like variables in them. It is not obvious while
computing delta-hedges whether such variables need to be bumped along with the hazard

2



rates. An important virtue of the Gaussian copula model is that it has no such additional
intensity-like variables. As we will see in this article, the subordinator models discussed here
share this virtue as they too have no additional intensity-like variables.

Models of the volatility smile have taught us that an explanation of the smile alone is not
a guarantee for obtaining satisfactory hedge ratios. Local volatility models, though capable
of providing a perfect fit to the smile, are criticized for giving rise to hedge corrections
inconsistent with typical market behavior. Models respecting some concept of stationarity
have been pursued to obtain better hedge ratios. Within the context of the correlation
smile, subordinator models discussed here attempt to achieve a similar goal. Numerical
investigation of the Lévy subordinator model demonstrates its ability to generate reasonable
hedge ratios under a wide range of its parameters.

In Balakrishna [2007] and some of the literature in the field, it is found that the modeled
loss distribution displays one or more bumps along its tail. Even if such a distribution is
able to reproduce the market prices providing an explanation of the correlation smile, it is
not immediately obvious whether the bumps are a realistic feature of the distribution or an
artifact of the model. Models capable of reproducing the market prices without such bumps,
even if less accurate, can potentially give rise to better behaved prices and sensitivities. As
it turns out, the Lévy subordinator model presented here exhibits no such bumps along the
tail of its default probability distribution.

The article is organized as follows. To start with, a brief review of subordinators is pre-
sented in section 1. In section 2, a one-factor framework of default dependency is formulated
starting with the de Finetti theorem from probability theory. Two classes of models arise
naturally that are termed type-I and type-II. These models formulated on an infinitely large
homogeneous collection to start with are further extended in section 3 to be applicable to
finite heterogeneous collections and to general hazard rate curves. Type-I models are well-
known that include many of the reduced form models that have a systemic component to
their dynamics. Type-II models are formulated as new that include the subordinator models
introduced here but it turns out, as discussed in section 4, that the popular copula models
can also be recast into this framework. Section 5 discusses type-II models governed by sta-
ble subordinators, in particular the Lévy subordinator model based on the α = 1/2 stable
subordinator. Section 6 discusses some niceties of the α = 1/2 choice found numerically as
appropriate. An attractive feature of the Lévy subordinator model is the possibility of semi-
analytical pricing that is discussed in section 7. Section 8 discusses the large homogeneous
pool approximation. Section 9 is a short presentation of an efficient pricing technique based
on the Fast Fourier Transform. The model can also be investigated numerically with a Monte
Carlo simulation algorithm as discussed in section 10. As is now well appreciated, random
recovery is helpful in better pricing of the senior tranches, and section 11 presents a tractable
framework of random recovery. The effect of initial conditions is analyzed in section 12. Sec-
tion 13 discusses default contagion within the present framework. Some possible extensions
such as intensity based modeling are discussed in section 14. Section 15 concludes with a
discussion and a brief summary. Figures 1-16 present the results of a numerical investigation
into the model’s implications.
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1 A Brief on Subordinators

Lévy processes, and hence subordinators, is a well researched branch of mathematics. For
the sake of completeness, the following gives a brief review of subordinators.

A stochastic process is an indexed family of random variables. A continuous-time stochas-
tic process is such a process indexed over continuous time. A Lévy process is a continuous-
time stochastic process starting as zero that has independent and stationary increments,
and is stochastically continuous. Independence is a statement that increments over disjoint
time-intervals are independent random variables. Stationarity is a statement that incre-
ment over any time-interval is distributed with its time-dependence only on the length of
the time-interval. Stochastic continuity means that jumps are random and rare, that the
probability of a jump occurring at a given time is zero. A realization or a sample path of a
stochastic process is a sampling of each of the random variables in the family. Subordinators
are real-valued Lévy processes with non-decreasing sample paths.

Given a subordinator X(t), its Laplace transform, or equivalently its Laplace exponent
η(u), is given by

e−tη(u) = E
{
e−uX(t)

}
, u ≥ 0, (1)

where E {} denotes expectation value. The specific time-dependence assumed for the Laplace
transform above is a consequence of the properties of the subordinator as a Lévy process.
It follows that the Laplace exponent of a sum of two independent subordinators is the sum
of their Laplace exponents. An important result for Lévy Processes is the Lévy-Khintchine
formula. In the case of subordinators, it gives for the Laplace exponent

η(u) = bu+

∫ ∞

0

λ(dy)
(
1− e−uy

)
. (2)

Here b ≥ 0 is called the drift coefficient that contributes a non-negative drift bt to X(t)
so that X(t) ≥ bt for all t. λ(dy) is called the Lévy measure that is required to satisfy∫∞
0
λ(dy)min(y, 1) < ∞. It is also true that any function of the above form is the Laplace

exponent of a subordinator.
An important subclass of subordinators are stable subordinators. Their Laplace exponent

is η(u) = auα+ bu for some constant a and index of stability α ∈ (0, 1), obtainable from the
Lévy measure aα [Γ(1− α)]−1 y−1−αdy. Stable subordinators are also a subclass of stable
processes having index of stability α ∈ (0, 1) and maximally skewed to the right, that is,
their skew parameter set to one. It follows that stable subordinators (more generally stable
processes) feature an additive property, that is if X(t) and Y (t) are two independent stable
subordinators with index of stability α (and parameters bX , aX and bY , aY ), then Z(t) =
pX(t)+ qY (t) is also a stable subordinator with index of stability α (having bZ = pbX + qbY
and aZ = pαaX + qαaY ).

Inversion of the Laplace transform gives us the probability density function of the random
variable X(t) at time t, or equivalently its cumulative distribution function gt(x) given by

gt(x) = E
{
1X(t)≤x

}
, (3)

where 1{···} is the indicator function. No closed form expression is available for gt(x) in
general for the stable subordinators, except for the α = 1/2 stable subordinator called the
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Lévy subordinator1. In the case of the Lévy subordinator that has η(u) = a
√
u + bu, the

distribution is known as the Lévy distribution and is given by

gt(x) = 2N
(
−at/

√
2(x− bt)

)
,

∂xgt(x) =
1

2
√
π
at(x− bt)−3/2e−

1
4
(at)2/(x−bt), (4)

where N() is the cumulative standard normal distribution function. This includes a non-
negative drift component bt discussed above so that gt(x) and ∂xgt(x) can be taken to be
zero for x < bt.

Lévy distribution (4) is also the first passage time distribution of a Brownian motion
over time variable x ≥ bt with the barrier set at at/

√
2. The first passage time distribution

of a Brownian motion with drift rate c
√
2, that is of a Gaussian process, is also available in

closed form and is known as the inverse Gaussian distribution. The associated subordinator
is the inverse Gaussian subordinator that has η(u) = a

(√
u+ c2 − c

)
+ bu and

gt(x) = N (−at/z + cz) + e2actN (−at/z − cz) ,

∂xgt(x) =
2√
2π
ateactz−3e−

1
2((at)2z−2+c2z2), z =

√
2(x− bt). (5)

Though not a stable subordinator, inverse Gaussian subordinator is useful as the natural
extension of the Lévy subordinator. Its Lévy measure is that of the Lévy subordinator
damped exponentially with e−c

2y. Other stable subordinators are also generalized in this
way with an exponential damping called tempering of the Lévy measure.

Stable subordinators feature a scaling property such that (at)−1/α(X(t)− bt) is indepen-
dent of t in distribution, that is gt(x) is a function of the combination (at)−1/α(x− bt). This
scaling property is evident in the behavior of the tail of their distributions. The long tail of
the distribution of a stable subordinator X(t) obeys a power-law decay with

gt(x+ bt) → 1− at [Γ(1− α)]−1 x−α, for large x. (6)

At the very short end, the log-distribution exhibits a power-law behavior with

− ln gt(x+ bt) → (1− α)
(
α(at)1/α

)α/(1−α)
x−α/(1−α), for small x. (7)

A consequence of the power-law decay for large x is that stable subordinators have both
infinite mean and infinite variance.

The scaling property enables one to express the distribution function gt(x) for any stable
subordinator in terms of that of a standardized random variable Z. Random values of Z can
be generated using Kanter’s method (special case of the Chambers-Mallows-Stuck method for
a stable distribution) from two independent random numbers: an exponentially distributed

1In the literature, one sometimes finds the term “Lévy subordinator” used for all subordinators. As
in Applebaum [2005], it is used here just for the α = 1/2 stable subordinator. Similarly, the term “Lévy
distribution” is used here just for its distribution.
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W with unit mean and a uniformly distributed θ ∈ (0, π) (see for instance Zolotarev [1986]).
For the stable subordinator standardized to yield η(u) = uα, this can be obtained as

Z =
sin(αθ)

sin(θ)

[
sin ((1− α)θ)

W sin(θ)

](1−α)/α
. (8)

The distribution function fα(z) of Z thus computed depends on just α and hence can be
used at any time t to obtain gt(x) = fα(z) given z = (at)−1/α(x− bt), x > bt.

The most basic subordinator is the Poisson process having η(u) = λ(1−e−u). It has unit-
size jumps occurring at intensity λ. The form of the Laplace exponent in (2) indicates that a
subordinator should be constructible from Poisson processes with varying jump sizes. Lévy-
Itô decomposition theorem applied to subordinators provides us with such a construction
that reads, in the differential form,

dX(t) = bdt+

∫ ∞

y=0

ydN(λ(dy), t). (9)

Here N(λ(dy), t) is a Poisson process of intensity λ(dy) associated with the interval (y, y +
dy) and dN(λ(dy), t) is its increment over the time interval (t, t + dt). Poisson increments
associated with disjoint t and disjoint y intervals are independent random variables. If
N(λ(dy), t) jumps up by one at time t, dN(λ(dy), t) causes X(t) to jump up by y at time t.
Over an infinitesimal time interval (t, t+ dt), we have

E {exp [−uydN(λ(dy), t)]} = exp
[
−dtλ(dy)

(
1− e−uy

)]
. (10)

This follows simply on noting that dN(λ(dy), t) takes values zero and one with probabilities
1 − dtλ(dy) and dtλ(dy) respectively, irrespective of the value of N(λ(dy), t). It is now
straightforward to obtain the Laplace exponent (2) summing up contributions arising from
disjoint t and disjoint y intervals.

