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ABSTRACT 

The LI BOR Market  Model has becom e one of the m ost  popular m odels for 

pr icing interest  rate products. I t  is comm only believed that  Monte-Carlo simulat ion is 

the only viable m ethod available for the LIBOR Market  Model. I n this art icle, 

however, we propose a lat t ice approach to pr ice interest  rate products within the 

LI BOR Market  Model by int roducing a shifted forward m easure and several novel fast  

dr ift  approxim at ion m ethods. This m odel should achieve the best  perform ance 

without  losing much accuracy. Moreover, the calibrat ion is alm ost  autom at ic and it  is 

sim ple and easy to im plem ent . Adding this m odel to the valuat ion toolkit  is actually 

quite useful;  especially for r isk m anagem ent  or in the case there is a need for a 

quick turnaround. 

 

Key W ords:  LIBOR Market  Model, lat t ice m odel, t ree m odel, shifted forward 

m easure, drift  approxim at ion, risk m anagem ent, calibrat ion, callable exot ics, callable 

bond, callable capped floater swap, callable inverse floater swap, callable range 

accrual swap. 
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The LI BOR Market  Model (LMM) is an interest  rate m odel based on evolving 

LI BOR m arket  forward rates under a risk-neut ral forward probabilit y m easure. In 

cont rast  to m odels that  evolve the instantaneous short  rates (e.g., Hull-White, Black-

Karasinski m odels)  or instantaneous forward rates (e.g., Heath-Jarrow-Morton (HJM)  

m odel) , which are not  direct ly observable in the m arket , the objects m odeled using 

the LMM are m arket  observable quant it ies. The explicit  m odeling of m arket  forward 

rates allows for a natural formula for interest  rate opt ion volat ilit y that  is consistent  

with the m arket  pract ice of using the form ula of Black for caps. I t  is generally 

considered to have m ore desirable theoret ical calibrat ion propert ies than short  rate 

or instantaneous forward rate m odels. 

I n general, it  is believed that  Monte Carlo simulat ion is the only viable 

num erical method available for the LMM (see Piterbarg [ 2003] ) . The Monte Carlo 

simulat ion is com putat ionally expensive, slowly converging, and notor iously diff icult  

t o use for calculat ing sensit ivit ies and hedges. Another notable weakness is it s 

inabilit y to determ ine how far the solut ion is from  opt im alit y in any given problem .  

I n this paper, we propose a lat t ice approach within the LMM. The m odel has 

sim ilar accuracy to the current  pr icing m odels in the m arket , but  is m uch faster. 

Som e other m erits of the m odel are that  calibrat ion is alm ost  autom at ic and the 

approach is less com plex and easier to im plem ent than other current  approaches. 

We int roduce a shifted forward measure that  uses a var iable subst itut ion to 

shift  the center of a forward rate dist r ibut ion to zero. This ensures that  the 

dist r ibut ion is symm etr ic and can be represented by a relat ively sm all number of 

discrete points. The shift  t ransform at ion is the key to achieve high accuracy in 

relat ively few discrete finite nodes. I n addit ion, we present  several fast  and novel 

dr ift  approxim at ion approaches. Other concepts used in the m odel are probability 

dist r ibut ion st ructure exploitat ion, num erical integrat ion and the long jum p technique 

(we only posit ion nodes at  t imes when decisions need to be m ade) . 
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This m odel is actually quite useful for risk m anagem ent  because norm ally full-

revaluat ions of an ent ire port folio under hundreds of thousands of different  future 

scenarios are required for a short  t im e window. Without  an efficient  algor ithm , one 

cannot  properly capture and m anage the r isk exposed by the port folio. 

The rest  of this paper is organized as follows:  The LMM is discussed in Sect ion 

I . I n Sect ion I I , the lat t ice m odel is elaborated. The calibrat ion is presented in 

Sect ion I I I . The num erical im plem entat ion is detailed in Sect ion IV, which will 

enhance the reader’s understanding of the m odel and its pract ical im plem entat ion. 

The conclusions are provided in Sect ion V. 

 

I . LI BOR MARKET MODEL 

Let  (  , F ,  
0ttF , P )  be a filt ered probability space sat isfying the usual 

condit ions, where   denotes a sam ple space, F  denotes a  -algebra, P  denotes 

a probabilit y measure, and  
0ttF  denotes a filt rat ion. Consider an increasing 

m atur it y st ructure NTTT  ...0 10  from  which expiry-m atur it y pairs of dates 

( 1kT , kT )  for a fam ily of spanning forward rates are taken. For any t ime 1 kTt , we 

define a right -cont inuous m apping funct ion )(tn  by )(1)( tntn TtT  . The sim ply 

com pounded forward rate reset  at  t  for forward period ( 1kT , kT )  is defined by 
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where ),( TtP  denotes the t im e t  pr ice of a zero-coupon bond m atur ing at  t im e T and 

),(: 1 kkk TT    is the accrual factor or day count  fract ion for per iod ( 1kT , kT ) . 

I nvert ing this relat ionship (1) , we can express a zero coupon bond pr ice in 

terms of forward rates as:  
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LI BOR Market  Model Dynam ics 

Consider a zero coupon bond num eraire ),( iTP   whose m atur it y coincides with 

the m aturit y of the forward rate. The m easure i
Q  associated with ),( iTP   is called iT  

forward m easure. Terminal m easure N
Q  is a forward m easure where the m atur it y of 

the bond num eraire ),( NTP   m atches the terminal date NT . 

For brevit y, we discuss the one- factor LMM only. The one- factor LMM (Brace 

et  al. [ 1997] ) under forward m easure i
Q  can be expressed as  
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where tX   is a Brownian m ot ion. 

There is no requirement  for  what  kind of instantaneous volat ility st ructure 

should be chosen during the life of the caplet . All that  is required is (see Hull-White 

[ 2000] ) :  
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where k  denotes the m arket  Black caplet  volat ility and   denotes the st rike. Given 

this equat ion, it  is obviously not  possible to uniquely pin down the instantaneous 

volat ility funct ion. I n fact , this specificat ion allows an infinite num ber of choices. 