2 One Factor Formulation

It is instructive to proceed formulating the model starting with an infinitely large homoge-
neous collection of credit names. This offers an intuitive insight into its structure that has
a basis in probability theory due to a theorem attributed to de Finetti. The model then
evolves as a natural extension of this formulation.

Given an infinite homogeneous collection of credit names, consider a configuration of
its defaulted and undefaulted states at some future time t. Let us say our interest is not
in the actual assignment of states among the names, but only on the fraction of names in
the defaulted states. The collection being infinite, this fraction ν can take any value from
zero to one. The configuration is thus characterized by just one common risk factor that is
identifiable with the fraction ν.

Given such a configuration, the assignments of fraction ν names defaulted and the rest
undefaulted are all equally possible. The probability of finding a given name defaulted is
ν. Because the collection is infinite, the probability of finding a second name defaulted
given that the first one has been is also ν, so that the probability of finding both the names
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defaulted is ν2. More generally, the probability of finding a set of j names defaulted and k
names undefaulted is νj(1 − ν)k. In other words, the states can be treated as independent
variables. If the configuration under consideration itself has a probability density function
∂νFt(ν), Ft(ν) being the cumulative default distribution function, the probability of finding
j names defaulted and k names undefaulted can hence be written as

P[j,k](t) =

∫ 1

0

dν∂νFt(ν)ν
j(1− ν)k. (11)

This is a one-factor formulation since, given a value of just one variable ν, defaults get treated
as independent random variables. This intuitive result has a basis in probability theory due
to a theorem attributed to de Finetti. It is sometimes helpful to express Ft(ν) in terms of a
random variable V(t) taking values in [0, 1] as

Ft(ν) = E
{
1V(t)≤ν

}
. (12)

Random variables V(t) for all t > 0 with V(0) = 0 can be viewed together as defining a
stochastic process that we may denote for simplicity as V(t) itself.

Some general characteristics of Ft(ν) can be inferred to start with. It is of course a
non-decreasing function of ν. As the May 2005 crisis has indicated, there can be firm-
specific contributions to defaults and hence, in a realistic model, one expects a minimum
value νmin(t) for ν below which Ft(ν) = 0. This is because firm-specific contributions are
mutually independent and hence, in an infinitely large homogeneous collection, one expects
at least a fraction of names equal to the firm-specific default probability to have defaulted.
Further, it has been usual to consider Ft(ν) → 1 as ν → 1. But, as the recent credit crisis
has indicated, there can be a non-zero probability for all the names in the collection to have
defaulted by time t so that Ft(ν) should be allowed to tend to some Fmax(t) < 1 as ν → 1.
For ν in-between, Ft(ν) is expected to be a decreasing function of t. Note that V(t) can not
be decreasing as a function of t since we do not allow for recovery of defaulted names. Given
two times t1 and t2, t1 < t2, we have

Ft1(ν)− Ft2(ν) = E
{
1V(t1)≤ν − 1V(t2)≤ν

}
= E

{
1V(t1)≤ν,V(t2)>ν

}
− E

{
1V(t1)>ν,V(t2)≤ν

}
. (13)

For a non-decreasing stochastic process V(t), the last expectation above is zero. Assuming
that there are nonzero contributions to the first term, as is usually the case, we thus have
Ft1(ν) > Ft2(ν) for ν in-between.

Formulation (11) has all the complexities of the model bundled into one common function
Ft(ν). We may proceed with it by modeling V(t), but there is an interesting and more flexible
alternate formulation that emphasizes individual behavior. Let us rewrite (11) as

P[j,k](t) =

∫ 1

0

dF [pt(F )]
j[1− pt(F )]

k, (14)

where pt(F ) is the inverse of Ft(ν) defined by pt(Ft(ν)) = ν, ν ≥ νmin(t). Because Ft(ν) is
now an integration variable, both of its t and ν dependences have been conveniently dropped.
F can be viewed as a uniformly distributed random variable. Note that all the functional
intricacies are now bundled into the conditional individual default probability pt(F ).
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Generic characteristics of Ft(ν) discussed above imply similar ones for pt(F ). Equiva-
lently, they can be inferred from F viewed as an indicator of economic conditions, with higher
F corresponding to less favorable circumstances. Conditional individual survival probability
qt(F ) = 1 − pt(F ) is a non-increasing function of F for all t > 0. With F = 1 corre-
sponding to the worst case scenario, that of total collapse with all the names defaulting, we
have qt(1) = 0. A non-zero probability of such a scenario implies that qt(F ) = 0 for some
F ≥ Fmax(t). At the F = 0 end, the common variables are ineffective in causing defaults so
that qt(0) is firm-specific. As noted earlier, Ft(ν) for ν in-between is a decreasing function
of t. Consequently, for F in-between, qt(F ) is decreasing as a function of t, starting at one
and ending up at zero as t runs from zero to infinity.

The characteristics of qt(F ) suggest that 1− qt(F )/qt(0) can be viewed as the cumulative
distribution function of a random variable Φi(t) taking values in [0, 1]. In other words,

qt(F ) = qt(0)E
{
1Φi(t)≥F

}
. (15)

Random variables Φi(t) for all t > 0 can be viewed together as defining a stochastic pro-
cess, denoted for simplicity as Φi(t) itself. It is a non-increasing process with Φi(0) = 1
and Φi(∞) = 0. There is one such independent stochastic process for each name in the
collection, hence the name-subscript. In the homogeneous collection under discussion here,
they are identically distributed. For the unconditional individual default probability P (t),
or equivalently its survival counterpart Q(t) = 1− P (t), we then have

Q(t) =

∫ 1

0

dFqt(F ) = qt(0)E

{∫ 1

0

dF1Φi(t)≥F

}
= qt(0)E {Φi(t)} . (16)

Satisfying this ensures that the model gets calibrated to individual hazard rate curves.
Models based on formulation (11) are referred to here as type-I models. Note that there

is only one stochastic process V(t) in its one-factor formulation modeling the common factor.
Many reduced form models belong to this class. Intensity based models that have a systemic
component to their stochastic default intensities are type-I models. Because V(t) is directly
related to the loss process (for uniform recovery rates), many loss process models can also
be viewed as type-I models.

In contrast, formulation (14) appears new. Here the collection, though homogeneous, has
one independent stochastic process Φi(t) for each of its names. A model of these Φi(t)s is
referred to here as a type-II model. These models are in some sense like structural models. It
turns out that the popular copula models can be reformulated as belonging to this class. The
reformulation highlights their unnaturalness modeling Φi(t)s as static objects. Interestingly,
as we will discover, there also exist new models, perhaps more promising, that model Φi(t)s
as genuinely dynamic stochastic processes.

3 Finite Heterogeneous Collection

The previous discussion was confined to an infinite homogeneous collection leading to two
formulations of default dependency. The formulations can be considered to be applicable as
such to a finite homogeneous collection under the assumption that the latter can be extended
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to an infinite one. The two formulations result in different models depending on the choices
made for V(t) or Φi(t)s. The following introduces further extensions of the two homogeneous
versions to heterogeneous collections.

Consider type-I formulation (11) to start with. It is convenient to work with Λ(t) =
− ln[1−V(t)], a non-decreasing process taking values in [0,∞] with Λ(0) = 0 and Λ(∞) = ∞.
The joint survival probability QΩ(t) for a list of names in Ω can then be expressed as

QΩ(t) = E
{
e−

∑
i∈Ω Λi(t)

}
. (17)

A name-subscript i has been attached to Λ(t) to make it applicable to a heterogeneous
collection. Since we had only on process V(t) to start with, expectation E{} is taken with
respect to a common process X(t) in a one factor formulation. All Λi(t)s are considered
to be driven by X(t), for instance as Λi(t) = aiX(t) + bit for some parameters ais and bis.
Expression (17) indicates that defaults are independent given a realization of X(t). For the
unconditional individual survival probability Qi(t), we now have

Qi(t) = E
{
e−Λi(t)

}
. (18)

Satisfying this ensures that the model gets calibrated to individual hazard rate curves.
Type-II formulation (14) can be similarly generalized to a finite heterogeneous collection.

Here too, it is convenient to work with Λi(t) = − ln Φi(t) for each name, a non-decreasing
stochastic process taking values in [0,∞] with Λi(0) = 0 and Λi(∞) = ∞. The conditional
default and survival probabilities pt(F ) and qt(F ) = 1− pt(F ) are now denoted with name-
subscripts as pi(F, t) and qi(F, t) respectively. Integration variable F may now be viewed
simply as a uniformly distributed common factor. In terms of Λi(t), qi(F, t) reads

qi(F, t) = qi(0, t)E
{
1Λi(t)≤− lnF

}
. (19)

For the unconditional individual survival probability Qi(t) we then have

Qi(t) = qi(0, t)E
{
e−Λi(t)

}
. (20)

Satisfying this ensures that the model gets calibrated to individual hazard rate curves. The
joint survival probability QΩ(t) for a list of names in Ω can be expressed as

QΩ(t) =

∫ 1

0

dF
∏

i∈Ω
qi(F, t) =

[
∏

i∈Ω
qi(0, t)

]
E
{
e−Maxi∈ΩΛi(t)

}
, (21)

where Maxi∈Ω picks up the largest Λi(t) in Ω. This follows from the fact that Λi(t)s are
independent stochastic processes. It is interesting to note that this defines the model with
no reference to the common factor that has been integrated away. Dependency is built into
the combination Maxi∈ΩΛi(t).

The two apparently equivalent formulations have resulted in very different models of de-
fault dependency, especially at the heterogeneous level. Expression (17) emphasizes condi-
tional independence of defaults. In contrast, expression (21) indicates conditional maximum
dependency, a supplier-consumer kind of dependency. To understand it better, consider a
realization of the Λi(t) processes. Within the context of the realization, (21) suggests that
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the joint survival probability of a list of names in Ω is e−Maxi∈ΩΛi(t) (here and below, it is
assumed that they have survived their firm-specific risk factors). Consider further just two
names in Ω say 1 and 2, and a realization with Λ1(t) ≤ Λ2(t). The probability of both
the names having survived during (0, t) is e−Λ2(t). Since the survival probability of name 2
irrespective of the state of name 1 is also e−Λ2(t), this implies that it is not possible to have
name 1 defaulted and name 2 survived. If name 1 has defaulted, then name 2 should have
defaulted as well. More generally, without loss of generality, consider a realization with the
ordering Λ1(t) ≤ Λ2(t) ≤ · · ·. In this ordering, if name i is known to have defaulted during
(0, t), all names labeled j > i should have defaulted as well. That is, if a common crisis has
resulted in name i defaulting, then all names known to be more vulnerable to the crisis in a
realization should have defaulted as well. Stated this way, maximum dependency appears to
be more realistic than the conditional independence formulation of expression (17). Besides,
some contagion effects appear to be already in place.

The F−formulation can be viewed as realizing the Λi(t) processes further to obtain
an assignment of defaulted and undefaulted states. This follows after re-introducing the
F−integral as

e−Maxi∈ΩΛi(t) =

∫ 1

0

dF
∏

i∈Ω
1Λi(t)≤− lnF . (22)

F can be sampled from a uniform distribution. Given a value for F , a name is in defaulted
or undefaulted state at time t depending on whether Λi(t) is above − lnF or not. Thus,
in some sense, Λi(t) can be viewed as the amount of impact a common crisis has on a
name and − lnF as the minimum amount of impact needed to lead to a default. In an
infinite homogeneous collection, because Λi(t)s are independent and identically distributed,
the fraction of Λi(t)s below − lnF , and hence the fraction 1 − ν of names in undefaulted
states at time t (conditional on surviving their firm-specific risk factors) is expected to agree
with the cumulative distribution function of Λi(t), namely E

{
1Λi(t)≤− lnF

}
. This is consistent

with our earlier discussion in section 2 and realizes V(t) as pt(F ). Note that Λi(t) is assumed
here to keep evolving even after default, but does not get counted below − lnF after default
(consider − lnF time-independent as in the following).

In the case of type-II models, a straightforward extension of (21) to joint distribution of
default times is

Prob(τi > ti, τj > tj, · · ·) =

∫ 1

0

dF [qi(F, ti)qj(F, tj) · · ·]

= [qi(0, ti)qj(0, tj) · · ·] E
{
e−Max(Λi(ti),Λj(tj),···)} , (23)

where τis are random default times. The resulting model can be formulated as a first passage
model with the crossing of barrier − lnF by the non-decreasing Λi(t) triggering default of
the ith credit name, conditional on surviving firm-specific risk factors. F is then a random
variable uniformly distributed and a possible interpretation is that of Λi(t) as an intrinsic
age process and − lnF as a common age limit or, as noted above, Λi(t) as the amount of
impact the common crisis has on a name and − lnF as the minimum amount of impact
needed to lead to a default.
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A further generalization to a multi-factor joint distribution of default times is

Prob(τi > ti, τj > tj, · · ·) =

∫
DC (F1, F2, · · ·) [qi(Fi, ti)qj(Fj, tj) · · ·]

= [qi(0, ti)qj(0, tj) · · ·] E {C(Φi(ti),Φj(tj), · · ·)} , (24)

where C() is a copula and D is a short notation for the n−dimensional differential, n being
the number of factors. Similar distribution has been discussed in Schönbucher and Schu-
bert [2001] within the context of an intensity model, but in the absence of firm-specific
risk factors. Recall that copula is a joint distribution of uniformly distributed random
variables. Since Fi, Fj, · · · are uniformly distributed, their joint distribution is given by a
copula. To keep things simple, we have kept the copula as time-independent. For simplicity
of presentation, we have also considered maximum number of factors, that is as many F s
as there are names in the collection. Fewer factors can be handled with suitable restric-
tions on the copula. The one-factor case is recovered with the maximally dependent copula
C(F1, F2, · · ·) = Min(F1, F2, · · ·).

Like the one-factor formulation, the above multi-factor version, when all the tis are
identical to say t, has a basis in probability theory. Consider again an infinitely large
collection as in section 2, but now heterogeneous having finitely many, say n, types of names.
Its homogeneous subcollections comprising of each name types are also taken to be infinitely
large. A configuration of its defaulted and undefaulted states at time t is now characterized
by n kinds of fractions, νi, i = 1, · · · , n. Arguing as before, we can express the joint survival
probability Qij···(t) for a list of names in {i, j, · · ·} as

Qij···(t) =

∫
DFt(ν1, ν2, · · ·) [(1− νi)(1− νj) · · ·] , (25)

where Ft(ν1, ν2, · · ·) is the joint cumulative distribution function of the νis. Next, as usual
in copula based dependency modeling, introduce individual survival probabilities qi(Fi, t)

satisfying qi(F
(i)
t (νi), t) = 1 − νi where F

(i)
t (νi) is the ith marginal cumulative distribution

function. Changing the integration variables to Fi = F
(i)
t (νi), we then obtain the multi-factor

formulation (24) for identical tis, though under a scenario where the names are assumed
immersed in an infinitely extended pool. The assumption of extendibility to an infinite pool
may not always hold, but the type-II formulation with its separation of dependency from
the marginals makes its applicability appear more natural.

4 Copula Models

Interestingly, the popular copula models can also be recast into the present formulation.
This is instructive as it highlights their unnaturalness, in particular their static nature.

In the present setting, a copula model is just a type-II model that appears as an attempt
at constructing Φi(t)s with the right properties. Stochasticity of Φi(t) arises from a single
real-valued random variable, one for each name in the collection. Time-dependence of Φi(t)
results from a time-dependent mean of the random variable. To recover the standard results,
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let us express Φi(t) as

Φi(t) = 1−NY

(
1√
ρ

(
Ki(t)−

√
1− ρZi

))
. (26)

Zis, one for each name in the collection, are independent random variables. NY () is the
cumulative distribution function of some random variable Y . Ki(t) is a function of time to
be determined. ρ is a correlation parameter as will become evident below. Assuming that
there are no firm-specific risk factors, and expressing F as F = 1 − NY (Y ) in terms of the
random variable Y independent of all the Zis, we have

pi(F, t) = E
{
1Φi(t)≤F

}
= E

{
1 1√

ρ(Ki(t)−
√
1−ρZi)≥Y

}

= E
{
1Zi≤ 1√

1−ρ(Ki(t)−
√
ρY )

}
= NZi

(
1√
1− ρ

(Ki(t)−
√
ρY )

)
. (27)

NZi
() is the cumulative distribution function of Zi. The unconditional individual default

probability Pi(t) can now be expressed as

Pi(t) = E {1− Φi(t)} = E
{
1Y≤ 1√

ρ(Ki(t)−
√
1−ρZi)

}
= E

{
1Xi≤Ki(t)

}
= NXi

(Ki(t)), (28)

where Xi =
√
1− ρZi +

√
ρY . NXi

() is the cumulative distribution function of Xi. This de-
termines Ki(t) to be N−1

Xi
(Pi(t)). It is an increasing function of time resulting in a decreasing

time-dependence for Φi(t).
These are the standard results known for one-factor copula models. Default time copula

results from expression (23) for joint distribution of default times. Zis, and hence Xis, are
usually taken to be identically distributed. Then NZi

()s, and similarly NXi
()s, are the same

for all the names in the collection. Y and Zis, and hence Xis, are usually normalized to have
zero mean and unit variance. ρ is then the correlation between two different Xis. In the
case of the Gaussian copula model, Y, Zi and Xi are all standard normal random variables,
and hence NY , NZi

and NXi
are all identical to the cumulative standard normal distribution

function. In other copula models, NY and NZi
may be known by choice, but then NXi

is not
guaranteed to be easily computable.

It is also possible to recover multi-factor copula models in the present setting. As dis-
cussed earlier, a multi-factor type-II model can be extended to introduce joint distribution
of default times by expression (24). The Φi−construct is as before, but in terms of name-
subscripted Y s and ρs. For simplicity of presentation, this considers maximum number of
factors, that is as many Y s as there are names in the collection. Assuming no firm-specific
risk factors, that is qi(0, ti) = 1, the joint survival probability (24) can be rewritten as

Prob(τi > ti, τj > tj, · · ·) = E {C (Φi(ti),Φj(tj), · · ·)} = E
{
1Ui≤Φi(ti)1Uj≤Φj(tj) · · ·

}
. (29)

In the last step, uniformly distributed random variables Ui, Uj, · · · are introduced to express
the copula C() as their joint distribution function. Now, expressing Uis in terms of random
variables Yis as Ui = 1−NYi(Yi), we have

Prob(τi > ti, τj > tj, · · ·) = E
{
1Xi≥Ki(ti)1Xj≥Kj(tj) · · ·

}
, (30)
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where Xi =
√
1− ρiZi +

√
ρiYi. Restricting to one name, we find Ki(t) = N−1

Xi
(Pi(t)).

Writing Xi ≥ Ki(ti) in terms of the uniform random variable NXi
(Xi) as NXi

(Xi) ≥ Pi(ti),
we note that the above is in fact a survival copula of default times.

It is well-known that copula models are static models. That they lack dynamics is evident
from the Φi(t)−construct that has just one random variable Zi generating the whole process
Φi(t). A sample path of Φi(t) is fully determined given a sample of Zi. Its time-dependence is
due toKi(t) alone. It is not straightforward to accommodate a term structure of correlations.
Besides, as already noted, these models have no identifiable support for firm-specific risk.
There is no support for catastrophic risk either. One may attempt to include these risk
factors along the lines presented here, but better models can be constructed with the help
of subordinators that we next turn to.

5 Stable Subordinator Models

To proceed, it is helpful to invoke some concept of stationarity, that the model looks similar
at some future time given conditions similar to as it exists today. This is easier to do at the
individual levels since, at the collective level, there can be dependency information available
from defaults that needs to be incorporated. Consider first that the names involved have flat
hazard rate curves. For the unconditional individual survival probability Qi(t), a flat hazard
rate curve implies Qi(t2) = Qi(t1)Qi(t2 − t1) given two times t1 and t2 such that 0 < t1 < t2.
Assuming it holds similarly for any firm-specific component and writing

E
{
e−Λi(t2)

}
= E

{
e−Λi(t1)E

{
e−(Λi(t2)−Λi(t1))|Λi(t1)

}}
, (31)

we note that a stationarity concept can be naturally accommodated with a Λi(t) that has
independent and stationary increments. This is as expected since it is well-known that the
most natural choice for Λi(t) incorporating stationary is a Lévy process. In our case, Λi(t) is
further expected to be a subordinator, that is a Lévy process involving only non-decreasing
sample paths. Realizations of Λi(t) then contribute a non-increasing factor e−Λi(t) to the
unconditional individual survival probability.