People often assum e that  a forward rate has a piecewise constant  instantaneous 

volat ility. Here we choose the forward rate )(tFk  has constant  instantaneous volat ility 

regardless of t  ( see Brigo-Mercurio [ 2006] ) . 
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Shifted Forw ard Measure 

The )(tFk  is a Mart ingale or dr ift less under its own m easure k
Q . The solut ion 

to equat ion (3b)  can be expressed as 


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where ),;0()0( 1 kkk TTFF   is the current  (spot )  forward rate. Under the volat ility 

assum pt ion described above, equat ion (5)  can be further expressed as 
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Alternat ively, we can reach the sam e Mart ingale conclusion by direct ly der iv ing the 

expectat ion of the forward rate (6);  that  is 
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where tX , tY  are both Brownian m ot ions with a norm al dist r ibut ion (0, t )  at  t im e t , 

)|(:)( tt EE F  is the expectat ion condit ional on the tF , and the var iable subst itut ion 

used for der ivat ion is 

ktt
tXY        (8)  

This variable subst itut ion that  ensures that  the dist ribut ion is centered on zero and 

symm etry is the key to achieve high accuracy  when we express the LMM in discrete 

finite form  and use num erical integrat ion to calculate the expectat ion. As a m at ter of 

fact , without  this linear t ransform at ion, a lat t ice m ethod in the LMM either does not  

exist  or int roduces too much error for longer m aturit ies. 

After applying this var iable subst itut ion (8) , equat ion (6)  can be expressed as 
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Since the LMM m odels the com plete forward curve direct ly, it  is essent ial to 

br ing everything under a comm on m easure. The terminal m easure is a good choice 

for this purpose, although this is by no m eans the only choice. The forward rate 

dynamic under terminal m easure N
Q  is given by 
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The solut ion to equat ion (10)  can be expressed as 
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where the dr ift  is given by 
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where  )(1/)()( sFsFs jjjjj    is the drift term. 

Applying (8)  to (11a) , we have the forward rate dynamic under the shifted 

terminal m easure as 
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Drift  Approxim at ion 

Under terminal m easure, the dr ifts of forward rate dynam ics are state-

dependent , which gives rise to sufficient ly complicated non-lognorm al dist r ibut ions. 

This m eans that  an explicit  analyt ic solut ion to the forward rate stochast ic different ial 

equat ions cannot  be obtained. Therefore, m ost  work on the topic has focused on 
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ways to approxim ate the drift , which is the fundam ental t rickiness in im plem ent ing 

the Market  Model.  

Our m odel works backwards recursively from  forward rate N down to forward 

rate k . The N- th forward rate )(tFN  without  drift  can be determined exact ly. By the 

t im e it  t akes to calculate the k-th forward rate )(tFk , all forward rates from  )(1 tFk  t o 

)(tFN  at  t im e t  are already known. Therefore, the dr ift  calculat ion (11b)  is to 

est im ate the integrals containing forward rate dynamics )(sF j , for j= k+ 1,…,N, with 

known beginning and end points given by )0(jF  and )(tF j . For com pleteness, we list  

all possible solut ions below . 

Frozen Drift  ( FD) . Replace the random  forward rates in the drift  by their  

determ inist ic init ial values, i.e., 
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Arithm et ic Average of the Forw ard Rates ( AAFR) . Apply the midpoint  

rule ( rectangle rule)  to the random  forward rates in the drift , i.e.,  
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Arithm et ic Average of the Drift  Term s ( AADT) . Apply the m idpoint  rule to 

the random  drift  t erm s, i.e.,  
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Geom etr ic Average of the Forw ard Rates ( GAFR) .  Replace the random 

forward rates in the drift  by their  geom etr ic averages, i.e., 

  




N

kj kj

jjj

jjj

k
t

tFF

tFF
t

1
)()0(1

)()0(
)( 




     (16)  



 7 

Geom etr ic Average of the Drift  Term s ( GADT) .  Replace the random  drift  

t erms by their  geom et r ic averages, i.e., 
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Condit ional Expectat ion of the Forw ard Rate ( CEFR) . I n addit ion to the 

two endpoints, we can further enhance our est im ate based on the dynamics of the 

forward rates. The forward rate )(sF j  follows the dynamic (9)  (The drift  term  is 

ignored) . We can derive the expectat ion of the forward rate condit ional on the two 

endpoints and replace the random forward rate in the drift  by the condit ional 

expectat ion of the forward rate. 

Proposit ion 1 . Assum e the forward rate )(sF j  follows the dynamic (9) , with 

the two known endpoints given by )0(jF  and )(tF j . Based on the condit ional 

expectat ion of the forward rate )(sF j , t he drift  of )(tFk  can be expressed as 
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where the condit ional expectat ion of the forward rate is given by 
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 Proof. See Appendix A. 

Condit ional Expectat ion of the Drift  Term  ( CEDT) .  Sim ilar ly, we can 

calculate the condit ional expectat ion of the dr ift  t erm  and replace the random  drift  

t erm by the condit ional expectat ion. 

Proposit ion 2 . Assum e the forward rate )(sF j  follows the dynamic (9) , with 

the two known endpoints given by )0(jF  and )(tF j . Based on the condit ional 

expectat ion of the dr ift  term j , t he dr ift  of )(tFk  can be expressed as 
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where the condit ional expectat ion of the dr ift  t erm  is given by 
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 Proof. See Appendix A. 

 The accuracy and perform ance of these drift  approxim at ion m ethods are 

discussed in sect ion I V. 

 

I I . THE LATTI CE PROCEDURE I N THE LMM  

The “ lat t ice”  is the generic term for any graph we build for the pricing of 

f inancial products. Each lat t ice is a layered graph that  at tem pts to t ransform  a 

cont inuous- t ime and cont inuous-space underlying process into a discrete-t im e and 

discrete-space process, where the nodes at  each level represent  the possible values 

of the underly ing process in that  period.  