Though type-II models are more promising and are the main focus of the article, a
little discussion of type-I models is helpful to put them in perspective. Type-I models were
formulated in a heterogeneous setting in section 3. Consider the individual processes Λi(t)
modeled as Λi(t) = aiX(t) + bit for some non-negative constants ais and bis in terms of
a common process X(t), a subordinator having Laplace exponent η(u). This gives for the
unconditional individual survival probability

Qi(t) = E
{
e−Λi(t)

}
= e−t(η(ai)+bi). (32)

This generates a constant hazard rate η(ai) + bi leading to a heterogeneous model with flat
hazard rate curves. Reduced models of this kind and their intensity based extensions have
been well studied in the literature (see for instance Balakrishna [2007]). Here the drift term
bit generates the firm-specific component. However, to generate a nonzero probability of a
total collapse, a nonzero probability of X(t) = ∞ needs to be enforced, somewhat artificially.
Besides, though time-dependent ais and bis can be helpful, it is not straightforward to extend
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the model to allow for general hazard rate curves while retaining some concept of stationarity.
Replacing X(t) by a time-changed subordinator X(φ(t)) given some non-decreasing function
of time φ(t) can be helpful, but allowing for φ(t) to be name-dependent leads to both
conceptual and practical issues.

Type-II models are better suited for the purpose since they are formulated independently
at the individual levels to start with. If Λi(t) has Laplace exponent ηi(u) and the firm-specific
hazard rate is bi so that qi(0, t) = e−tbi , we get for the unconditional individual survival
probability

Qi(t) = qi(0, t)E
{
e−Λi(t)

}
= e−t(bi+ηi(1)). (33)

This generates a constant hazard rate bi + ηi(1) leading to a heterogeneous model with flat
hazard rate curves. Unlike in type-I models, firm-specific component here arises from qi(0, t)
and as we will see later, drift component of Λi(t) has a different role to play, to generate
a nonzero probability of a total collapse. As for extending this to a general hazard rate
curve, there can be various approaches, some of them possibly offering an explanation of
its time-dependence. If our interest is just accommodating the curve, the easiest thing to
do is to make some of the parameters time-dependent. This can be done independently at
the individual level making it applicable to heterogeneous collections. Note that all model
intricacies here are built into qi(F, t), in particular Λi(t). We may thus simply consider some
of the parameters of Λi(t) as time-dependent. An equivalent but more convenient approach is
to work with a time-changed subordinator, time-changed on an individual basis with regard
to an intrinsic time-like variable θi(t) given by

θi(t) = − lnQi(t). (34)

Since the individual survival probability Qi(t) is a non-increasing function of time, θi(t) is
appropriate to play the role of time. This approach provides a simple and neat extension of
the stationarity concept to general hazard rate curves.

Specifically, consider subordinators Xi(t), independent ones for each of the names in the
collection, identically distributed for simplicity with Laplace exponent η̄(u) (the bar on η is
discussed below). Let us set

qi(0, t) = e−(1−η̄(1))θi(t), Λi(t) = Xi(θi(t)). (35)

Now, the hazard rate curves are automatically calibrated to, since

Qi(t) = qi(0, t)E
{
e−Λi(t)

}
= e−(1−η̄(1))θi(t)E

{
e−Xi(θi(t))

}
= e−θi(t). (36)

As for the conditional survival probability qi(F, t), we have

qi(F, t) = qi(0, t)E
{
1Xi(θi(t))≤− lnF

}
= e−(1−η̄(1))θi(t)gθi(t)(− lnF ), (37)

where gt(x) is the cumulative distribution function of Xi(t). Note that we require η̄(1) ≤ 1
so that the firm-specific survival probability qi(0, t) is non-increasing as a function of t.

Let us now confine ourselves to modeling with subordinators whose distributions have
power-law tails. In particular, we will be dealing with stable subordinators reviewed briefly in
section 1. A rationale for this choice can be noted from expression (21) for the joint survival
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probability. It contains the combination Maxi∈ΩΛi(t), the maximum of independent, and
say identically distributed, Λi−processes. This is also the combination that is central to
extreme value theory. Distributions having power-law tails give rise naturally to extreme
value distributions in an appropriate limit. Note that the extreme events we are concerned
with here occur for large Λis, necessitated by large − lnF or small F which is the short-end
behavior of Ft(ν) in the infinite homogeneous pool. A dependent default when its likelihood
is small, that is when ν is close to νmin = 1− e−(1−η̄(1))θ(t), is in fact an extreme event.

It turns out that type-II models using stable subordinators can be calibrated reasonably
well to market data on CDOs (see Balakrishna [2010]). Interestingly, applicable index of
stability α turns out to be just 1/2. The α = 1/2 stable subordinator called the Lévy
subordinator has Laplace exponent η̄(u) = σ̄

√
u + µ̄u for some parameters σ̄ and µ̄ (the

bars indicate that the parameters can be time-dependent and are defined for the period
(0, t) distinguishing them from the instantaneous ones introduced below). Its cumulative
distribution function is known as the Lévy distribution and is available in closed form,

gt(x) = 2N
(
−σ̄t/

√
2(x− µ̄t)

)
, x > µ̄t, (38)

where N() is the cumulative standard normal distribution function. This leads to a two-
parameter model with σ̄ as one of the parameters along with a non-negative drift rate µ̄
so that gt(x) = 0 for x < µ̄t. With the Lévy subordinator chosen for Xi(t), the above
distribution gives us for the conditional survival probability

qi(F, t) = 2e−(1−(σ̄+µ̄))θi(t)N
(
−σ̄θi(t)/

√
−2(lnF + µ̄θi(t))

)
. (39)

Consistency requirement η̄(1) ≤ 1 here reads σ̄ + µ̄ ≤ 1.
Due to the presence of a non-negative drift component µ̄t in the subordinator Xi(t), the

distribution gt(x) gets set to zero for x < µ̄t. This introduces a positive drift µ̄θi(t) to Λi(t)
that forces qi(F, t) to zero for F > e−µ̄θi(t). In the infinite homogeneous pool, this implies
that Ft(ν) tends to Fmax(t) = e−µ̄θ(t) as ν → 1. This realizes the possibility envisioned earlier
of a probability mass 1− Fmax(t) at ν = 1, that is, a non-zero probability 1− Fmax(t) of all
the names in the pool defaulting by time t, µ̄ controlling the likelihood of such a catastrophe.
Recall also that Ft(ν) = 0 for ν below νmin. Both the probability mass and the minimum ν
increase with t starting from zero.

Parameters σ̄ and µ̄ can be both name and time dependent. Time-dependence can be
conveniently expressed as θi(t)-dependence. It is subject to qi(F, t) decreasing with respect
to θi(t) so that, suppressing name and t−dependence for simplicity, σ̄θ, µ̄θ and (1 − (σ̄ +
µ̄))θ should all be non-decreasing with respect to θ. This can be expressed in terms of
instantaneous or local parameters σ and µ as

σ ≥ 0, µ ≥ 0, σ + µ ≤ 1, where σ ≡ d(σ̄θ)/dθ, µ ≡ d(µ̄θ)/dθ. (40)

Satisfying this is sufficient to ensure similar constraints for σ̄ and µ̄. It is thus possible
to have consistent σ̄ and µ̄ term-structures, for instance with piecewise constant σ and µ.
One may find it convenient to work with γ ≡ σ + µ and κ ≡ µ/(σ + µ) (similarly for
barred parameters) both of which are allowed to range from zero to one. Note that γ is the
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fraction of the hazard rate that is attributable to systemic risk factors, fraction 1− γ being
firm-specific. Of the fraction γ, a further fraction κ is attributed to catastrophic scenarios.

As noted earlier, Ft(ν) in the infinite homogeneous pool can be obtained by solving
qt(F ) = 1− ν for F = Ft(ν). In the Lévy subordinator model, when σ̄+ µ̄ ≤ 1 as is required
for consistency, the minimum ν below which Ft(ν) = 0 is

νmin(t) = 1− e−(1−(σ̄+µ̄))θ(t). (41)

This increases with t starting from zero at t = 0. For ν above νmin(t), Ft(ν) is

Ft(ν) = exp

{
−µ̄θ(t)− 1

2
(σ̄θ(t))2

[
N−1

(
1

2
(1− ν)e(1−(σ̄+µ̄))θ(t)

)]−2
}
, ν ≥ νmin(t). (42)

Note that
∫ 1

0
dνFt(ν) = 1 −

∫ 1

0
dFt(ν)ν = e−θ(t) as expected. Further, Ft(ν) → e−µ̄θ(t) as

ν → 1 so that there is a probability mass at ν = 1 as observed earlier, suggesting a finite
probability 1− e−µ̄θ(t) of a total collapse.

6 Why α = 1/2

An intriguing aspect of the model is the choice α = 1/2 for the index of stability of the stable
subordinator. Calibration results indicate this as appropriate so that the Lévy subordinator
can be considered to be the basic model of Λi(t) processes. This is somewhat analogous
to the Brownian motion being the choice as the basic model of many economic processes.
Perhaps this has something to do with fact that Lévy distribution is dual to the half-normal
distribution or that it is the first passage time distribution of the Brownian motion. Though
the following discussion does not answer why α = 1/2 is appropriate, it may become clearer
from the discussion that the question is better phrased as to why 1/α = 2, a choice that
has some obvious niceties and appealness associated with it. Note that pt(F ) and Ft(ν) are
inverses of each other and hence an index in the range [1/2, 1] applicable to pt(F ) has an
effective applicability to Ft(ν) in the range [1, 2]. Modeling Ft(ν) directly as arising from a
stable process is expected to result in an index in the range [1, 2] but requiring a cutoff to
prevent negative moves, as borne out by a study in Balakrishna [2009].

The long tail of the distribution of a stable subordinator X(t) obeys a power-law decay
as in (6). Thus for F small (dropping the name-subscripts), we have

qt(F ) = qt(0)gθ(t)(− lnF )

→ qt(0)− qt(0)σθ(t) [Γ(1− α)]−1 (− lnF )−α. (43)

Here and in the following, for simplicity, model parameters are taken to be constants so that
σ̄ = σ and µ̄ = µ. Recall that qt(0) = e−(1−η(1))θ(t) = 1 − νmin(t). This suggests that for
ν > νmin(t) but close to νmin(t), that is for small (ν − νmin(t))/(1− νmin(t)) > 0, we have

− lnFt(ν) → (σθ(t))1/α [Γ(1− α)]−1/α [(ν − νmin(t))/(1− νmin(t))]
−1/α . (44)
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This is the expected form arising from extreme value theory considerations with its relevant
index 1/α. For α = 1/2, the index is two. Similar behavior is obtained for small θ(t) since
gθ(t)(− lnF ) is a function of the combination (σθ(t))−1/α(− lnF − µθ(t)),

− lnFt(ν) → µθ(t) + (σθ(t))1/α [Γ(1− α)]−1/α ν−1/α. (45)

Again for α = 1/2, the index is two and Ft(ν) is regular in θ(t) as θ(t) → 0, consistent with
the closed form solution (42).

The log-distribution of a stable subordinator X(t) exhibits power-law at the very short
end as in (7). This suggests that for ν very close to one, we have

− lnFt(ν) → µθ(t) + α(σθ(t))1/α(1− α)(1−α)/α [− ln(1− ν)]−(1−α)/α . (46)

This gives a fat long tail as a function of − ln(1 − ν) with a tail-index of 1/α − 1. For
α = 1/2, this index is one. Thus, − lnFt(ν) as a function of − ln[(1 − ν)/(1 − νmin(t))]
features a power-law at the long and short ends with indices of one and two respectively.

Let us next look at default correlation over period (0, t) for small θ(t). We will assume here
that α ∈ (1/2, 1). The two-point survival probability over period (0, t) in the homogeneous
case can be expressed as

∫ 1

0

dF [qt(F )]
2 = [qt(0)]

2e−µθ(t)
∫ ∞

0

dxx−α−1f(x)e−(σθ(t))1/αx, (47)

where f(x) = xα+1d(h(x))2/dx and h(x) = gθ(t)((σθ(t))
1/αx+ µθ(t)) (independent of t for a

stable subordinator). When θ(t) is small, it can be shown that (see Balakrishna [2009])

∫ 1

0

dF [qt(F )]
2 ≃ 1 + (µ− 2)θ(t) + c(σθ(t))1/α, (48)

for some constant c. This leads to a two-point default probability ≃ µθ(t) + c(σθ(t))1/α

and a default correlation ≃ µ + cσ(σθ(t))(1−α)/α. For α ∈ (1/2, 1), the exponent of the
last term above is 1/α ∈ (1, 2). As α → 1/2, this exponent tends to two and the next
correction term in the expansion becomes significant. It can be shown that in this limit,
that is in the Lévy subordinator model for which h(x) = 2N(−1/

√
2x), the two-point default

probability ≃ µθ(t)− (2σ2/π)(θ(t))2 ln θ(t) and default correlation ≃ µ− (2σ2/π)θ(t) ln θ(t).
The default correlation remains nonzero at µ as θ(t) → 0 resulting in what may be called
the instantaneous default correlation. It leads to a tail dependence for the loss distribution
that has become necessary recently for better pricing of the senior tranches.

7 Semi-Analytical Pricing

An attractive feature of the Lévy subordinator model is that it admits a closed form expres-
sion for qi(F, t). This make it possible to price CDOs semi-analytically. The procedure is
identical to that used in the Gaussian copula model. The following is a brief review of the
steps involved.
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Consider the loss process L(t). Its contribution at time t to tranche [a, b] with attachment
point a and detachment point b can be expressed as a call-spread, or equivalently as b − a
minus the put-spread so that the loss per tranche size is

L(t)[a,b] = 1− 1

b− a
[max(b− L(t), 0)−max(a− L(t), 0)] . (49)

If the cumulative distribution function of L(t) is Ht(x) at time t, the expected loss per
tranche size is

L̄(t)[a,b] = 1− 1

b− a

∫ b

0

dx(dHt(x)/dx) [max(b− x, 0)−max(a− x, 0)] . (50)

After a partial integration, this can be written as

L̄(t)[a,b] = 1− 1

b− a

∫ b

a

dxHt(x). (51)

Loss distribution is usually taken to be a discrete distribution, in which case more care can
be exercised in deriving this. If discrete, Ht(x) is flat in-between successive points giving
appropriate interpolations at x = a and x = b.

Given the expected loss per tranche size, the default leg of a tranche can be priced per
tranche size as

DL[a,b] =

∫ T

0

D(t)dL̄(t)[a,b], (52)

where T is the maturity and D(t) is the discount factor for the time period (0, t). Similarly
the premium leg at unit spread can be priced per tranche size as

PL[a,b] =

Nδ∑

i=1

δi(ti)D(ti)
[
1− L̄(ti)[a,b]

]
+ PL′

[a,b], (53)

where δi(ti) is the accrual factor for the period (ti−1, ti), tNδ
= T and Nδ is the number of

periods. PL′
[a,b] is the contribution from accrued interest payments made upon default,

PL′
[a,b] =

Nδ∑

i=1

∫ ti

ti−1

δi(t)D(t)dL̄(t)[a,b], (54)

where δi(t) is the accrual factor for the partial period covering (ti−1, t). Given the leg values,
fair spread can be obtained by dividing the default leg by the premium leg, after taking care
of any upfront payments.

Integrations can be performed over a sufficiently fine time-grid. Time-steps making up
the grid can be as wide as the periods themselves for efficient pricing, and hence the factors
multiplying the increments dL̄(t)[a,b] are evaluated at mid-points of the time-steps. The
super senior tranche can be priced like other tranches along with a part of the premium leg
of notional that is a fraction R of the total notional outstanding, or, if recovery rates are
nonuniform, sum of fractions Ri of the individual notionals outstanding.
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8 Large Homogeneous Pool

Because the Lévy subordinator model is structured similar to the Gaussian copula model,
efficient pricing techniques of the latter can be directly employed in the present case. One of
them is the large homogeneous pool approximation that can be a useful tool since it admits
an explicit expression for the loss distribution.

We have already discussed an infinitely large homogeneous pool and its cumulative dis-
tribution function Ft(ν). It can also be approached starting from a finite collection of n
names. The joint default probability that k or less number of names are in the defaulted
state at time t and the rest are not is given by

P{k}(t) =
k∑

j=0

(
n

j

)∫ 1

0

dF [pt(F )]
j [1− pt(F )]

n−j . (55)

For an infinitely large homogeneous pool of names, that is as n→ ∞, it is well-known that,
by the law of large numbers, the above simplifies to

Ft(ν) = P{νn}(t) =

∫ 1

0

dF1pt(F )≤ν , (56)

where ν = k/n is the fraction of names in the defaulted state at time t. This indicates
that Ft(ν) can be obtained by summing up the region of F over which pt(F ) ≤ ν. We have
considered pt(F ) to be an increasing function of F . Hence, Ft(ν) can be obtained by solving
pt(F ) = ν, or equivalently qt(F ) = 1− ν, for F = Ft(ν), in agreement with our earlier result
in an infinitely large homogeneous pool.

In an infinitely large homogeneous pool with a uniform recovery rate R, the loss distri-
bution Ht(x) is given explicitly by Ft(x/(1− R)) so that the expected loss per tranche size
(51) for a tranche [a, b] can be computed as

L̄(t)[a,b] = 1− 1

νb − νa

∫ νb

νa

dνFt(ν), (57)

where νa = a/(1− R) and νb = b/(1− R). Because Ft(ν) = 0 for ν ≤ νmin(t), the expected
loss becomes 100% of the tranche size once νmin(t) crosses νb, if b is small enough for this
to occur within the maturity of the trade. This leads to overpricing of the equity tranches.
Finite n offers better pricing by smoothening out the small ν behavior.

9 Finite Pool with FFT

Large homogeneous pool approximation yields fast results, but at the expense of accuracy.
As is well-known, many of the factor models admit efficient pricing for finite pools with
recursive methods or Fast Fourier Transform (FFT) techniques. Being structured similar to
the Gaussian copula model, the present model can be handled analogously. The following
outlines the steps involved in computing with FFT.
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To obtain the loss distribution for a finite collection of n names, consider the loss variable
at time t conditional on F given by

L(F, t) =
n∑

i=1

Liξi(F, t), (58)

where ξi(F, t) is the conditional default indicator at time t and Li = (1 − Ri)wi, Ri being
the recovery rate and wi the fraction of the total pool notional associated with the ith name.
Though not explicitly shown, Li can be dependent on both F and t (as in section 11 on
random recovery rates). Default indicators being independent conditional on F , the above
has the characteristic

E
{
eiuL(F,t)

}
=

n∏

m=1

[
qm(F, t) + pm(F, t)e

iuLm
]
, (59)

where i =
√
−1. This characteristic is the Fourier transform of the density function of the

loss distribution (conditional on F unless mentioned otherwise). Hence, the loss distribution
can be obtained by inverting it using FFT techniques. The result can be used to compute
the expected loss per tranche size for a tranche with attachment point a and detachment
point b according to

L̄(F, t)[a,b] = 1− 1

b− a

∫ b

a

dxHt(F, x), (60)

where Ht(F, ·) is the cumulative loss distribution function.
FFT requires discretization of u. Discretization is straightforward if Li’s are uniform

at L across the collection (L = (1 − R)/n if Ris are uniform). Inversion then yields the
loss distribution at loss-points j = 0, · · · , n in units of L. This gives the default probability
density P[j](F, t), the sum of products of various combinations of j of the pi(F, t)s and n− j
of the qi(F, t)s. Consider it extended up to j = N − 1 ≥ n by padding with zeros where N
is a power of 2, as is usually done for an efficient FFT. In this case, (59) reads