There are two prim ary t ypes of lat t ices for pricing financial products:  t ree 

lat t ices and grid lat t ices (or rectangular lat t ices or Markov chain lat t ices) . The t ree 

lat t ices, e.g., t radit ional binomial t ree, assum e that  the underly ing process has two 

possible outcom es at  each stage. In cont rast  with the binomial t ree lat t ice, the grid 

lat t ices (see Amin [ 1993] , Gandhi-Hunt  [ 1997] , Martzoukos-Trigeorgis [ 2002] , 

Hagan [ 2005] , and Das [ 2011] )  shown in Exhibit  1,  which perm it  the underly ing 
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process to change by m ult iple states, are built  in a rectangular finite difference grid 

(not  to be confused with finite difference num erical m ethods for solving part ial 

different ial equat ions) . The gr id lat t ices are more realist ic and convenient  for the 

im plementat ion of a Markov chain solut ion.  

This art icle presents a grid lat t ice m odel for the LMM. To illust rate the lat t ice 

algorithm , we use a callable exot ic as an exam ple. Callable exot ics are a class of 

interest  rate derivat ives that  have Bermudan style provisions that  allow for ear ly 

exercise into var ious underly ing interest  rate products. I n general, a callable exot ic 

can be decom posed into an underlying inst rum ent  and an em bedded Bermudan 

opt ion.  

We will sim plify som e of the definit ions of the universe of instrum ents we will 

be dealing with for brevit y. Assume the payoff of a generic underly ing inst rum ent is 

a st ream  of paym ents  iiiii CTFZ   )( 1  for i= 1,…,N, where iC  is the st ructured 

coupon. The callable exot ic is a Bermudan style opt ion to enter the underly ing 

inst rument  on any of a sequence of not if icat ion dates 
ex

M

exex ttt ,...,, 21 . For any 

not if icat ion date ex

jtt  , we define a r ight -cont inuous m apping funct ion )(tn  by 

)(1)( tntn TtT  . I f t he opt ion is exercised at  t , the reduced pr ice of the underlying 

inst rument , from  the st ructured coupon payer’s perspect ive, is given by 

  


 



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

 

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
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


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N
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CTF
E
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E

TtP

tI
tI

)(

1

)( ),(

)(

),(),(

)(
:)(

~ 
   (20)  

where the rat io )(
~

tI  is usually called the reduced value of the underly ing inst rument  

or the reduced exercise value or the reduced int r insic value. 

Lat t ice approaches are ideal for pr icing early exercise products, given their  

“backward- in-t im e”  nature. Bermudan pricing is usually done by building a lat t ice to 

carry out  a dynam ic program ming calculat ion via backward induct ion and is 
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standard. The lat t ice m odel described below also uses backward induct ion but  

exploit s the Gaussian st ructure to gain ext ra efficiencies.  

First  we need to create the lat t ice. The random process we are going to m odel 

in the lat t ice is the LMM (12) . Unlike t radit ional t rees, we only posit ion nodes at  the 

determ inat ion dates ( the paym ent  and exercise dates) . At  each determ inat ion date, 

the cont inuous-t im e stochast ic equat ion (12)  shall be discret ized into a discrete-t im e 

schem e. Such discret ized schem es basically convert  the Brownian m ot ion into 

discrete variables. There is no rest rict ion on discret izat ion schem es. At  any 

determ inat ion date t , for instance, we discret ize the Brownian m ot ion  to be equally 

spaced as a gr id of nodes tiy , , for i =  1,…, tS . The num ber of nodes tS  and the space 

between nodes titit yy ,1,   at  each determ inat ion date can vary depending on the 

length of t im e and the accuracy requirem ent . The nodes should cover a certain 

num ber of standard deviat ions of the Gaussian dist ribut ion to guarantee a certain 

level of accuracy.  We have the discrete form of the forward rate as 









 tik

k

tikktik ytytFytF ,

2

,,
2

),(exp)0();( 


   (21)  

The zero-coupon bond (2)  can be expressed in discrete form as 

  


k

tnj
tijj

titntik
ytF

yTtPyTtP
)(

,

,)(,
);(1

1
);,();,(

    (22)  

We now have expressions for the forward rate (21) and discount  bond (22) , 

condit ional on being in the state tiy ,  at  t im e t , and from  these we can perform 

valuat ion for the underlying inst rument .  

At  the m atur it y date, the value of the underly ing inst rum ent  is equal to the 

payoff, i.e., 

)(),( ,, NN TiNTiN
yZyTI       (23)  
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The underly ing state process tX  in the LMM (11) is a Brownian m ot ion. The 

t ransit ion probability density from  state ( ti
x , , t )  to state ( Tj

x , , T )  is given by 





















)(2

)(
exp

)(2

1
),;,(

2
,,

,,
tT
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tT
Txtxp

tiTj

Tjti


   (24)  

Applying the variable subst itut ion (8) , equat ion (24) can be expressed as 





















)(2

)(
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)(2

1
),;,(

2
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,,
tT

tTyy

tT
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tTtiTj

Tjti




 (25)  

Equat ion (20)  can be further expressed as a condit ional value on any state 

( tiy , , t )  as:  

j

jj

j
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   (26)  

This is a convolut ion integral. Som e fast  integrat ion algorithm s, e.g., Cubic 

Spline I ntegrat ion, Fast  Fourier Transform  (FFT) , etc., can be used for opt im izat ion. 

We use the Trapezoidal Rule Integrat ion in this paper for ease of illust rat ion. 

I ncom plete inform at ion handling . Convolut ion is widely used in Electr ical 

Engineering, part icularly in signal processing. The im portant  part  is that  the far left  

and far r ight  parts of the output  are based on incom plete inform at ion. Any m odels 

that  t ry to com pute the t ransit ion values using integrat ion will be inaccurate if t his 

problem is not  solved, especially for longer maturit ies and mult iple exercise dates. 

Our solut ion is to extend the input  nodes by padding the far end values on each side 

and only take the or iginal range of the output  nodes. 

Next , we determ ine the opt ion values in each final not ificat ion node. On the 

last  exercise date, if we have not  already exercised, the reduced opt ion value in any 

state Miy ,  is given by 

 









 0,

);,(

);(
max

);,(

),(

,

,

,

,
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M
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ex

M

MiN

ex

M

Mi

ex

M

yTtP

ytI

yTtP

ytV
   (27)  
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Then, we conduct  the backward induct ion process that  is performed by 

iterat ively rolling back a series of long jum ps from  the final exercise date ex

Mt  across 

not if icat ion dates and exercise opportunit ies unt il we reach the valuat ion date. 