N−1∑

j=0

P[j](F, t)e
iωjk =

n∏

m=1

[
qm(F, t) + pm(F, t)e

iωk
]
, k = 0, · · · , N − 1, (61)

where ω = 2π/N . This can easily be computed and inverted using FFT techniques to obtain
P[j](F, t), j = 0, · · · , n, and hence its cumulative counterpart Gt(F, ν) (that corresponds to
Ht(F, jL)) where ν = j/n is the fraction of names in the defaulted state. Expected loss per
tranche size is then

L̄(F, t)[a,b] = 1− 1

νb − νa

∫ νb

νa

dνGt(F, ν), (62)

where νa = a/(nL), νb = b/(nL), and Gt(F, ν) is flat in-between successive ν−points. Inte-
gration of L̄(F, t)[a,b] over F gives L̄(t)[a,b], the unconditional expected loss per tranche size.
This result can be used to price the CDO tranches as discussed in section 7. Integration
over F can be performed numerically using the Gauss-Legendre quadrature formula. It is
efficient to perform the integration after the prices are computed conditional on F .
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10 Monte Carlo Pricing

Though the Lévy subordinator model can be handled semi-analytically as detailed above, a
Monte Carlo simulation algorithm can be a useful tool to price non-standard products. It
can also be useful for pricing standard tranches as it is found to be efficient, accurate and
easily implementable, and does not involve discretization of time. The following algorithm
can be viewed as simulating the model defined by expression (23) or simply as a method of
computing the integrals involved in the semi-analytical pricing. Efficiency of the algorithm
can be improved substantially by using quasi random sequences such as Sobol sequences to
generate each of the independent uniform random numbers.

The algorithm reads as follows.
1. Draw a uniformly distributed random number F and n independent uniformly dis-

tributed random numbers ui, i = 1, · · · , n.
2. For each credit name i, first determine whether it defaults before the time horizon T

by checking if qi(F, T ) < ui where qi(F, .) is given in equation (39). If so, solve the equation
qi(F, ti) = ui for θi(ti). Determine default time ti of credit name i by a table look up into its
hazard rate curve.

3. Given the default times before the time horizon, price the instrument. For the next
scenario, go to step 1.

4. Average all the prices thus obtained to get a price for the instrument.
Given a scenario of default times, it is straightforward to price the CDOs. One proceeds

processing the defaults one by one, starting from the first up to maturity, picking up payments
by the default leg, switching to the next tranche whenever a tranche gets wiped out, at
the same time computing the premium legs per unit spread for all the surviving tranches.
Whenever a default leg pays out the loss amount, the notional of that tranche gets reduced by
the same amount, and the notional of the super senior tranche gets reduced by the recovery
amount (when the super senior is the only survivor, it gets treated like a default swap). The
leg values can be added across tranches to obtain those for the index default swap. Fair
spreads can be computed given the leg values at the end of the simulation.

11 Random Recovery Rates

It has become apparent, especially during the recent crisis, that random recovery rate is
helpful in better pricing of the senior tranches. Random recovery rates have been discussed
by Andersen and Sidenius [2004], and recently by Amraoui and Hitier [2008] and Krekel
[2008] in response to the recent crisis within the context of the Gaussian copula model.
Here, let us consider a similar approach with an emphasis on tractability, and randomness
of recovery rates arising from a decreasing dependence on F . Because we are concerned
with just one individual name in this section, name-subscripts are omitted. Further, because
time-dependence of qt(F ) is only through its dependence on θ(t), all time-dependences in
this section can be expressed conveniently as a dependence on θ(t) if desired.

Consider a possibly time-dependent recovery rate R(t) used in building the hazard rate
curve to start with. We may refer to R(t) as the instantaneous recovery rate. The expected
loss contribution during an infinitesimal time interval (t, t + dt) is (1 − R(t))dP (t) where
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P (t) = 1 − e−θ(t) is as before the default probability over the period (0, t). If R(t) were
constant, the accumulated expected loss at time t is (1−R)P (t). If R(t) is time-dependent
and one prefers working with the expected loss, it is convenient to introduce a recovery
rate R̄(t) such that the expected loss at time t is (1 − R̄(t))P (t). The two are related by
d[(1− R̄(t))P (t)] = (1−R(t))dP (t) or d[R̄(t)P (t)] = R(t)dP (t), that solves to

R̄(t) =
1

1− e−θ(t)

∫ θ(t)

0

dφ(s)e−φ(s)R(s). (63)

Hence R̄(t) is the expected recovery rate conditional on default during (0, t) that we may
refer to as the period recovery rate.

Consider now a model of the kind implied by expression (23). Let R(F, t) and R̄(F, t)
be the conditional equivalents of R(t) and R̄(t). R(F, t) is the recovery rate to be used in
the Monte-Carlo algorithm presented earlier and R̄(F, t) is the recovery rate for use in the
semi-analytical pricing. A model of R(F, t) is required to satisfy

∫ 1

0

dFR(F, t)∂θ(t)p(F, t) = R(t)e−θ(t). (64)

This ensures that the conditional expected loss contribution integrates to the unconditional
one. In terms of the period recovery rate R̄(F, t), the requirement is

∫ 1

0

dFR̄(F, t)p(F, t) = R̄(t)
(
1− e−θ(t)

)
. (65)

Given a model of R(F, t) satisfying (64), R̄(F, t) satisfying above can be obtained recursively
during semi-analytical pricing by integrating the relation

∂t
(
R̄(F, t)p(F, t)

)
= R(F, t)∂t(p(F, t)). (66)

This is the conditional equivalent of d(R̄(t)P (t)) = R(t)dP (t). If R̄(F, t) is modeled di-
rectly, it provides us with R(F, t) for use in the Monte-Carlo algorithm. Modeling R̄(F, t)
directly helps us avoid integrating it during semi-analytical pricing. However, it is better to
model R(F, t) that guarantees a consistent framework for both R(F, t) and R̄(F, t), helpful
in generating a consistent term structure of, say, piecewise constant model parameters.

A simple tractable model of R(F, t) can be constructed as comprising of a firm-specific
component R0 and a systemic component Rs such that

R(F, t)λ(F, t) = R0λ̂(t) +Rsλ̃(F, t). (67)

Here λ(F, t) = −∂t(ln q(F, t)) is conditional hazard rate, λ̂(t) = −∂t(ln q(0, t)) is its firm-

specific component and λ̃(F, t) = λ(F, t) − λ̂(t) is the systemic one. One expects λ(F, t) to

be an increasing function of F ranging from λ̂(t) at F = 0, to ∞ as F → Fmax(t) (this can
be verified in the Lévy subordinator model). The above implies

R(F, t) = Rs + (R0 −Rs)
λ̂(t)

λ(F, t)
. (68)
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Assuming R0 > Rs, this decreases from R0 to Rs as F runs from zero to Fmax(t). It is in line
with one’s expectation of an inverse relationship between recovery rates and default rates2.
Requirement (64) gives

R(t) = Rs + (R0 −Rs)
λ̂(t)

dtθ(t)
= R0 − γ(R0 −Rs), (69)

where γ is introduced through λ̂(t) = (1− γ)dtθ(t) (in the subordinator model γ = σ + µ).
This is a simple linear relationship between R(t) and γ. An interesting feature of this recovery
model is that time-independence of model parameters R0, Rs and γ implies or is consistent
with a flat R(t). A term-structure expected for γ implies a time-dependence for R(t). From
a calibration perspective however, while building the hazard rate curve, it is inconvenient to
consider R(t) as a dependent variable. If so, one could consider an implied time-dependence
for R0 or Rs arising from a given R(t) and a term-structure expected for γ.

The above model of random recovery is quite general, but it assumes that the systemic
component is a constant. One would expect the later to be random contributing effectively
with a fixed Rs. If desired, a generalization can be constructed with a R̃(F, t) having a

decreasing F−dependence satisfying R(F, t)λ(F, t) = R0λ̂(t) + R̃(F, t)λ̃(F, t) so that

R(F, t) = R0 −
(
R0 − R̃(F, t)

)(
1− λ̂(t)

λ(F, t)

)
. (70)

With this choice, requirement (64) reads
∫ 1

0

dFR̃(F, t)∂θ(t)q̃(F, t) = −γRse
−γ̄θ(t), (71)

where q̃(F, t) = q(F, t)/q(0, t) and Rs = (R(t)− (1− γ)R0)/γ. A tractable choice for R̃(F, t)
in the subordinator model is, for some χ > 0 (and F ≤ Fmax(t)),

R̃(F, t) = R0 − (R0 −R1)

(
F

Fmax(t)

)χ
. (72)

This and hence R(F, t) decreases from R0 to R1 (assuming R0 > R1) as F runs from zero to
Fmax(t). Though not explicitly shown, R0, R1 and χ can be time-dependent. Requirement
(71) can now be evaluated to obtain

η(1 + χ)

1 + χ
e−c̄θ(t) = γ

R0 −Rs

R0 −R1

, where c̄ = η̄(1 + χ)− η̄(1)− µ̄χ. (73)

Here η(u) and η̄(u) are the Laplace exponents of the subordinator with local and period
parameters respectively (η(u) = σ

√
u+ µu and c̄ = σ̄

(√
1 + χ− 1

)
for the Lévy Subordina-

tor). Given R0 ≥ R1 (and χ ≥ 0), we have R0 ≥ R(t) ≥ Rs ≥ R1. The above relation can
be used to determine say χ (or R0) given R(t) and other model parameters. If Rs is given,
relation (69) can be used to relate R(t) and γ as discussed earlier.

2Altman, Brady, Resti and Sironi [2005] provide empirical evidence for the inverse relationship. Given

their data, a linear regression of recovery rates and inverse default rates gives Rs ≃ 28% and (R0 −Rs)λ̂ ≃
27bp (assuming constant λ̂) with a goodness of fit measure R2 ≃ 60% The lowest default rate used is 84bp

so that λ̂ < 84bp, implying R0 > 60%.
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12 Initial Conditions

We have assumed that all the Λi(t) processes start off as Λi(0) = 0. In one possible inter-
pretation of Λi(t) as the amount of negative economic impact on the name, this implies that
conditions prior to time zero are assumed to be completely favorable. In this section, let us
explore the consequences of relaxing this assumption.