Assum e that  in the previous rollback step ex

jt , we calculated the reduced opt ion 

value:  );,(/),( ,, jiN

ex

jji

ex

j yTtPytV . Now, we go to ex

jt 1 . The reduced opt ion value at  ex

jt 1  is 


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j
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  (28a)  

where the reduced cont inuat ion value is given by 

jex

j
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  (28b)  

We repeat  the rollback procedure and eventually work our way through the 

first  exercise date. Then the present  value of the Bermudan opt ion is found by a final 

integrat ion given by 

 
1

1

2

111

11

11

1
2

exp
);,(

),(

2

1
),0()0( dy

t
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yTtP
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ex
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
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





 





   (29)  

The present  value or the pr ice of the callable exot ic from  the coupon payer’s 

perspect ive is:  

)0()0()0( _ instrumentunderlyBermudanpayer pvpvpv      (30)  

This fram ework can be used to pr ice any interest  rate products in the LMM 

set t ing and can be easily extended to the Swap Market  Model (SMM). 

 

I I I .  Calibrat ion 

First , if we choose the LMM as the cent ral m odel, we need to price interest  

rate derivat ives that  depend on either or both of cap and swapt ion m arkets. Second, 

we will undoubtedly use var ious swapt ions to hedge a callable exot ic. I t  is a 
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reasonable expectat ion that  the calibrated model we intend to use to pr ice our 

exot ic, will at  least  correct ly price the m arket  inst rum ents that  we intend to hedge 

with. Therefore, in an exot ic derivat ive pr icing situat ion, recovery of both cap and 

swapt ion m arkets might  be desired. 

The calibrat ion of the LMM to caplet  prices is quite st raight forward. However, 

it  is very diff icult , if not  im possible, to perfect ly recover both cap and swapt ion 

m arkets. Fortunately for the LMM, there also exist  ext rem ely accurate approxim ate 

form ulas for swapt ions im plied volat ilit y, e.g., Rebonato's formula. 

We int roduced a param eter   and set  ii  
  where i  denotes the m arket  

Black caplet  volat ilit y. One can choose different    for different  i
 . For sim plicit y we 

describe one   situat ion here. By choosing 1 , we have perfect ly calibrated the 

LMM to the caplet  prices in the m arket . However, our goal is to select  a   t o 

m inim ize the sum  of the squared differences of the volat ilit ies derived from  the 

m arket  and the volat ilit ies im plied by our m odel for both caps and swapt ions 

com bined. 

I n the opt im izat ion, we use Rebonato’s form ula for an efficient  expression of 

the m odel swapt ion volat ilit ies, given by 

 
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where ij
 = 1 under one- factor LMM. The swap rate )0(,S  is given by 

 




 1, )0()0()0(
i ii FwS     (31b)  
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Assum e the calibrat ion containing   caplets and G swapt ions. The error 

m inim izat ion is given by 

       G

j

swn

Nj

bonato

Nj

M

i ii 1

2

,

Re

,1

2
min   

   (32)  

where 
swn

Nj ,  denotes the m arket  Black swapt ion volat ilit y. The opt im izat ion can be 

found at  a stat ionary point  where the first  derivat ive is zero;  that  is, 


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

    (33)  

I n terms of forward volat ilit ies, we use the t ime-hom ogeneit y assum pt ion of 

the volat ilit y st ructure, where a forward volat ilit y for an opt ion is the sam e or close 

to the spot  volat ilit y of the opt ion with the sam e t im e to expiry. The t ime-

hom ogeneous volat ilit y st ructure can avoid non-stat ionary behavior. 

I n the LMM, forward swap rates are generally not  lognorm al. Such deviat ion 

from  the lognorm al paradigm  however turns out  to be ext remely sm all. Rebonato 

[ 1999]  shows that  the pricing errors of swapt ions caused by the lognorm al 

approxim at ion are well within the m arket  bid/ ask spread. For m ost  short  m atur it y 

interest  rate products, we can use the lat t ice m odel without  calibrat ion (33) . 

However, for longer m aturity or deeply in the m oney (I TM) or out  of the m oney 

(OTM)  exot ics we m ay need to use the calibrat ion and even som e specific skew/ smile 

adjustm ent  techniques to achieve high accuracy. 

 

I V.  NUMERI CAL I MPLEMENTATI ON 

I n this sect ion, we will elaborate on m ore details of the im plem entat ion. We 

will start  with a sim ple callable bond for the purpose of an easy illust rat ion and then 

m ove on to som e typical callable exot ics, e.g., callable capped floater swap and 
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callable range accrual swap. The reader should be able to im plem ent  and replicate 

the m odel after reading this sect ion. 

 

Callable Bond 

A callable bond is a bond with an opt ion that  allows the issuer to retain the 

pr ivilege of redeeming the bond at  som e points before the bond reaches the m aturit y 

date. For ease of illust rat ion, we choose a very sim ple callable bond with a one-year 

m atur it y, a quarterly payment  frequency, a $100 principal am ount  (A) , and a 4%  

annual coupon rate ( the quarterly coupon 1C ) . The call dates are 6 m onths, 9 

m onths, and 12 m onths. The call price (H)  is 100%  of the pr incipal. The bond spread 

(  )  is 0.002. Let  the valuat ion date be 0. A detailed descript ion of the callable bond 

and current  (spot )  m arket  data is shown in Exhibit  2.  

For a short - term  m aturity callable bond, our lat t ice m odel can reach high 

accuracy even without  calibrat ion (33)  and incom plete inform at ion handling. 

Therefore, we set  1   and ii   . The valuat ion procedure for a callable bond 

consists of 4 steps:  

Step 1 :  Create the lat t ice. Based on the long jum p technique, we posit ion 

nodes only at  the determ inat ion (payment / exercise)  dates. The num ber of nodes and 

the space between nodes at  each determinat ion date m ay vary depending on the 

length of t im e and the accuracy requirement . To sim plify the illust rat ion, we choose 

the sam e set t ings across the lat t ice, with a gr id space (space between nodes)  

2/1 , and a num ber of nodes S= 7. I t  covers 3)1( S  standard deviat ions for a 

standard norm al dist r ibut ion. The nodes are equally spaced and symm etr ic, as shown 

in Exhibit  3.  

Step 2 :  Find the opt ion value at  each final node. At  the final m atur it y date 

4T , t he payoff of the callable bond in any state iy  is given by 
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 CAHyTVV ii  ,min),(: 44,     (34)  

where A denotes the principal am ount , C denotes the bond coupon, and H denotes 

the call price. The opt ion values at  the m aturit y are equal to the payoffs as shown in 

Exhibit  3. 

Step 3 :  Find the opt ion value at  earlier nodes. Let  us go to the penult im ate 

not if icat ion date 3T . The opt ion value in any state iy  is given by 

 CVHyTVV
c

iii  3,33, ,min),(:    (35)  

Equat ion (35) can be further expressed in the form  of reduced value as 
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where );,(/ 433, i

C

i yTTPV  denotes the reduced cont inuat ion value in state iy  at  3T  given 

by 
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      (36b) 

where   denotes the bond spread. Similar ly we can com pute the reduced callable 

bond values at  2T . All interm ediate reduced values are shown in Exhibit  3. 

Step 4 :  Com pute the final integrat ion. The final integral at  valuat ion date 0 is 

calculated as 
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(37)  

Moreover, we need to add the present  value of the coupon at  1T  into the final 

pr ice. The final callable bond value is given by 

398.81),0()exp()0()0( 11  CTPTVV     (38)  

The pseudo-code is supplied in Appendix B for the im plementat ion program . 

The convergence result s shown in Exhibit  4 indicate what  occurs for a given gr id 

space   when we increase the num ber of nodes S. The speed of convergence is very 

fast , ensuring that  a sm all num ber of grids are sufficient . All calculat ions are 

converged to 100.7518. One sanit y check is that  the callable bond price should be 

close to the st raight  bond price if the call prices becom e very high. Both of them  are 

com puted as 103.3536. 

 

Callable capped floater  sw ap 

A callable capped floater swap has two legs:  a regular float ing leg and a 

st ructured coupon leg. The st ructured coupon rate of the j - th period ( jj
TT ,1 )  is given 

by 

}],),(max{min[ 1
F
j

C
jjjjjjjj KKTFAC      (39)  

where jA  is the not ional am ount , C

j
K  is the rate cap, F

j
K  is the rate floor, j

  is the 

spread and j
  is the scale factor. For j

 >  0, it  is called a callable capped floater 

swap. For j
 <  0, it  is called a callable inverse floater swap. 
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We choose a real m iddle life t rade with m ore than 10 years rem aining in it s 

lifet im e. The float ing leg has a quarter ly paym ent frequency with step-down 

not ionals and step-up spreads. The structured coupon leg has a semi-annually 

paym ent frequency with varying not ionals, spreads, scales, rate caps, and rate 

floors. The call schedule is sem i-annual. 

 

Callable range accrual sw ap 

A callable range accrual swap has two legs:  a regular float ing leg and a 

st ructured coupon leg. The st ructured coupon rate of the j - th period ( jj
TT ,1 )  is given 

by 

  
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where 
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   (40b)  

where R is the fixed rate, minj
K  and maxj

K  are the accrual range of the j - th period,  

),;( 
iii

tttF  is the LI BOR rate,   is the range accrual index term , j
M  is the total 

num ber of the business days in the j - th period. 

 We choose a real 10 years m atur it y t rade. The float ing leg has a quarter ly 

paym ent  frequency and the st ructured coupon leg has a semi-annually payment  

frequency with varying accrual ranges. I t  start s with the first  call opportunity being 

in 3 years from  incept ion, and then every year unt il the last  possibilit y being 9 years 

from  incept ion. The range accrual index term is 6 m onths. 

The lat t ice im plem entat ion procedure for a callable capped floater swap or a 

callable range accrual swap is quite sim ilar to the one for a callable bond except  the 

valuat ion for the underlying inst rument . 
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The convergence diagram s of pricing calculat ions are shown in Exhibit s 5 and 

6. Each curve in the diagrams represents the convergence behavior for a given grid 

space as nodes are increased. All of the lat t ice results are well converged. I f t he gr id 

space is sm aller, the algorithm  has bet ter convergence accuracy but  a slower 

convergence rate, and vice verse. 

We benchm arked our m odel under different  dr ift  approxim at ion m ethods with 

several standard m arket  approaches, e.g., the regression-based Monte Carlo in the 

full LMM and the HJM t rinom ial t ree. The m odel com parisons for the accuracy and 

speed are shown in Exhibits 7 and 8. With regards to accuracy, as expected, the FD 

performs very badly. AAFR and GAFR do a lit t le bet ter but  errors go in different  

direct ions. The sam e conclusions can be drawn for AADT and GADT. Both CEFR and 

CEDT are the best . I n term s of CPU t im es, FD, AAFR, AADT, GAFR and GADT are the 

sam e. But  CEFR and CEDT are slower, especially in the callable range accrual swap 

case.  

  

V. CONCLUSI ON 

I n this paper, we proposed a lat t ice m odel in the LMM to pr ice interest  rate 

products. Conclusions can be drawn, supported by the previous sect ions. First , t he 

m odel is quite stable. The fast  convergence behavior requires fewer discret izat ion 

nodes. Second, this m odel has alm ost  equivalent  accuracy to the current  pricing 

m odels in the m arket . Third, the im plem entat ion of the m odel is relat ively easy. The 

calibrat ion is very sim ple and st raight forward. Finally, the perform ance of the m odel 

is probably the best  am ong all known approaches at  the t im e of writ ing. 

We use the following techniques in our m odel:  shifted forward m easure, dr ift  

approxim at ion, probability dist ribut ion st ructure exploitat ion, long jum p, num erical 

integrat ion, incom plete inform at ion handling, and calibrat ion. Com bining these 
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t echniques, the m odel achieves sufficient  accuracy in relat ively few t im e steps and 

discrete nodes, which m akes it  a very efficient  m ethod. 