The joint survival probability QΩ(t) over the period (t0, t) for a list of names in Ω is given
in (21) for zero initial conditions, that is Λi(t0) = 0 for all i, t0 = 0 being today. Let assume
that it holds good for some earlier time t0 < 0 given a realization of the Λi(t) processes from
t0 to today. Now, the joint survival probability over the period (0, t) conditional on survival
up to today, denoted for simplicity as QΩ(t) itself, can be written down as

QΩ(t) = eΛΩ(0)

[
∏

i∈Ω
qi(0, t)

]
E
{
e−Maxi∈Ω(Λi(t))

}
= eΛΩ(0)

∫ 1

0

dF
∏

i∈Ω
qi(Fe

Λi(0), t), (74)

where ΛΩ(0) = Maxi∈Ω(Λi(0)) is the largest Λi(0) and

qi(F, t) = qi(0, t)E
{
1Λi(t)−Λi(0)≤− lnF

}
. (75)

As before, qi(0, t) and qi(F, t) are functions defined from today onwards with qi(0, 0) =
qi(F, 0) = 1. Note that QΩ(t) depends only on the differences ΛΩ(0) − Λi(0). To see this,
note that qi(Fe

Λi(0), t) = 0 for F > e−ΛΩ(0) for the name with Λi(0) = ΛΩ(0). The integrand
is hence zero for F > e−ΛΩ(0) so that the integration variable can be changed to F ′ = FeΛΩ(0)

that ranges from zero to one. Because QΩ(t) depends only on the differences, an overall
impact does not contribute to it; only the relative values are relevant. This is as it should
be since the names are all known to have survived up to today. The presence of initial
conditions with relative values leads to higher joint survival probabilities. Calibration to
individual hazard rate curves remains the same as before since, when there is only one name
in Ω, QΩ(t) is independent of the initial condition.

Though the above is expressed as an integral over F , it is not a conditionally independent
representation since the factor eΛΩ(0) multiplying the integral is Ω−dependent. One way to
render it conditionally independent is to express the factor as

eΛΩ(0) = eΛM (0) −
∫ eΛM (0)

1

dG
∏

i∈Ω
1Λi(0)≤lnG, (76)

where ΛM(0) is the largest Λi(0) in the collection. Using this in (74) we obtain

QΩ(t) = eΛM (0)

∫ 1

0

dF
∏

i∈Ω
qi(Fe

Λi(0), t)−
∫ 1

0

dF

∫ eΛM (0)

1

dG
∏

i∈Ω
qi(Fe

Λi(0), t)1Λi(0)≤lnG. (77)

This is a weighted difference of two conditionally independent representations that can be
useful in semi-analytical pricing in the presence of non-trivial initial conditions, but the
presence of a double integral can make it computationally inefficient.
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13 Default Contagion

We have modeled Λi(t)s as a set of independent stochastic processes evolving from time zero
onwards. As our zero of time passes by, one would expect Λi(t)s to get realized. However, it
is not obvious how this information can be extracted from the names. Let us assume in this
section that the only information available from the names is their defaulted or undefaulted
status. In such a scenario, one expects the hazard rate of a given name to jump up on every
default information as it arrives.

A simple analysis in our one-factor formulation helps us to infer that such a contagion
tendency exists at the probability level itself. Arguments are similar to those discussed in
Balakrishna [2007]. Consider π

(ν)
n (t), the conditional probability of default during (0, t) of

say name n given the information that names 1, · · · , ν have defaulted,

π(ν)
n (t) =

∫ 1

0
dF [p1(F, t) · · · pν(F, t)] pn(F, t)∫ 1

0
dF [p1(F, t) · · · pν(F, t)]

. (78)

This can be compared to π
(ν−1)
n (t), conditional probability of default without the default

information about name ν. If π
(ν)
n (t) > π

(ν−1)
n (t), it suggests that the likelihood of name n

having defaulted increases with the number of names known to have defaulted. This check
amounts to verifying

∫ 1

0

dF

∫ F

0

dGwν−1(F, t)wν−1(G, t) [pν(F, t)− pν(G, t)] [pn(F, t)− pn(G, t)] > 0, (79)

where wν−1(F, t) = p1(F, t) · · · pν−1(F, t). This always holds under nontrivial circumstances
since pi(F, t)s are non-decreasing functions of F for all the names.

Now coming to jumps in the hazard rate due to default contagion, again for name n,
consider the joint survival probability

Q(t∗) = Prob(τ1 > t1, · · · , τn > tn), (80)

where τis are random default times, t1 < · · · < tn, t∗ denotes dependence on t1, · · · , tn and
for convenience the names are labeled according to the same order. The probability density
(or intensity) that names 1, · · · , ν have defaulted respectively at times t1, · · · , tν and the rest
have survived up to times tν+1, · · · , tn is then given by

Q(ν)(t∗) = (−1)ν
∂νQ(t∗)

∂t1 · · · ∂tν
. (81)

We may allow ν = 0 as well in which case Q(0)(t∗) = Q(t∗). Given the default and the
survival information defining it, the hazard rate for name n can now be written as

h(ν)n (t∗) = −∂n lnQ(ν)(t∗), (82)

where ∂n = ∂/∂tn. The jump in the hazard rate h
(ν−1)
n (t∗) due to name ν defaulting is,

dropping t−arguments for simplicity,

∆νh
(ν−1)
n = h(ν)n − h(ν−1)

n = −∂n ln
(

Q(ν)

Q(ν−1)

)
= −∂n ln

(
−∂ν lnQ(ν−1)

)
. (83)
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If positive, this indicates that defaults are contagious, that for every credit name defaulting,
the hazard rate of the name n being observed jumps up. To know this jump for any time tn,
given all the survival and default information up to time t ≤ tn, all of tν+1, · · · , tn−1 should
be set to t. If interested in this jump just after the last credit name ν has defaulted, t should
be set to tν as well.

Hazard rate jumps are, as one would expect, proportional to default correlation. This
can be seen by rewriting the jump as

∆νh
(ν−1)
n =

Q(ν−1)

Q(ν)

[
∂n∂νQ(ν−1)

Q(ν−1)

−
(
−∂nQ(ν−1)

)

Q(ν−1)

(
−∂νQ(ν−1)

)

Q(ν−1)

]
=

√
−∂nQ(ν−1)

Q(ν)

ρ(ν−1)
nν , (84)

where ρ
(ν−1)
nν

√
dtndtν is the default correlation between credit names n and ν for defaults

during infinitesimal intervals (tn, tn+dtn) and (tν , tν+dtν) respectively, given the conditions
implicit in Q(ν−1). For ν = 1, this relates to default correlation in the absence of contagion
and for ν > 1 to default correlation in the middle of a contagion.

Consider now the extended one-factor model defined by (23) that gives for the joint
survival probability,

Q(t∗) =

∫ 1

0

dF [q1(F, t1) · · · qn(F, tn)] . (85)

In this model, the probability density Q(ν)(t∗) is

Q(ν)(t∗) =

∫ 1

0

dFw(F, t∗) [λ1(F, t1) · · ·λν(F, tν)] , (86)

where w(F, t∗) = q1(F, t1) · · · qn(F, tn) and λi(F, ti) = −∂i(ln qi(F, ti)). This gives for the
hazard rate

h(ν)n (t∗) =

∫ 1

0
dFw(F, t∗) [λ1(F, t1) · · ·λν(F, tν)]λn(F, tn)∫ 1

0
dFw(F, t∗) [λ1(F, t1) · · ·λν(F, tν)]

. (87)

This is again of the form π
(ν)
n (t) given in expression (78). Similar steps let us conclude

that h
(ν)
n (t∗) will jump up on every default if λi(F, ti) is monotonic in F for all the names.

As has been noted in section 11, the conditional hazard rate λi(F, ti) is expected to be a
non-decreasing function of F (this can be verified in the Lévy subordinator model).

14 Intensity Modeling

We modeled the individual process Λi(t) as a time-changed Lévy subordinator. An alternate
approach to modeling it as a non-decreasing process is to express it as the time-integral of a
non-negative stochastic process that in some sense can be interpreted as stochastic default
intensity. However, as we see below, when driven by a stable subordinator, the resulting
model is effectively a time-inhomogeneous stable subordinator model. Hence, our stable
subordinator models can be considered to be sufficiently generic.

In the following, we are concerned with one credit name and hence the name-subscript
is dropped from the results. Consider λ(t) obeying the stochastic differential equation

dλ(t) = −mλ(t)dt+ dS(t), (88)
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where S(t) is a subordinator and m is the mean reversion rate (better referred to as the
decay rate since the mean need not be finite). This can be solved to obtain

λ(t) = λ(0)e−mt +

∫ t

0

e−m(t−s)dS(s),

Λ(t) =

∫ t

0

λ(s)ds = λ(0)b(t) +

∫ t

0

b(t− s)dS(s), (89)

where b(t) = (1−e−mt)/m. For simplicity, we have not considered time-changing the process
here. Given above, one can determine the Laplace transform

e−ψt(u) = E
{
e−uΛ(t)

}
= exp

{
−λ(0)b(t)u−

∫ t

0

η(ub(s))ds

}
, (90)

where η(u) is the Laplace exponent of S(t). If S(t) is chosen to be the Lévy subordinator
with η(u) = σ

√
u+ µu, we have

ψt(u) =

{
λ(0)b(t) + µ

∫ t

0

b(s)ds

}
u+

{
σ

∫ t

0

√
b(s)ds

}√
u. (91)

Note that this reduces to t(µ′u + σ′√u) when the limit m → ∞ is appropriately taken,
that is with µ/m → µ′ and σ/

√
m → σ′ as m → ∞. Hence, our earlier Lévy subordinator

model is the m → ∞ limit of this intensity model. Besides, ψt(u) itself is of the form
p(t)u+ q(t)

√
u for some parameters p(t) and q(t) so that the Laplace transform is that of a

Lévy distribution. It can be generated by a time-inhomogeneous Lévy subordinator. Drift
p(t) is now stochastic since, when viewed as a dynamical model, it has a dependence on the
present value of the stochastic process λ(t).