For ease of illust rat ion, we present  the lat t ice model based on the Trapezoidal 

Rule integrat ion. A bet ter but  slight ly m ore com plicated solut ion is to spline the 

payoff funct ions. The cubic spline of the opt ion payoffs can achieve higher accuracy, 

especially for Greeks calculat ions, and higher speed. Although cubic spline takes 

som e t im e, the lat t ice will require much fewer nodes (23 ~  28 nodes are good 

enough)  and can perform  a much faster integrat ion. I n general, the spline m ethod 

can provide a speedup factor around 3 ~  5 t im es. 

We have im plem ented the lat t ice m odel to price a variety of interest  rate 

exot ics. The algorithm  can always achieve a fast  convergence rate. The accuracy, 

however, is a bit  t rickier, depending on m any factors:  drift  approxim at ion 

approaches, num erical integrat ion schemes, volat ilit y select ions, and calibrat ion, etc. 

Som e work, such as calibrat ion, is m ore of an art  than a science. 
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APPENDI X A:  

Proof of Proposit ion 1 . We rewrite (9) as  
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I n the general Brownian Bridge case when the Wiener process )(tY  has )(
1

tY = a and 

)(
2

tY = b, the dist r ibut ion of )(tY  at  t im e ),(
21

ttt  is norm al given by  
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I n our case:  01 t , tt 2 , a= 0, b= )(tY , ),0( ts , t hus (A2)  can be expressed as 
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Let  2/)()( 2
ssYsA jjj   . According to the linear t ransform at ion rule, )(sA
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a norm al given by  
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Let   )(exp)( sAsB
jj

 . By definit ion, )(sB j  is a lognorm al given by  

 )(),(~)( ssLogNsB AjAjj  . According to the character izat ions of the lognorm al 

dist r ibut ion, the m ean and variance of )(sB j  are 
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We have the condit ional expectat ion of the forward rate )(sF
j

 as  

    








 












t

sts

F

tF
FsBEFsFE

j
t

s

j

j

jjjtFFj jj 2

)(
exp

)0(

)(
)0()()0(|)(

2

0)(),0(


   (A6)  

 Proof of Proposit ion 2 . Let  )()0(1)(1)( sBFsFsC
jjjjjj

   where )(sB
j  is 

defined above. According to the linear t ransform at ion rule,  )(sC j  is a lognorm al 

given by  )(),(~)( svsLogNsC
j

 . The m ean and variance of )(sC
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On the other hand, according to the characterizat ions of the lognorm al 

dist r ibut ion, the m ean and variance of )(sC
j  are 
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Solving the equat ion (A8a) and (A8b) , we get  
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We know the first  negat ive m om ent of the lognorm al is    2/)()(exp)(1
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where )(sCj , )(s
Cj

  are given by (A7a)  and (A7b) . 

 

APPENDI X B:  
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The following pseudo-code (C+ + )  dem onst rates how to im plem ent  the m odel 

to pr ice a callable bond. For the purpose of an easy illust rat ion, we choose the sam e 

set t ings ( the num ber of nodes and the gr id space)  across the lat t ice and use the 

Trapezoidal Rule for num erical integrat ion.  

 

// 2*numNodes = 2*mNumNodes = the number of nodes (S); gap = mGap = the grid space (Phi) 
double priceCallableBond (BondTrade* bd, CallableBond* cb, int numNodes, double gap) { 
       double pv; 
       cb->fillLattice(); 
 
       // The last exercise 
       CallSchedule& cs = bd->callSch[numCallSch-1]; 
       if (cs.term == bd->cFlow[numCashFlow-1].endDate) // The last exercise is at maturity 
 for (int i= -numNodes; i <= numNodes; i++) 
         cs.reducedValue[i+numNodes] = min (cs.callPrice,  

    bd->cFlow[numCashFlow-1].reducedPayoff[i+numNodes]); 
       else { // The last exercise is before maturity 
 for (int i= -numNodes; i <= numNodes; i++) { 
         pv = 0; 
         for (int j = bd->numCF-1; (bd->cFlow[j].endDate >= cs.term) && (j >= 0); j--) { 
  CashFlow& cf = bd->cFlow[j]; 
  (cf.endDate == cs.term) ? pv += cf.reducedPayoff[i+numNodes]  

           : pv += exp(-bondSpread*(cf.endDate-cs.term)) * cb->integral(i,  
         cs.vol, cf.vol, cf.endDate, cs.term, cf.reducedPayoff); 

         } 
        cs.reducedValue[i+numNodes] = min (cs.callPrice/cs.df[i+numNodes], pv); 
 } 
       } 
 
       if (numCallSch > 1) {  // The remaining  exercises 
 for (int i = numCallSch - 2; i>=0; i--) { 
        CallSchedule& cs = bd->callSch[i]; 
        CallSchedule& preCs = bd->callSch[i+1]; 
        for (int j = -numNodes; j <= numNodes; j++) { 
  pv = exp(-bondSpread * (preCs.term - cs.term))  
          * cb->integral (j, cs.vol, preCs.vol, preCs.term, cs.term, preCs.reducedValue); 
  for (int k=bd->numCF-1; k >= 0; k--)  // Count intermediate coupons 
         if ((bd->cFlow[k].endDate < preCs.term) && (bd->cFlow[k].endDate >= cs.term)) 
   pv += bd->cFlow[k].reducedPayoff[j+numNodes]  
             * exp (-bondSpread*(bd->cFlow[k].endDate - cs.term)); 
  cs.reducedValue[j+numNodes] = min (cs.callPrice/cs.df[j+numNodes], pv); 
        } 
 } 
       } 
 