There can be some reservations about intensity modeling in this type-II framework. Note
that Λi(t) =

∫ t
0
λi(s)ds is a predictable process and for t infinitesimally small can be written

as ≈ λi(0)t. Consider λi(0) to be a fraction γ of the initial hazard rate hi(0) inferred

from the hazard rate curve, fraction 1 − γ being the firm-specific component λ̂i(0). Fixing
Λi(t) deterministically may itself be questionable but, leaving that aside, consider the joint
survival probability Q12(t) for two names 1 and 2. Assuming without loss of generality

h1(0) ≤ h2(0) and hence λ1(0) ≤ λ2(0), we have Q12(t) ≈ 1 − λ̂1(0)t − λ̂2(0)t − λ2(0)t =
1− (1− γ)h1(0)t−h2(0)t. This leads to maximum dependability, a restrictive feature of the
model. Instantaneous default correlation at time zero can be computed to be γ

√
h1(0)/h2(0).

This can turn out to be significant even under normal economic conditions giving rise to an
unacceptable number of simultaneous defaults. These observations can also be made directly
from our result above that involves λi(0) contributing to the drift component that, as we
have already noted, accounts for catastrophic scenarios.

Instead, it may be more appropriate to make θi(t) dynamic, say as the time-integral of
some non-negative stochastic process λi(t). Our earlier Lévy subordinator model can now
be defined for a realization of λi(t). Time-changing the subordinator is still with θi(t), but
the latter is no longer given by (34). Instead, it leads to the individual survival probability
Qi(t) = E

{
e−θi(t)

}
. A possible choice for the λi(t) process is square-root diffusion that

provides analytical results to compute Qi(t). A closed form expression is also available for
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the distribution of λi(t), but computing joint default probabilities involves distribution of
its time-integral making it harder pricing semi-analytically. Nevertheless, this approach is
appealing as it accounts for stochasticity of hazard rates.

15 Discussions and Conclusions

Modeling the dependency structure of defaults or other such extreme events is a problem of
multi-dimensional mathematical complexity. But the need for a simple and tractable solution
is evident from the popularity of the Gaussian copula model. The model has remained the
market standard for pricing correlation products in spite of all its limitations, very well-
known in the field. It is the purpose of the article to demonstrate that there do exist other
models, equally simple and tractable, that have better loss process dynamics and explanatory
power. The Lévy subordinator model presented here is one such model offering a reasonable
explanation of the correlation smile.

The Lévy subordinator model is a one-factor model driven by the Lévy subordinator,
an α = 1/2 stable process maximally skewed to the right. The distribution function of the
Lévy subordinator is known in closed form as the Lévy distribution. The model shares many
of the attractive features of the Gaussian copula model. It gets automatically calibrated to
individual hazard rate curves. It can be used for pricing both semi-analytically by employing
recursive methods or Fast Fourier Transform techniques, and via a Monte Carlo algorithm.
Being structured similar to the Gaussian copula model, it can easily be implemented within
the framework of the existing computational infrastructure. In fact, the only modifications
needed are to use (39) for the conditional survival probability in place of a similar one of the
Gaussian copula model and to integrate the conditional results over a uniform distributed
common factor instead of a normally distributed one.

The model has just two parameters σ and µ, or equivalently γ = σ+µ and κ = µ/(σ+µ).
Both γ and κ are permitted to range from zero to one. γ is the fraction of hazard rate that
is attributable to systemic factors. Of this fraction, a further fraction κ is attributed to
catastrophic scenarios. When deep in crisis, γ may well tend close to its upper limit of one.
When γ = 1, the model still has a freedom of one parameter, namely κ. This can be helpful
in, at least qualitatively, accounting for in-crisis correlation smiles.

Figures 1-16 present the results of a numerical investigation into the model’s implications.
Results are for a homogeneous collection with flat hazard rates. Figures 1-4 plot the base
correlations for various values of parameters under fixed recovery rates. Base correlations are
implied by the Gaussian copula model for the Lévy subordinator model prices. Model prices
and hedge ratios are computed for tranches [0,3]%, [3,7]%, [7,10]%, [10,15]% and [15,30]%.
As can be seen from the figures, despite having only two parameters at its disposal, the
model is capable of generating correlation smiles of various slope characteristics. Figures
5-8 present the hedge ratios under similar conditions. The hedge ratios appear reasonable,
atleast qualitatively, with the right dependencies on the model parameters. Figures 9 and 10
show the effect of random recovery rates on base correlations and hedge ratios for different
values of γ in the random recovery model of (68) with R(t) given by (69). Figures 11 and
12 respectively plot the joint default probability distributions for different values of γ and
κ parameters. Figure 13 plots them for a heterogeneous collection for different values of a
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parameter controlling heterogenity. Figure 14 plots the individual hedge ratios in a hetero-
geneous collection. Heterogeneity has a significant effect on the model behavior, especially
on the the tail of the loss distribution. This can be understood with an Ft(ν) as the inverse
of the average of the pt(F )s in the heterogeneous collection.

We have considered the model parameters as uniform across the collection for simplicity.
As already noted, they can be name-dependent (and also time-dependent). An attractive
feature of the one-factor model is that the pool specifics are completely encoded into the
names so that it becomes easier to combine pools to construct larger ones. For example,
if we have two pools calibrated separately in the one-factor setup giving rise to two sets of
parameters, we can price trades on a pool constructed out of names picked up from the two
pools assuming applicability of the one-factor formulation. This is of course the first step
since in general one would need the multi-factor formulation (24) with at least two factors
and a copula describing their joint distribution.

We modeled the individual process Λi(t) as a time-changed Lévy subordinator. Other
subordinators can also be attempted that admit closed form solutions to their distributions
such as the inverse Gaussian subordinator that is a natural extension of the Lévy subordina-
tor. Though relatively less efficient, stable subordinators with α in the neighborhood of 1/2
can also be tried using the method described in section (1) to obtain their distributions (see
Figures 15 and 16). Alternately, the conditional survival probability qi(F, t) can be modeled
directly, for instance as a mixture of Lévy distributions. Though these extensions were not
found to be helpful in improving the fit to market data on CDOs in a preliminary study in
Balakrishna [2010] (except to some extent stable subordinators with α near 1/2), they may
be helpful under different market conditions.

Though the model has been developed with an application to CDOs in mind, it could
be useful in other disciplines that involve modeling a dependent set of events. Simplicity
and tractability with its large homogeneous pool approximation, an efficient semi-analytical
framework and a Monte Carlo algorithm makes the model an attractive choice.
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Figure 1: Base correlations for γ = 25%, 50%, 75%, 100% with fixed κ = 25% and recovery
rate R = 40%. Maturity is 5 years and reference spread is at 100bp.

Figure 2: Base correlations for κ = 0%, 25%, 50%, 75% with fixed γ = 75% and recovery rate
R = 40%. Maturity is 5 years and reference spread is at 100bp.
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Figure 3: Base correlations for κ = 0%, 25%, 50%, 75% with fixed γ = 100% and recovery
rate R = 40%. Maturity is 5 years and reference spread is at 100bp.

Figure 4: Base correlations for reference spreads s = 50, 100, 150, 200bp with fixed γ =
75%, κ = 25% and recovery rate R = 40%. Maturity is 5 years.
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Figure 5: Hedge ratios for γ = 25%, 50%, 75%, 100% with fixed κ = 25% and recovery rate
R = 40%. Maturity is 5 years and reference spread is at 100bp.

Figure 6: Hedge ratios for κ = 0%, 25%, 50%, 75% with fixed γ = 75% and recovery rate
R = 40%. Maturity is 5 years and reference spread is at 100bp.
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Figure 7: Hedge ratios for κ = 0%, 25%, 50%, 75% with fixed γ = 100% and recovery rate
R = 40%. Maturity is 5 years and reference spread is at 100bp.

Figure 8: Hedge ratios for reference spreads s = 50, 100, 150, 200bp with fixed γ = 75%, κ =
25% and recovery rate R = 40%. Maturity is 5 years.
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Figure 9: Base correlations for γ = 25%, 50%, 75%, 100% with fixed κ = 25%. Recovery rate
is random as in (68) with R0 = 65%, Rs = 25% and R = 55%, 45%, 35%, 25% respectively
given by (69). Maturity is 5 years and reference spread is at 100bp.

Figure 10: Hedge ratios for γ = 25%, 50%, 75%, 100% with fixed κ = 25%. Recovery rate
is random as in (68) with R0 = 65%, Rs = 25% and R = 55%, 45%, 35%, 25% respectively
given by (69). Maturity is 5 years and reference spread is at 100bp.
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Figure 11: Joint default probability distributions for γ = 25%, 50%, 75%, 100% with fixed
κ = 25% and recovery rate R = 40%. Maturity is 5 years and reference spread is at 100bp.

Figure 12: Joint default probability distributions for κ = 0%, 25%, 50%, 75% with fixed
γ = 75% and recovery rate R = 40%. Maturity is 5 years and reference spread is at 100bp.
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Figure 13: Joint default probability distributions for a heterogeneity parameter b =
0, 0.1, 0.3, 0.5 with fixed γ = 75%, κ = 25% and recovery rate R = 40%. Maturity is
5 years. The collection is heterogeneous with the individual spreads a(1 − b)ν−b where
ν = i/n, i = 1, · · · , n = 125 and a chosen to yield an index spread of 100bp.

Figure 14: Individual hedge ratios for different tranches with fixed γ = 75%, κ = 25% and
recovery rate R = 40%. Maturity is 5 years. The collection is heterogeneous with the
individual credit spreads 0.7aν−0.3 where ν = i/n, i = 1, · · · , n = 125 and a = 102.5bp
yielding an index spread of 100bp.

38



Figure 15: Base correlations for index of stability α = 0.4, 0.5, 0.6, 0.7 with fixed γ =
75%, κ = 25% and recovery rate R = 40%. Maturity is 5 years and reference spread is
at 100bp.

Figure 16: Joint default probability distributions for index of stability α = 0.4, 0.5, 0.6, 0.7
with fixed γ = 75%, κ = 25% and recovery rate R = 40%. Maturity is 5 years and reference
spread is at 100bp.
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