       // The final integral 
      CallSchedule& preCs = bd->callSch[0]; 
      pv = cb->integral (0, 0, preCs.vol, preCs.term, 0, preCs.reducedValue) *exp(-bondSpread*(preCs.term)); 
      pv *= bd->cFlow[bd->numCF-1].endDf;  // endDf: discount factor from 0 to the end date 
      for (int k=bd->numCF-1; k >= 0; k--)  // Count intermediate coupons 
 if ((bd->cFlow[k].endDate < preCs.term)) 
          pv += bd->cFlow[k].coupon * bd->cFlow[k].endDf * exp(-bondSpread * bd->cFlow[k].endDate); 
     return pv; 
} 
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void CallableBond::fillLattice() { 
      for (int i = mTrade->numCF-1; i>=0; i--) { 
 CashFlow& cf = mTrade->cFlow[i]; 
 if (cf.endDate < mTrade->callSch[0].term)   break; 
 for (int j = -mNumNodes; j <= mNumNodes; j++)  
         fillNode(i, j, cf.startDate, mDrift); 
      } 
} 
 
void CallableBond::fillNode(int cI, int nI, double vT, DriftAppx flag) { 
      int numCF = mTrade->numCF; 
      double avgF, expon, fwdt, drift = 0; 
      CashFlow& fl = mTrade->cFlow[cI]; 
      if (cI == numCF-1) { // At maturity 
 fl.df[nI + mNumNodes] = 1.0;   
 fl.reducedPayoff[nI + mNumNodes] = fl.notional + fl.coupon; 
      } 
      else if (fl.startDate <= 0) // Starting before valuation date) 
 fl.reducedPayoff[nI + mNumNodes] = fl.coupon * fl.endDf / mTrade->cFlow[numCF-1].endDf;  
      else { 
 fl.df[nI + mNumNodes] = 1.0; 
 for (int i = numCF - 1; i > cI; i--) { 
        CashFlow& cf = mTrade->cFlow[i]; 
         expon = (cf.vol * cf.vol * vT / 2) + cf.vol * nI * mGap; 
         fwdt = cf.fwd0 * exp(-drift + expon); 
        switch (flag) {  // The other cases are similar to either AAFR or CEFR 
        case AAFR:  // Arithemic Average Fwd Rate 
  avgF = 0.5 * (cf.fwd0 + fwdt); 
  drift += vT * fl.vol * cf.vol * cf.delta * avgF / (1 + cf.delta * avgF); 
  break; 
        case CEFR:  // Conditional Expectation of Fwd Rate 
  drift += fl.vol * cf.vol * integralFwd(cf.fwd0, fwdt, 0, vT, cf.vol, cf.delta); 
  break; 
       default: 
  break; 
        } 
        fl.df[nI + mNumNodes] /= (1 + fwdt * cf.delta);  // df: discount factor maturing at maturity 
 } 
 fl.reducedPayoff[nI + mNumNodes] = fl.coupon / fl.df[nI + mNumNodes]; 
       } 
} 
 
// Gauss-Legendre integration for drift 
const double xArray[] = {0, 0.1488743389, 0.4333953941, 0.6794095682, 0.8650633666, 0.9739065285}; 
const double wArray[] = {0, 0.2955242247, 0.2692667193, 0.2190863625, 0.1494513491, 0.0666713443}; 
double CallableBond::integralFwd(double F0, double Ft, double a, double b, double vol, double delta) {   
       double xm = 0.5 * (b + a); 
       double xr = 0.5 * (b - a); 
       double ss = 0, dx = 0; 
       for (int j = 1; j <= 5; j++) { 
        dx = xr * xArray[j]; 
         ss += wArray[j] * (expectFwd(F0, Ft, (xm + dx), b, vol, delta)  

         + expectFwd(F0, Ft, (xm - dx), b, vol, delta)); 
      } 
      return ss * xr; 
} 
 
double CallableBond::expectFwd(double F0, double Ft, double s, double t, double vol, double delta) { 
      double mean = F0 * pow ((Ft / F0), (s / t)) * exp(0.5 * vol * vol * s * (t - s) / t); 
      return delta * mean / (1 + delta * mean);- 
} 
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// Trapezoidal Rule Integration 
double CallableBond::integral (int curPos, double curVol, double preVol, double preTerm,  

      double curTerm, double* value){ 
       double diffPos, tmpV, sum = 0; 
       for (int k = -mNumNodes; k <= mNumNodes; k++) { 
 diffPos = k*mGap - curPos*mGap + preVol * preTerm - curVol * curTerm; 
 tmpV = value[k+mNumNodes] * exp (-diffPos * diffPos/(2*(preTerm - curTerm))); 
 ((k == -mNumNodes) || (k == mNumNodes)) ? sum += 0.5 * tmpV : sum += tmpV; 
       } 
       return sum * mGap / sqrt(2 * PI * (preTerm - curTerm)); 
} 

 

EXHI BI T 1 . The Grid/ Rectangular  Lat t ice 

This exhibit  defines the state space for the underlying process tY  over the first  two discrete 

t im e periods. The start ing state 0y  at  valuat ion date 0 is the single root  of the latt ice. At  each 

date it  the underlying process 
it

Y  is discret ized into a num ber of vert ical nodes/ states indexed 

by j .  The value 
itjy ,  denotes the underlying process in state j  at  date it .  The node 

1,1 ty ,  for 

instance, can evolve to any discrete state in 2t  with certain t ransit ion probabilit ies. For a 

Brownian m ot ion, the t ransit ion probabilit y can be easily determ ined by (25) . 

 

 

EXHI BI T 2 : The Callable Bond and Associated Spot  Market  Data  

The callable bond has a one-year m aturity, a $100 principal,  a quarterly payment frequency, 

and a 4%  annual coupon rate. Delta =  (end date – start  date) / 365 (day count :  ACT/ 365). The 

discount  bond ),0( iTP  m atures at  the end date iT .  The call dates are 6, 9, and 12 months. 

Cash flow  index 1 2 3 4 

Start  date ( days)  0 92 181 273 

1t

1,2 ty

1,3 ty

1,4 ty

1,5 ty

2,1 ty

2,2 ty

2,3 ty

2,4 ty

2,5 ty

0y

1,1 ty

2t
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End date ( days)  92 ( 1T ) 181 ( 2T ) 273 ( 3T ) 365 ( 4T ) 

Delta ( years)  0.252055 0.243836 0.252055 0.252055 

Payoff ( $ )  1 1 1 101 

Call Schedule ( days)  - 181 273 365 

Discount  bond ),0( iTP  0.999313 0.998557 0.997293 0.995667 

Black Volat ility i  - 0.337631 0.344218 0.350878 

 

EXHI BI T 3 : The LMM Lat t ice Structure of the Callable Bond .  

The callable bond is defined in Exhibit  2. ),(
~

:
~

, ijji yTVV   denotes the reduced value of the 

callable bond at  any node ( i,  j ).  1V  denotes the coupon at  1T .  )0(V  is the value calculated by 

the final integrat ion. )0(V  is the final callable bond value that  is equal to )0(V  plus the present 

value of 1V .  The grid space is 5.0  and the number of nodes is 7S .  This lat t ice has 3 

steps and 7 nodes. 

 

 

EXHI BI T 4 : The Convergence Results for  the Callable Bond .  

The callable bond is defined in Exhibit  2. 1  and drift  approximat ion is AADT. Each curve 

represents the convergence behavior for a given grid space (phi)  as nodes are added. All 

calculat ions are converged to 100.7518. 
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Convergence of a callable bond
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EXHI BI T 5 : The Convergence Results for  the Callable Capped Floater  Sw ap 

The callable capped floater swap has m ore than 10 years rem aining in its lifet ime. The float ing 

leg has a quarterly paym ent  frequency. The st ructural leg has a sem i-annually paym ent  

frequency. The call schedule is sem i-annual.  = 1 and drift  approximat ion is CEDT. Each curve 

represents the convergence behavior for a given grid space (phi)  as nodes (N)  are added. 
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EXHI BI T 6 : The Convergence Results for  the Callable Range Accrual Sw ap  
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The callable range accrual swap has 10 years maturity. The float ing leg has a quarterly 

payment  frequency. The st ructural leg has a sem i-annually payment  frequency. There are 7 

call opportunit ies.  = 1 and drift  approximat ion is CEDT. Each curve represents the 

convergence behavior for a given grid space (phi)  as nodes are added. 
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EXHI BI T 7 : The Benchm ark Results for  the Callable Capped Floater  Sw ap  

This exhibit  presents the results for m odel com parison. We benchmark the latt ice m odel under 

different  drift  approxim at ion methods with several standard market approaches, e.g.,  the 

regression-based Monte Carlo in the full LMM and the HJM t r inom ial t ree, for both accuracy 

and speed. The t rade is the same as the one in Exhibit  5. The grid space is  = 1/ 8 and the 

number of nodes is S= 200. PC denotes Predictor-Corrector. The column ‘Dif from  MC’ =  1 – 

(current  row price)  /  (price of MC in LMM). All com putat ional t imes are denoted in seconds on 

a com puter with a 2.33 GHz Duo Core CPU.  

Model   Drift Steps n Calls Nodes/Paths Price Err from MC Run time 

MC in LMM - PC 40 20 1 million 4,546,863.3 0 290.32 

HJM tri-tree - - 1979 20 2n+1 4,602,136.3 1.22% 15.01 

1 FD 40 20 200 4,822,728.4 6.07% 0.32 

1 AAFR 40 20 200 4,637,263.2 1.99% 0.32 

1 AADT 40 20 200 4,637,718.1 2.00% 0.32 

1 GAFR 40 20 200 4,698,215.6 3.33% 0.32 

1 GADT 40 20 200 4,698,441.3 3.33% 0.32 

Our Model 
 

1 CEFR 40 20 200 4,665,210.3 2.60% 0.38 
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1 CEDT 40 20 200 4,665,552.4 2.61% 0.39 

0.99 FD 40 20 200 4,708,768.9 3.56% 0.32 

0.99 AAFR 40 20 200 4,504,989.2 -0.92% 0.32 

0.99 AADT 40 20 200 4,505,426.3 -0.91% 0.32 

0.99 GAFR 40 20 200 4,609,779.5 1.38% 0.32 

0.99 GADT 40 20 200 4,609,996.6 1.39% 0.32 

0.99 CEFR 40 20 200 4,563,689.2 0.37% 0.38 

0.99 CEDT 40 20 200 4,563,730.9 0.37% 0.39 

 

 

EXHI BI T 8 : The Benchm ark Results for  the Callable Range Accrual Sw ap  

This exhibit  presents the results for m odel com parison. We benchmark the latt ice m odel under 

different  drift  approxim at ion methods with several standard market approaches, e.g.,  the 

regression-based Monte Carlo in the full LMM and the HJM t r inom ial t ree, for both accuracy 

and speed. The t rade is the same as the one in Exhibit  6. The grid space is  = 1/ 8 and the 

number of nodes is S= 200. The column ‘Dif from  MC’ =  1 – (current  row price) /  (price of MC 

in LMM). All com putat ional t imes are denoted in seconds on a computer with a 2.33 GHz Duo 

Core CPU.  

Model   Drift Steps n Calls Nodes/Paths Price Dif from MC Run time 

MC in LMM - Euler 1801 7 1 million 585793.2 0.00% 2372.21 

HJM tri-tree - - 1801 7 2n+1 582167.8 -0.62% 15.62 

1 FD 1801 7 200 648365.4 10.68% 0.21 

1 AAFR 1801 7 200 602482.2 2.85% 0.21 

1 AADT 1801 7 200 602742.1 2.89% 0.21 

1 GAFR 1801 7 200 616318.6 5.21% 0.21 

1 GADT 1801 7 200 616425.3 5.23% 0.21 

1 CEFR 1801 7 200 598253.3 2.13% 2.21 

1 CEDT 1801 7 200 598372.4 2.15% 2.35 

0.99 FD 1801 7 200 609373.9 4.03% 0.21 

0.99 AAFR 1801 7 200 579337.2 -1.10% 0.21 

0.99 AADT 1801 7 200 579386.3 -1.09% 0.21 

0.99 GAFR 1801 7 200 591981.5 1.06% 0.21 

0.99 GADT 1801 7 200 591917.6 1.05% 0.21 

0.99 CEFR 1801 7 200 588918.9 0.53% 2.21 

Our Model 

0.99 CEDT 1801 7 200 588935.7 0.54% 2.35 

 

 
 


